Lehigh University’s Department of Chemical and Biomolecular Engineering offers students a vibrant and engaging academic setting at a scale that balances distinguishably personalized education and mentorship with excellence and impact in advanced research and professional growth.

Established in 1903, Chemical and Biomolecular Engineering is one of the oldest degree programs at Lehigh University and one of the oldest Chemical Engineering programs in the US.

Over our 115+ year history, Lehigh chemical engineers have embraced an entrepreneurial culture, helping to establish a heritage of academic and scientific leadership and collaboration.

Students have opportunities to work with internationally recognized faculty experts on cutting-edge research problems spanning energy and the environment, biomolecular sciences, functional materials and nanotechnology, colloidal and interfacial science, molecular modeling and simulations, and data science, systems, and controls. All flavors of research are possible, including experiments, modeling, simulation, and theory, and combinations thereof.

We offer numerous graduate degree programs, including:

Ph.D. in Chemical Engineering

M.S. in Chemical Engineering

M.E. in Chemical Engineering (on campus and distance)

M.E. in Biological Chemical Engineering (on campus and distance)

M.E. in Chemical Energy Engineering (on campus and distance)
The strong reputation of our faculty is underscored by numerous prestigious national faculty research awards including several AIChE Institute Awards, various National Academy Memberships and Institute Fellowships in addition to 5 recent NSF-CAREER awards and 1 DOE CAREER award.

Lehigh’s ChBE department is ranked 22nd overall in the most recent (2010) decennial National Research Council’s report on graduate programs and has a history of sustained impact since ranking 5th nationally among High-Impact Chemical Engineering Departments based on publication and citation measures.

(Source: Thomson ISI, 1996-2000 ranking)

Our research is funded by the National Science Foundation (NSF), Office of Naval Research (ONR), National Institutes of Health (NIH), Department of Energy (DOE), Petroleum Research Fund (PRF), Commonwealth of Pennsylvania, and NASA, as well as various industrial partners.
Master’s Programs in Chemical Engineering at a glance

Our Master’s programs embrace an interactive culture for advanced education and professional growth. This includes opportunities for research side-by-side doctoral students on problems at the cutting edge of current Grand Challenges, and a variety of stimulating technical and career development seminar series and symposia.

M.S. in Chemical Engineering

(On campus only)

The Master of Science in Chemical Engineering is a degree program that integrates rigorous advanced coursework with cutting-edge research. Graduates have a technical breadth and depth that offers versatility in tackling fundamental to applied problems in the chemical engineering and related industries as well as the pursuit of further advanced degrees.

M.E. in Chemical Engineering

(On campus & Distance Learning)

The Master of Engineering in Chemical Engineering is comprised of rigorous advanced engineering coursework in core chemical engineering principles and a breadth of related topics. Students are given flexibility for tailoring their advanced elective coursework to customize their degree and match their career goals.

M.E. in Chemical Energy Engineering

(On campus & Distance Learning)

The Master of Engineering in Chemical Energy Engineering is comprised of advanced coursework for professionally-oriented graduates that offers in-depth technical understanding and a global perspective of chemical energy engineering practice.

M.E. in Biological Chemical Engineering

(On campus & Distance Learning)

The Master of Engineering in Biological Chemical Engineering degree program involves an integrated mixture of core chemical engineering and biotechnology graduate coursework with flexibility to choose among biology, chemistry, and chemical engineering electives customized for careers in biomolecular and biopharmaceutical engineering.

Specific details regarding Distance Learning opportunities can be found by exploring information available through Lehigh’s Office of Distance Education at distance.lehigh.edu/online-programs/masters-degree-programs/online-chemical-engineering-masters
Lehigh ChBE Graduate Degree Programs

On-Campus Master’s Degree Timeline

Year 1

Full Fall & Spring Semesters
- **Advanced core ChBE coursework**
 - Establishing advanced foundational knowledge in chemical engineering

November, December, & January
- **Exploring breadth of M.S. research opportunities**
 - Detailed exploration of research opportunities culminating in identification of faculty lab for hosting M.S. research

Beginning of Spring Semester
- **Embarking on M.S. research**
 - Joining a research group and taking first steps toward establishing a research identity while building a fundamental foundational background that motivates, frames, and enables early research advances

Year 2

Summer
- **Productive and focused M.S. research**
 - Seizing course-free opportunity to accelerate research progress

Full Fall Semester
- **Pursuing next career steps**
 - Establishing career goals and pursuing opportunities to help meet them after completion of your degree

Full Spring Semester
- **Growing customized technical background through advanced elective coursework**
 - Culminating coursework to establish a custom-tailored advanced degree enabling pursuit and achievement of career goals in the chemical engineering and related industries

All Years & All Semesters

- **Program-long activities**
 - Developing broad science & engineering context, cultivating curiosity, establishing critical connections
 - Departmental seminar series from leading academics and industrial experts on topics spanning science, engineering & technology

On-Campus Master’s Degree Timeline
Ph.D. Program
at a glance

Lehigh’s doctoral program offers a distinguishably interactive culture for advanced study, research & professional growth.

We value our students and recognize them with numerous annual graduate student awards and fellowships over the full course of the program: highlighting exceptional promise of first-year students and research productivity, impact, and academic performance for students up through graduation.

A variety of stimulating technical and career development seminar series and an annual departmental research symposia offer venues for continuous scientific and professional growth.

Lehigh Ph.D. students additionally have many opportunities to present research in local, national and international conferences and workshops. Our students are routinely recognized for their research in these settings through competitive national and international awards and travel grants.

“\nThe PhD program at Lehigh built upon my experience and took it to the next level. I gained the necessary tools to do world class research and most importantly, I was able to use my curiosity to explore interesting and challenging problems. Lehigh is also a great place to collaborate, learn and thrive in a nurturing academic environment.\n”

Gorgi Pavlov, LU Ph.D. ’19
Scientist, Formulation Development Group, Regeneron

Lehigh ChBE Graduate Degree Programs Ph.D. Program

Ph.D. Program

Lehigh merit awards annually to ChBE Ph.D. students

$39k

45% female students

87% Ph.D. completion rate

4.7 years average duration of Ph.D.

$29k annual guaranteed minimum stipend

$0 tuition cost with health benefits

45
years strong job placement in INDUSTRY & ACADEMIA

$39k

39k

29k0
Lehigh ChBE Graduate Degree Programs Ph.D. Program

Year 1

Full Fall Semester

Advanced core ChBE coursework
Establishing advanced foundational knowledge of classical and statistical thermodynamics, reaction engineering, and engineering mathematics

September – Mid-October

Exploring breadth of research opportunities
Detailed exploration of funded research opportunities via faculty research overviews and meetings, culminating in student rankings and narratives on top projects

Beginning of November

Embarking on Ph.D. research
Joining a research group and taking first steps toward establishing a research identity and receiving research advisor assignments

Full Spring Semester

Advanced core ChBE and elective coursework
Reinforcing and expanding fundamental to practical knowledge of advanced topics in transport phenomena while exploring research-relevant elective coursework

Establishing skills critical for research success
Departmental seminar series for first-year graduate students aimed at building technical skills to support progress in and effective technical communication of research

Spring Semester Through Summer

Building and sustaining research momentum
Full integration into a research group while building a fundamental foundational background that motivates, frames, and enables early research advances

Summer

Productive, focused research
Seizing course-free opportunity to accelerate research progress while growing understanding of relevant literature and fundamental scientific techniques

Year 2

First Week of Fall Semester

Ph.D. qualifying exam – First programmatic research milestone
Demonstrating potential for success in Ph.D. study through written documentation and oral defense of early research progress, fundamental understanding, and critical analysis

All of Year 2

Advancing fundamental technical background
Completion of elective coursework to establish tools, skills, and insight enabling research progress and impact

Sustained research momentum and progress
Continued pursuit of technical research goals and milestones with an eye on scientific publication and conference presentations

Year 3

Ph.D. proposal defense – Second programmatic research milestone
Formal establishment of doctoral committee, with written and oral exposition and defense of research progress and proposed technical pathway for completing dissertation

Year 4

Sustained research momentum and progress
Continued pursuit of technical research goals and milestones with an eye on scientific publication and conference presentations

Year 5

Culmination of Ph.D. research
Achieving final research objectives and completing body of scientific contributions, impactful scientific publications, and thesis

Pursuing next career steps
Establishing career goals and pursuing opportunities to help meet them after completion of your degree

Showcasing and defending body of Ph.D. research – Third programmatic research milestone
Formal public Ph.D. Dissertation Defense before Ph.D. committee, leading to doctrate in Chemical Engineering

Program-long activities
Developing broad science & engineering context, cultivating curiosity, establishing critical connections

Departmental seminar series from leading academics and industrial experts on topics spanning science, engineering & technology

Ph.D. Timeline
Breadth of Vibrant Research Opportunities

Biomolecular Science and Engineering

Faculty
- Angela Brown
- James Hsu
- Anand Jagota
- Mayuresh Kothare
- Jeetain Mittal
- Kelly Schultz

Biomaterials
- Computational Neuroscience
- Biologically Inspired Therapeutics
- Antibiotic Alternatives
- Protein Structure, Molecular Recognition and Biological Function
- Theoretical and Computational Biophysics
- Cell Scaffolding, Tissue Engineering

Energy and the Environment

Faculty
- Jonas Baltrusaitis
- Hugo Caram
- James Gilchrist
- Steve McIntosh
- Srinivas Rangarajan
- Mark Snyder
- Kemal Tuzla
- Israel Wachs

- CO₂ Capture
- Environmental Catalysis
- Fuel Cells
- Membrane Separations
- Sustainability @ Food-Energy-Water Nexus
- Natural Gas, Biomass Catalytic Upgrading
- Solar Cells, Photochemistry, Photovoltaics
- Organic Semiconductors
- Computational Catalysis
- Particle Technologies

Functional Materials and Nanotechnology

Faculty
- Jonas Baltrusaitis
- Manoj Chaudhury
- James Gilchrist
- Steve McIntosh
- Elsa Reichmanis
- Mark Snyder

- Hierarchical Nanoporous Materials
- Organic, Inorganic, Hybrid Thin Films
- Solid State Electrochemistry
- Novel Catalyst Design and Characterization
- Conjugated Polymer Design, Synthesis
- Modified Surfaces: Adhesion, Friction, Wetting, Biocompatibility
- Field-Driven Colloidal Assemblies
- Quantum Dots

Colloids and Interfacial Science

Faculty
- Angela Brown
- Manoj Chaudhury
- Anand Jagota
- Jeetain Mittal
- Kelly Schultz
- Israel Wachs

- Bio-Nano-Interfaces
- Drop Fluidics
- Molecular Simulation
- Fracture and Tribology of Polymeric Interfaces
- Molecular Spectroscopy & Catalysis
- Biological Interfaces in Disease
- Pattern Formation

Molecular Modeling and Simulation

Faculty
- Anand Jagota
- Jeetain Mittal
- Srinivas Rangarajan

- Phase Behavior of Intrinsically Disordered Proteins
- Computational Catalysis
- Multi-scale Catalytic Simulations
- Coarse-Grained Modeling of Molecular Systems
- DNA-Mediated Particle Assembly, Nanotube Sorting
- Modeling Cellular Processes and Packing

Data Science, Systems, and Controls

Faculty
- Mayuresh Kothare
- William Luyben
- Srinivas Rangarajan

- Computational Systems Engineering
- Advanced Process Control, Automation
- Data Analytics
- Complex Reaction Networks
- Lean Chemical and Biopharmaceutical Manufacturing
- Non-linear Optimization
Lehigh’s strong track record for graduate placement is a hallmark of our program.

Examples of recent placements in industry include...
GE, Air Products, ExxonMobil, Bayer, BASF, Rive, Honeywell
UOP, Corning, Advanced Cooling Technologies, Air Products,
Praxair, Air Liquide, Intel, Blue Origin, AkzoNobel, Bemis,
Cummins, AMCS, Regeneron, Saint-Gobain, DuPont, Wanhua
Chemical Group, Novavak, LG Haisys Ltd., Saudi ARAMCO,
Benjamin Moore, Evonik

Students who complete a Master’s degree at Lehigh are highly competitive applicants to higher degree programs, with many of our Master’s students pursuing Ph.D.s at various domestic programs including Lehigh’s ChBE Ph.D. Program

Lehigh’s Ph.D. program also cultivates academic aspirations of our students and has developed a proportionally impressive record of placements in faculty careers as well as intermediate postdoctoral positions at other prestigious institutions including

- Graduates with domestic faculty positions: U. of Alberta, Cornell, Akron, Clarkson, UMass-Lowell, UT-Dallas, U. Rhode Island
- Graduates with international faculty positions: Kuwait, Taiwan, Netherlands, Turkey, India, Saudi Arabia, Korea
- Postdoctoral appointments: MIT, Harvard, Cambridge, Cornell, UT-Austin, Princeton, Rice, Cornell
- Graduates with research staff positions: Princeton (PRISM)
- National Laboratory appointments and fellowships: NIST, DOE

“I thoroughly enjoyed and appreciated my journey at Lehigh University. Faculty members and staff were always helpful and supportive. At Lehigh, I had many resources to conduct high quality research, and most importantly, my advisor was extremely patient and supportive of my learning and growth. Moreover, I had the opportunity to guide and lead high school and undergraduate research projects and present my research work at various conferences all of which were very helpful in expanding my professional network and enhancing my communication skills.”

Maryam Daviran, LU Ph.D. ’20
LU M.S. ’19

“...working in a group with few members gave me adequate time to discuss the research problems and learn directly from my adviser. The five years spent at Lehigh were the crucial formative years in my academic career...I grew both as a person and an academic in this environment, and am thankful for the opportunities I received during my time in Lehigh.”

Aditi Chakraborty, LU Ph.D. ’17
Postdoctoral Fellow, Harvard John A. Paulson School of Engineering and Applied Sciences
Prior degrees
Applicants must have earned a Bachelor’s of Science (B.S.) or a Master of Science (M.S.) in Chemical Engineering or a related engineering discipline by the time of their matriculation. Applicants with degrees in related science fields (e.g., chemistry, physics), while less common, will also be considered.

GRE not required
Neither unofficial nor official GRE scores are required. If submitted, scores will not be used in evaluating an application.

GPA benchmark
GPA (US equivalent) higher than 3.3 on a 4.0 scale is preferred. In order to be considered for admission, an applicant must have an undergraduate cumulative GPA of 3.0 or higher and a GPA of 3.0 or higher for the last two semesters of undergraduate studies. GPA standards for international institutions will be followed accordingly. Consideration will be given to a trend showing a strengthening of the core GPA during the final semesters of study.

TOEFL or IELTS
(international students only):

Candidate’s Resume summarizing background relevant to graduate study, including (but not limited to) education/degrees, class rank, relevant coursework, projects, research, scientific publications, relevant work experience, career goals, extracurricular activities, etc. The resume should be current, documenting experiences and all positions held up to and at the time of application.

Candidate’s Personal Statement detailing motivation for graduate study, relevant background, and, if applicable (i.e., Ph.D. and M.S. applicants), research experience, specific research interests, and specific faculty of interest.

Complete transcripts from each college and university attended. Unofficial copies may be uploaded by the candidate, but official transcripts from the prior institution’s Registrar’s Office must be submitted by candidates who accept offers of admission.

Letters of Recommendation – At least three (3) letters of recommendation for Ph.D. applicants and two (2) letters of recommendation for M.S. applicants submitted online directly by qualified individuals who are able to evaluate the applicant’s academic achievements and potential for graduate studies and, if applicable, research. Preference is given to letters from research advisors and professors, but relevant letters from technical/industrial employers who are able to speak to a candidate’s potential for graduate study and research will also be accepted.

Application fee of $75 (non-refundable), payable to “Lehigh University”

Applicants that do not meet the above-mentioned requirements may be admitted at the department’s discretion.
Applicants for on-campus graduate degree programs are encouraged to contact our department directly at inchegs@lehigh.edu regarding questions about aspects of any of our on campus graduate degree programs.

Questions regarding our Distance Education Master’s degree programs should be directed to inchbede@lehigh.edu.