## Microfluidics for Biology and Sustainability

Xuanhong Cheng Professor October 26, 2023

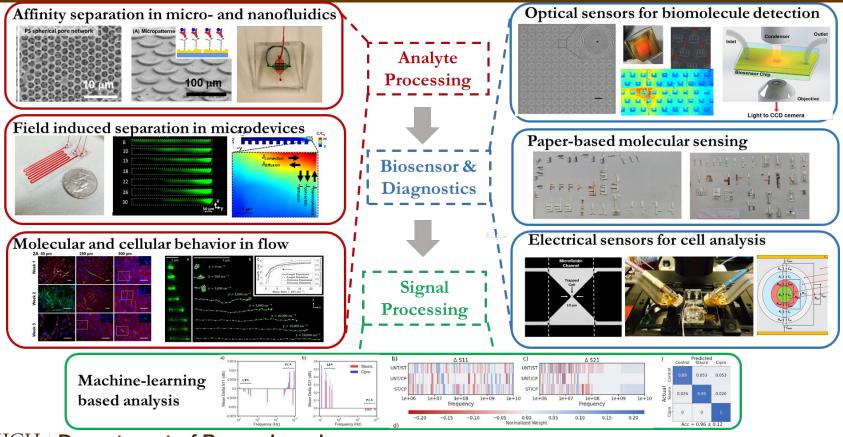
## EEHIGH | Department of Bioengineering

## **Professor, Bioengineering, Materials Science and Engineering**

Xuanhong Cheng

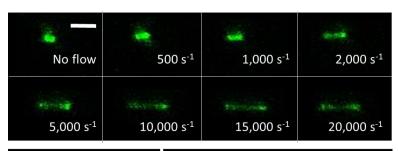
- **Education and Training** 
  - Postdoctoral Fellow, Massachusetts General Hospital, Harvard Medical School, Boston, MA ٠
  - Ph.D., Bioengineering, University of Washington, Seattle, WA ٠
  - B.S., Biology, Wuhan University, Wuhan, China ٠

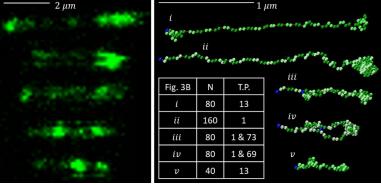
#### Research Areas


- Microfluidics, Lab on a Chip, Point-of-Care Diagnostics, BioMEMS, Biosensors, Biomaterials
- Sample Publications
  - Wang, Y.; Nguyen, K. T.; Ismail, E.; Donoghue, L.; Giridharan, G. A.; Sethu, P.; Cheng, X., Effect of pulsatility on shear-induced extensional behavior of Von Willebrand factor. Artif Organs 2022, 46 (5), 887-898.
  - Pulyala, P.; Jing, M.; Gao, W.; Cheng, X., Solution composition dependent Soret coefficient ٠ using commercial MicroScale Thermophoresis instrument. RSC Adv. 2023, 13 (23), 15901-15909.

## ٠




#### **Department of Bioengineering**


### Cheng Group: Lab of Micro- and NanoTechnology for Diagnostics and Biology



LEHIGH | Department of Bioengineering

# Von Willebrand Factor (vWF) under Flow and Artificial vWF





#### • What are the aims?

- To understand biomechanics and function of VWF, a clotting factor responsive to high shear
- To develop artificial molecules mimicking the shear response of VWF

#### • Why is this topic significant?

- Fundamental understanding of VWF diseases (VWD)
- Instrumental for development of diagnostics and therapeutics
- Novel drug carriers
- How is the topic studied?
  - Single molecule characterization by force microscopy, microfluidics and optical microscopy
  - Construction of biomimetic materials responsive to shear
- What are the future directions of this research?
  - vWF responses to physiological flow
  - Drug carrier for model diseases

#### $\underbrace{\mathbb{B}}_{U,N+1} \underbrace{\mathrm{I}}_{V,R} \underbrace{\mathrm{I}}_{R} \underbrace{\mathrm{I}}_{S+1+Y} \mid \mathbf{Department} \text{ of } \mathbf{B}_{IO} \underbrace{\mathrm{Oepartment}}_{IO} \underbrace{\mathrm{I}}_{S+1+Y} \underbrace{\mathrm{I}}_{$

## **Biodegradation of Water Soluble Polymers (WSPs)**



#### What are the aims?

 To understand how water soluble polymers (WSPs) are degraded by bacteria

#### Why is this topic significant?

 Knowledge about the biodegradation process and outcome directs the development of environmentally sustainable WSPs

#### How is the topic studied?

- Cell-polymer binding
- Cell growth, enzyme production and secretion, community dynamics
- Polymer degradation time and products
- What are the future directions of this research?
  - To develop systematic understanding of of the polymer structure-degradation relationship

## Contact

#### Professor Xuanhong Cheng

Address: 5 E. Packer Ave, Bethlehem, PA, 18018 Office: 610-758-2002 Fax: 610-758-4244 Email: xuc207@Lehigh.edu Webpage: <u>https://wordpress.lehigh.edu/xuc207/</u>