Matrix Regenerative Platforms for Soft Tissue Repair

Anand Ramamurthi, PhD, FAHA Peter C Rossin Professor and Department Chair Fall 2023

EEHIGH | Department of Bioengineering

Biography

Prof. Anand Ramamurthi

Keywords: Elastic matrix, Stimulated elastogenesis, regenerative nanotherapeutics, stem cells, cardiovascular tissue engineering

Education and Training

PhD, Chemical Engineering, Oklahoma State University (1999) Postdoctoral Fellowship, Cleveland Clinic (2001; Sponsor: AHA)

Areas of Research Interest

Nanomedicine In Situ Soft Tissue Repair Animal Models of Cardiovascular Disease Extracellular Matrix Regenerative Therapeutics Biomimicry in Tissue Regeneration Biomaterials

Select Publications

- Camardo A, Seshadri D, Broekelmann T, Mecham R, Ramamurthi A. Multifunctional, JNK-inhibiting nanotherapeutics for augmented elastic matrix regenerative repair in aortic aneurysms. Drug Deliv Transl Res. 2018;8(4):964-984.
- Deb PP, Ramamurthi A. Spatiotemporal mapping of matrix remodelling and evidence of in situ elastogenesis in experimental abdominal aortic aneurysms. J Tissue Eng Regen Med. 2017;11(1):231-245.
- Bashur CA, Ramamurthi A. Composition of intraperitoneally implanted electrospun conduits modulates cellular elastic matrix generation. Acta Biomater. 2014;10(1):163-72.

🐻 LEHIGH | Department of Bioengineering

Elastic Matrix Regenerative Repair

Proteolytic Dysregulation

Proteases

Anti-Proteases

Proteolytic Disorders

What is the technology being studied?

 Platform approaches to restore elastic structure and mechanics of soft tissues compromised by injury/disease-initiated chronic enzymatic breakdown of elastic fibers and higher order structures (sheets, meshes)

Why is this topic significant?

- Elastic matrix breakdown and structural tissue failure is centric to disorders involving chronic imbalances between proteases and anti-proteases
- Example disorders include abdominal aortic aneurysms (AAAs), chronic obstructive pulmonary disease (COPD), pelvic organ prolapse (POP)
- Complexity of elastic fiber composition and importance to cellular signaling and health mandate cellular regeneration and repair of fibers
- **Reversing pathophysiology is difficult:** Adult/diseased cell types do not naturally regenerate or repair elastic matrix

How is this topic studied?

- Nanomedicine and stem cell-based therapeutics
- In vitro 2-D and 3-D cell culture models
- In vivo rodent models of disease

What are the future directions of this research?

- New single point molecular targets for augmented regeneration
- Biomimetic matrix regenerative and theranostic platforms
- Machine learning tools to predict elastic tissue failure

LEHIGH | Department of Bioengineering

Biomimetic Matrix Regenerative Platforms

Active Targeted Nanotherapeutics

Stem Cell (Inspired) Therapies

Novel Drug Targets

Animal Models of Proteolytic Disorders

LOXL1 KO mouse model mimics clinical POP phenotype

Department of Bioengineering

Research Support and Contact

Department of Bioengineering Health Sciences and Technology (HST) Bldg, Rm 138 124 E. Morton St. Lehigh University Bethlehem, PA 18015

Email: <u>anr320@lehigh.edu</u> Phone: (610) 758-6406 URL: https://engineering.lehigh.edu/bioe/faculty/44663