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Music: an inherently human and creative process
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» Composition: memory, abstract object structure in space (harmony) and time (melody) and emotion
» Execution: mapping all of these onto the motor cortex and the motor cortex onto the motor neurons
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Challenge: a smart mechatronic system that creatively generates and solves a problem, and executes
the solution by learning the dynamics of its environment
Goals:

> Develop a generative Al model to produce new music
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1 Al Gompos@lt [T TPerforfiiance Evalliation
x103 > Movement according to
: i Conren ML copveat: boor equation of motion > Train model to mimic the algorithmic
Input MelOdy (32 1) Input Note Vectors (8, 88) === A|gorithmic Approach Py P > Relative position of a finger ' '
oy — "o Ao, P 9 player with standard supervised
@ L bopouton e c P o po . L follows hand position |
e o e e || 2 o erralure ., Algorithmic approach: P learning approach
ST e ] | B : fast but fails to play many _ % Algorithmic Pl Train with reinf t learning [3
censeiayer: B enselayer 5 sections of a song d0.  dL de. gorithmic Player > Train with reinforcement learning [3]
S | 47 > Breaknotes into clusters for using a dense reward emphasizing
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Scrape classical piano song files [1] = .l o cerant Omo II Algorithmic approach _. > Repeat for next set of notes re
4 . .l approach . II performance
= . performance e <3 |
e - B Ei BB cson oot
5 5 - > itional degrees of freedom
: il 2 g
LO
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> Use the Robot Pianist to help
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