
A Lock-Free, Array-Based Priority Queue

Yujie Liu and Michael Spear

Department of Computer Science and Engineering
Lehigh University

Technical Report LU-CSE-11-004

Abstract

This paper introduces a concurrent data structure called the mound. The mound is a rooted tree
of sorted lists that relies on randomization for balance. It supportsO(log(log(N))) insert () and
O(log(N)) extractMin () operations, making it suitable for use as a priority queue. We present two
mound algorithms: the first achieves lock freedom via the use of a pure-software double-compare-and-
swap (DCAS), and the second uses fine grained locks. Mounds perform well in practice, and support sev-
eral novel operations that we expect to be useful in future parallel applications, such asextractMany ()
and probabilisticextractMin ().

1 Introduction

Priority queues are useful in scheduling, discrete event simulation, networking (e.g., routing and real-time
bandwidth management), graph algorithms (e.g., Dijkstra’s algorithm), and artificial intelligence (e.g.,A∗

search). In these and other applications, not only is it crucial for priority queues to have low latency, but they
must also offer good scalability and guarantee progress. Furthermore, theinsert () andextractMin ()
operations are expected to have no worse thanO(log(N)) complexity. In practice, this has focused imple-
mentation on heaps [1, Ch. 6] and skip lists [18].

The ideal concurrent data structure guarantees that each operation completes in a bounded number of in-
structions, regardless of the activities of concurrent threads. In general, this progress property, wait freedom,
introduces unacceptable overheads (see [12] for an exception). The relaxation that once a thread begins an
operation on a shared data structure,some threadcompletes its operation in a bounded number of instruc-
tions is called lock freedom. While individual operations may starve, a lock-free data structure is immune to
priority inversion, deadlock, livelock, and convoying. Unlike wait freedom, lock freedom has been achieved
in many high-performance data structures [4,5,16,17,21].

The most intuitive and useful correctness criteria for concurrent data structures is linearizability [9],
which requires that every operation appears to take effect at a single instant between when it issues its first
instruction and when it issues its last instruction. The weaker property of quiescent consistency still requires
each operation to appear to happen at a single instant, but only insists that an operation appear to happen
between its first and last instructionin the absence of concurrency.

Lastly, concurrent data structures should exhibit disjoint-access parallelism [11]. That is, operations
should not have overlapping memory accesses unless they are required for the correctness of the algorithm.
This property captures the intuition that unnecessary sharing, especially write sharing, can result in scal-
ability bottlenecks. In practice, many algorithms with artificial bottlenecks scale well up to some number

1

of hardware threads. However, algorithms that are not disjoint-access parallel tend to exhibit surprisingly
bad behavior when run on unexpected architectures, such as those with multiple chips or a large number of
threads.

To date, efforts to create a priority queue that is lock-free, linearizable, and disjoint-access parallel have
met with limited success. We summarize prior work below:

Heaps: There are several challenges for heap-based priority queues. First, implementations typically
assume strong balance and fullness guarantees; this can result in an implementation bottleneck, as every
operation modifies a pointer to the rightmost nonempty leaf. Second,extractMin () appears to require
top-down tree traversal, whileinsert () must run bottom-up. Third, bothinsert () andextractMin ()
are expressed recursively, and involve swapping values between two nodes. Thus while the asymptotic
complexity of both operations isO(log(N)), implementations require2× log(N) writes. Finally, achieving
atomicity appears to require atomic modification of two noncontiguous words of memory, which is beyond
the ability of modern hardware.

The most popular concurrent heap, the Hunt heap [10], uses fine-grained locking, and avoids deadlock
by repeatedly un-locking and re-locking ininsert () to guarantee a deadlock-free locking order. Further-
more, while the implementation avoids contention among concurrent operationsafter they have selected
their starting points, there is still a shared counter used to guarantee balance. More recently, Dragicevic and
Bauer presented a linearizable heap-based priority queue that used lock-free software transactional memory
(STM) [3]. Their algorithm improved performance by splitting critical sections into small atomic regions,
with an underlying implementation similar to the Hunt heap, but the overhead of STM resulted in unaccept-
able performance.

Skiplists: The skiplistinsert () andremoveKey () operations have few intrinsic bottlenecks and scale
well. Among the most popular implementations are the Lotan and Shavit skiplist [13], which is based on
fine-grained locking, and the lock-free Fraser skiplist [4]. The key challenge in using skiplists as prior-
ity queues is in transformingremoveKey () into extractMin (). Lotan and Shavit present two tech-
niques. The first is quiescently consistent, and allows forextractMin () to return a value that is greater
than the minimum, if both the minimum and the return value of theextractMin () are inserted after the
extractMin () begins [8, Ch. 15]. The second employs a shared counter, incremented by everyinsert ()
andextractMin (). Both implementations also introduce a worst-case complexity ofO(num threads)
for theextractMin () operation. Another skiplist-based priority queue was proposed by Sundell and Tsi-
gas [20]. While this implementation achieves lock-freedom and linearizability without introducing a global
counter, it requires reference counting, which compromises disjoint-access parallelism.

This paper introduces a new data structure suited to the construction of priority queues, called the mound.
A mound is a tree of sorted lists. Like skiplists, mounds achieves balance, and hence asymptotic guarantees,
using randomization. However, the structure of the mound tree resembles a heap. The benefits of mounds
stem from the following novel aspects of their design and implementation:
• While mound operations resemble heap operations, mounds employ randomization when choosing

a starting leaf for aninsert (). This avoids the need for insertions to contend for a mound-wide
counter, but introduces the possibility that a mound will have “empty” nodes in non-leaf positions.
• The use of sorted lists avoids the need to swap a leaf into the root position duringextractMin ().

Combined with the use of randomization, this ensures disjoint-access parallelism. Asymptotically,
extractMin () is O(log(N)), with roughly the same overheads as the Hunt heap.

2

Listing 1 Simple data types and methods used by a mound of elements of type “T”
type LNode

T value B value stored in this list node
LNode∗ next B next element in list

type MNode
LNode∗ list B sorted list of values stored at this node
boolean dirty B true if mound property does not hold

• The sorted list also obviates the use of swapping to propagate a new value to its final destination in
the moundinsert () operation. Instead,insert () uses a binary search along a path in the tree to
identify an insertion point, and then uses a single writing operation to insert a value. Theinsert ()
complexity isO(log(log(N))).
• The mound structure enables several novel uses, such as the extraction of multiple high-priority items

in a single operation, and extraction of elements that “probably” have high priority.
In Section 2, we present a sequential mound algorithm. Section 3 introduces a linearizable lock-free

mound based on the double-compare-and-swap (DCAS) and double-compare-single-swap (DCSS) instruc-
tions. Section 4 presents a fine-grained locking mound. Section 5 briefly discusses novel uses of the mound
that reach beyond traditional priority queues. We evaluate our mound implementations on the x86 and
SPARC architectures in Section 6, and present conclusions in Section 7.

2 The Sequential Mound Algorithm

A mound is a rooted tree of sorted lists. For simplicity of presentation, we use an array-based implementation
of a complete binary tree, and assume that the array is always large enough to hold all elements stored in the
mound. A more practical implementation is discussed in Section 6.

We focus on the operations needed to implement a lock-free priority queue with a mound, namely
extractMin () and insert (). We permit the mound to store arbitrary non-unique values of typeT ,
where< defines a total order on elements ofT , and> is the maximum value. We reserve> as the return
value of anextractMin () on an empty mound.

TheMNodetype (Listing 1) describes nodes that comprise the mound’s tree. Each node consists of a
pointer to a list and a boolean field. The list holds a value and a next pointer. We define the value of a
MNodebased on whether its list isnil or not. If theMNode’s list is nil , then its value is>. Otherwise,
theMNode’s value is the value stored in the first element of the list, i.e.,list.value. Theval () function in
Listing 2 is shorthand for this computation.

In a traditional min-heap, the heap invariant only holds at the boundaries of functions, and is stated in
terms of the following relationship between the values of parent and child nodes:

∀p,c:tree : (parentof(c) = p)→ val (p) ≤ val (c)

Put another way, a child’s value is no less than the value of its parent. This property is also the correctness
property for a moundwhen there are no in-progress operations. When an operation is between its invocation
and response, we employ adirty field to express this “mound property”:

∀p,c:tree : (parentof(c) = p) ∧ (¬p.dirty)→ val (p) ≤ val (c)

3

Listing 2 presents a sequential mound implementation. We define a mound as an array-based binary
tree ofMNodes (tree), and adepth field. A mound is initialized by setting every element in the tree to
〈nil , false〉. This indicates that every node has an emptylist, and hence a logicalval () of >. Since all
nodes have the sameval (), thedirty fields can initially be marked false, as the mound property clearly
holds for every parent-child pair.

2.1 The insert Operation

When inserting a valuev into the mound, the only requirement is that there exist some node indexc such
thatval (treec) ≥ v and ifc 6= 1 (c is not the root index), then for the parent indexp of c, val (treep) ≤ v.
When such a node is identified,v can be inserted as the new head oftreec.list. Insertingv as the head
of treec.list clearly cannot violate the mound property: decreasingval (treec) to v does not violate the
mound property betweentreep andtreec, sincev ≥ val (treep). Furthermore, for every child indexc′ of
c, it already holds thatval (treec′) ≥ val (treec). Sincev ≤ val (treec), settingval (treec) to v does
not violate the mound property betweentreec and its children.

The insert (v) method operates as follows: it selects a random leaf indexl and comparesv to
val (treel). If v ≤ val (treel), then either the parent oftreel has aval () less thanv, in which case
the insertion can occur attreel, or else there must exist some node indexc in the set of ancestor indices
{l/2, l/4, . . . , 1}, such that insertingv at treec preserves the mound property. A binary search is employed
to find this index. Note that the binary search is along an ancestor chain of logarithmic depth, and thus the
search introducesO(log(log(N)) overhead.

The leaf is ignored ifval (treel) < v, since the mound property guarantees that every ancestor oftreel

must have aval () < v, and another leaf is randomly selected. If too many unsuitable leaves are selected
(indicated byTHRESHOLD), the mound is expanded by one level. After expansion, every leaf is guaranteed
to be available (val () = nil), and thus any random leaf is a suitable starting point for the binary search.

2.2 The extractMin Operation

extractMin ()is similar to its analog in traditional heaps. When the minimum value is extracted from
the root, the root’sval () changes to equal the next value in its list, or> if the list becomes empty. This
behavior is equivalent to the traditional heap behavior of moving some leaf node’s value into the root. At
this point, the mound property may not be preserved between the root and its children, so the root’sdirty
field is set true.

moundify () restores the mound property throughout the tree. In the sequential case, at most one node
in the tree has itsdirty field set to true. Thus whenmoundify () is called on a noden, the children of
n havedirty set to false, and each child is itself a mound whose minimum value is stored in the head of
the child’s list. Themoundify () operation inspects theval ()s of treen and its children, and determines
which is smallest. Iftreen has the smallest value, or if it is a leaf with no children, then the mound property
already holds, and thetreen.dirty field is set to false. Otherwise, swappingtreen with the child having
the smallestval () is guaranteed to restore the mound property attreen, sinceval (treen) becomes≤ the
val () of either of its children. However, the child involved in the swap now may not satisfy the mound
property with its children, and thus itsdirty field is set true. The same invariants apply to the subsequent
recursive call on the child: the parameter of the call is adirty node, the children of that node are notdirty,
and each child is, itself, a mound. Thus just as in a traditional heap,O(log(N)) calls suffice to “push” the
violation downward until the mound property is restored.

4

Listing 2 The Sequential Mound Algorithm
global variables

treei∈[1,N] ← 〈nil , false〉 : MNode B array of mound nodes
depth← 1 : N B depth of the mound tree

func val (n : MNode) : T

S1: if n.list = nil return >
S2: return n.list.value

func randLeaf () : N
S3: return random i ∈ [2depth−1, 2depth − 1]

proc insert (v : T)
S4: c← findInsertPoint (v)
S5: treec.list← newLNode(v, treec.list)

func findInsertPoint (v : N) : N
S6: for attempts← 1 . . . THRESHOLD
S7: leaf ← randLeaf ()
S8: if val (treeleaf) ≥ v B Leaf is a valid starting point
S9: return binarySearch (leaf, 1, val)
S10: depth← depth + 1 B Grow mound one level
S11: return binarySearch (randLeaf (), 1, val)

func extractMin () : T

S12: if tree1.list = nil return > B Handle empty mound
S13: oldlist← tree1.list
S14: retval← tree1.list.value
S15: tree1 ← 〈tree1.list.next, true〉 B Remove head of root’s list and mark root dirty
S16: moundify (1)
S17: delete(oldlist)
S18: return retval

proc moundify (n : N)
S19: if n ∈ [2depth−1, 2depth − 1] B check ifn is a leaf
S20: treen.dirty ← false
S21: return
S22: l← 2n
S23: r ← 2n + 1

BCheck if left or right child has smaller value thann
S24: if val (treel) ≤ val (treer) and val (treel) < val (treen)
S25: swap(treen, treel) B Propagate to left child
S26: moundify (l)
S27: elif val (treer) < val (treel) and val (treer) < val (treen)
S28: swap(treen, treer) B Propagate to right child
S29: moundify (r)
S30: else
S31: treen.dirty ← falseB Resolve problem locally

3 The Concurrent Mound Algorithm

The sequential mound algorithm avoids global bottlenecks by using a randomized search instead of main-
taining a strict count of the number of unused leaves. Furthermore, by using a list of values at each node,

5

Listing 3 ExtendedMNodetype for use in concurrent mounds. All fields are read in a single atomic instruc-
tion, and every update increments the counter field (c).
type CMNode

LNode∗ list B sorted list of values stored at this node
boolean dirty B true if mound property does not hold
int c B counter – incremented on every update

the algorithm avoids the need to repeatedly swap a value upward from a leaf; insteadinsert () need only
find a suitable parent/child pair and then insert the value as the new head of the child’s list.

We now describe a lock-free mound implementation, which requires compare-and-swap (CAS) and
double-compare-and-swap (DCAS) operations, and which benefits from the availability of a double-compare-
single-swap (DCSS) operation. We assume that these operations atomically read/modify/write one or two
locations, and that they return a boolean indicating if they succeeded. These instructions can be simulated
with acceptable overhead on modern hardware using known techniques [7,14].

3.1 Preliminaries

As is common when building lock-free algorithms, we require that every shared memory location be read via
a single atomicREADoperation, which stores its result in a local variable. All updates of shared memory
will be performed usingCAS, DCAS, or DCSS. Furthermore, any mutable shared location is augmented
with a counter (c). The counter is incremented on every update, and is read atomically as part of theREAD
operation. In practice, this is easily achieved on 32-bit x86 and SPARC architectures. SinceLNodes are
never modified in the sequential mound algorithm, they are not augmented with a 32-bit counter. Listing 3
presents the new concurrentMNodetype (CMNODE).

We assume thatCAS, DCAS, andDCSSdo not fail spuriously. We also assume that the implementations
of these operations are at least lock-free. Given these assumptions, the lock-free progress guarantee for
our algorithm will be based on the observation that failure in one thread to make forward progress must be
due to another thread making forward progress. By forbidding “backward” progress, livelock will not be a
concern.

Since the CMNodes are statically allocated in a mound that never shrinks, the load performed by aREAD
will not fault. However, if a thread hasREADsome nodetreen asN , and wishes to dereferenceN.list,
the dereference could fault: a concurrent thread could excise and free the head oftreen.list as part of an
extractMin (), leading toN.list being invalid. In our pseudocode, we introduce a new helping method,
val’ (). When given a cached copy of aCMNode, val’ () uses a nonfaulting load to dereference the list
pointer. Garbage collection, object pools, or Hazard Pointers [15] would avoid the need for a nonfaulting
load.

3.2 Lock-Free moundify

If no node in a mound is markeddirty, then every node satisfies the mound property. In order fortreen to
becomedirty, either (a)treen must be the root, and anextractMin () must be performed on it, or else
(b) treen must be the child of a dirty node, and amoundify () operation must swap lists betweentreen

and its parent in the process of making the parent’sdirty field false.
Since there is no other means for a node to becomedirty, the sequential algorithm provides a strong

property: in a mound subtree rooted atn, if n is notdirty, thenval (treen) is at least as small as every

6

Listing 4 The Lock-Freemoundify ()Operation
func val’ (N : CMNode) : T

L1: if N.list = nil return >
L2: return nonfaultingLoad(N.list.value)

proc moundify (n : N)
L3: while true
L4: N ← READ(treen)
L5: if ¬N.dirty B Did another thread cleann?
L6: return
L7: d← depth
L8: if n ∈ [2d−1, 2d − 1] B Is n a leaf?
L9: if CAS(treen, N, 〈N.list, false, N.c + 1〉)
L10: return
L11: continue
L12: L← READ(tree2n)
L13: R← READ(tree2n+1)
L14: if L.dirty B Ensure left notdirty
L15: moundify (2n)
L16: continue
L17: if R.dirty B Ensure right notdirty
L18: moundify (2n + 1)
L19: continue
L20: if val’ (L) ≤ val’ (R) and val’ (L) < val’ (N) B Push problem to left?
L21: if DCAS(treen, N, 〈L.list, false, N.c + 1〉, tree2n, L, 〈N.list, true, L.c + 1〉)
L22: moundify (2n)
L23: return
L24: elif val’ (R) < val’ (L) and val’ (R) < val’ (N) B Push problem to right?
L25: if DCAS(treen, N, 〈R.list, false, N.c + 1〉, tree2n+1, R, 〈N.list, true, R.c + 1〉)
L26: moundify (2n + 1)
L27: return
L28: elseB Solve problem locally
L29: if CAS(treen, N, 〈N.list, false, N.c + 1〉)
L30: return

value stored in every list of every node of the subtree. This in turn leads to the following guarantee: for
any nodetreep with childrentreel andtreer, if treep is dirty and bothtreel andtreer are notdirty, then
executingmoundify (p) will restore the mound property attreep.

In the concurrent algorithm, this guarantee enables the complete separation of the extraction of the root’s
value from the restoration of the mound property, and also enables the restoration of the mound property to
be performed independently at each level, rather than through a large atomic section. This, in turn, allows the
recursive cleaningmoundify () of oneextractMin () to run concurrently with anotherextractMin ().
Listing 4 presents code for achieving this goal in a lock-free manner.

The lock-freemoundify () operation retains the obligation to clear anydirty bit that it sets. However,
since the operation is performed at one level at a time, it is possible for two operations to reach the same
dirty node. Thus,moundify (n) must be able tohelpclean thedirty field of the children oftreen, and
must also detect if it has been helped (in which casetreen will not be dirty). These cases correspond to
Lines L14–L19 and L5–L6, respectively.

7

There are five means through whichmoundify () can linearize. The simplest is when the operation has
been helped. In this case, the operation occurs at the point of itsREADon Line L4, which discovers that
the parameter is a node that is no longerdirty. The next simplest case is whenmoundify () is called on a
leaf: Following aREADof theCMNode, the function checks the depth of the mound tree. Since we do not
shrink mounds, iftreen is a leaf at the time of this read of thedepth, then the operation can be linearized at
theREADon Line L4, since every leaf trivially supports the mound property, even when markeddirty.

Though not strictly necessary, we use a CAS on Line L9 to unset the leaf’sdirty field. While theCAS
could occur after the node ceases to be a leaf (i.e., after a concurrentinsert () incrementsdepth), the
following invariant ensures correctness: For anytreep that is the parent oftreec, anyinsert () that selects
treec as its insertion point can only decreaseval (treec) to some value≥ val (treep). Thus even iftreep

is dirty whentreec is created, a successfulCASindicates thattreep did not change since beforetreec was
created, and thusval (treec) can only monotonically decrease from> to somev ≥ val (treep). Thus if
theCASsucceeds, the operation linearized at the read on Line L4.

The third and fourth cases are symmetric, and handled on Lines L20–L27. In these cases, the children
treer and treel of treen areREADand found not to bedirty. Furthermore, a swap is needed between
treep and one of its children, in order to restore the mound property. Themoundify () can linearize by
successfully performing the swap, using a DCAS. Note that a more expensive “triple compare double swap”
involving treen and both its children is not required. Consider the case wheretreer is not involved in the
DCAS: for theDCASto succeed,treen must not have changed since Line L4, and thus any modification to
treer between Lines L13 and L21 can only lowerval (treer) to some value≥ val (treen).

In the final case,treen is dirty, but neither of its children has a smallerval (). A simple CAS can clear
thedirty field of treen, and serves as the linearization point. This is correct because, as in the above cases,
while the children oftreen can be selected forinsert (), the inserted values must remain≥ val (treen)
or elsetreen would have changed.

3.3 The Lock-Free extractMin Operation

The lock-freeextractMin () operation appears in Listing 5. The operation begins by reading the root node
of the mound. If the node isdirty, then there must be an in-flightmoundify () operation, and it cannot be
guaranteed that theval () of the root is the minimum value in the mound. In this case, the operation helps
performmoundify (), and then restarts.

There are two ways in whichextractMin () can complete. In the first, the read on Line L32 finds that
the node’slist is nil and notdirty. In this case, at the time when the root was read, the mound was empty,
and thus> is returned. The linearization point is theREADon Line L32.

In the second case,extractMin () usesCASto atomically extract the head of the list. The operation
can only succeed if the root does not change between the read and theCAS, and it always sets the root to
dirty. The CAS is the linearization point for theextractMin (): at the time of its success, the value
extracted was necessarily the minimum value in the mound.

Note that the call tomoundify () on Line L41 is not strictly necessary:extractMin () could simply
return, leaving the root nodedirty. A subsequentextractMin () would inherit the obligation to restore
the mound property before performing its ownCASon the root. Similarly, recursive calls tomoundify ()
on Lines L22 and L26 could be skipped.

After anextractMin () callsmoundify () on the root, it may need to make several recursivemoundify ()
calls at lower levels of the mound. However, once the root is notdirty, anotherextractMin () can remove
the new minimum value of the root.

8

Listing 5 The Lock-FreeextractMin ()Operation
func extractMin () : T

L31: while true
L32: R← READ(tree1)
L33: if R.dirty B root must not be dirty
L34: moundify (1)
L35: continue
L36: if R.list = nil B check for empty mound
L37: return >
L38: if CAS(tree1, R, 〈R.list.next, true, R.c + 1〉) B remove head of root’s list
L39: retval = R.list.value
L40: delete(R.list)
L41: moundify (1)
L42: return retval

3.4 The Lock-Free insert Operation

The most straightforward technique for makinginsert () lock-free is to use a k-Compare-Single-Swap
operation (k-CSS), in which the entire set of nodes that are read in the binary search are kept constant
during the insertion. However, we previously argued that the correctness ofinsert () depends only on
the insertion pointtreec and its parent nodetreep. We now argue the correctness of this approach for the
lock-freeinsert ().

In Listing 6, therandLeaf () andfindInsertPoint () functions are now more precise with their
access of thedepth field. The field is read once per set of attempts to find a suitable node, and thusTHRESH-
OLD leaves are guaranteed to all be from the same level of the tree, though it may not be the leaf level at
any point after Line L59. Furthermore, expansion only occurs if the random nodes were, indeed, all leaves.
This is ensured by theCASon Line L64.

Furthermore, neither thefindInsertPoint () norbinarySearch () method needs to ensure atom-
icity among its reads: after a leaf is read and found to be a valid starting point, it may change. In this
case, the binary search will return a node that is not a good insertion point. This is indistinguishable from
when binary search finds a good node, only to have that node change between its return and the return
from findInsertPoint (). To handle these cases,insert () double-checks node values on Lines L45
and L53, and then ensures the node remains unchanged by updating with aCASor DCAS.

There are three cases forinsert (): when an insert is performed at the root, when an insert is performed
at a node whoseval () is equal to the value being inserted, and the default case.

First, suppose thatv is being inserted into a mound,v is smaller than the root value (val (tree1)),
and the root is notdirty. In this case, the insertion must occur at the root. Furthermore, any changes to
other nodes of the mound do not affect the correctness of the insertion, since they cannot introduce values
< val (tree1). A CASsuffices to atomically add to the root, and serves as the linearization point (Line L50).
Even if the root isdirty, it is acceptable to insert at the root with aCAS, since the insertion does not increase
the root’s value. The insertion will conflict with any concurrentmoundify (), but without preventing lock-
free progress. Additionally, if the root is dirty and amoundify (1) operation is concurrent, then either
insertingv at the root will decreaseval (tree1) enough that themoundify () can use the low-overhead
code path on Line L29, or else it will be immaterial to the fact that Line L21 or L25 is required to swap the
root with a child.

Second, suppose that some node indexc is selected as the insertion point, andval (treec) = v. In this

9

Listing 6 The Lock-Freeinsert ()Operation
proc insert (v : T)
L43: while true
L44: c← findInsertPoint (v)
L45: C ← READ(treec)
L46: if val’ (C) < v B ensure insertion point still valid
L47: continue
L48: C ′ ← 〈newLNode(v, C.list), C.dirty, C.c + 1〉
L49: if c = 1 or val’ (C) = v B can we insert with CAS?
L50: if CAS(treec, C, C ′)
L51: return
L52: elseB must use DCSS
L53: P ← READ(treec/2)
L54: if val’ (P) ≤ v B ensure appropriate parent value
L55: if DCSS(treec, C, C ′, treec/2, P)
L56: return
L57: delete(C ′.list)

func findInsertPoint (v : N) : N
L58: while true
L59: d← READ(depth)
L60: for attempts← 1 . . . THRESHOLD
L61: leaf ← randLeaf (d)
L62: if val (leaf) ≥ v
L63: return binarySearch (leaf, 1, v)
L64: CAS(depth, d, d + 1)

func randLeaf (d : N) : N
L65: return random i ∈ [2d−1, 2d − 1]

case, too, the value of any node in the tree other thantreec cannot affect the correctness of the operation, and
neither can the fact oftreec beingdirty. Insertingv at treec has no logical affect onval (treec), and thus
a simpleCAScan again be used (Line L50). TheCASserves as the linearization point of theinsert ().

This brings us to the third and final case. Suppose thattreec is not the root. In this case,treec is a
valid insertion point if and only ifval (treec) ≥ v, and fortreec’s parenttreep, val (treep) ≤ v. Thus
it does not matter if the insertion is atomic with respect to all of the nodes accessed in the binary search.
In fact, bothtreep andtreec can change afterfindInsertPoint () returns. All that matters is that the
insertion is atomic with respect to someREADs that supporttreec’s selection as the insertion point. This is
achieved throughREADs on Lines L45 and L53, and thus the reads performed byfindInsertPoint ()
are immaterial to the correctness of the insertion. TheDCSSon Line L55 suffices to linearize theinsert ().

In the third case, thedirty fields of treep andtreec do not affect correctness. Suppose thattreec is
dirty. Decreasing the value attreec does not affect the mound property betweentreec and its children,
since the mound property does not apply to nodes that aredirty, and cannot affect the mound property
betweentreep andtreec, or elsefindInsertPoint () would not returnc. Next, suppose thattreep is
dirty. In this case, for Line L55 to be reached, it must hold thatval (treep) ≤ v ≤ val (treec). Thus the
mound property holds betweentreep andtreec, and inserting attreec will preserve the mound property.
Thedirty field in treep either is due to a propagation of thedirty field that will ultimately be resolved by
a simpleCAS(e.g.,val (treep) is≤ theval () of either oftreep’s children), or else thedirty field will be

10

resolved by swappingtreep with treec’s sibling.

4 A Fine-Grained Locking Mound

We now present a mound based on fine-grained locking. Our implementation is a transformation from the
lock-free algorithm. To realize this algorithm, we add a lock bit to each mound node. Furthermore, to
minimize the number of lock acquisitions, we employ a hand-over-hand locking strategy for restoring the
mound property following anextractMin (). In this manner, it is no longer necessary to manage an
explicit dirty field in each mound node.

We use the samefindInsertPoint () function as in the lock-free algorithm, and thus allow for an
inserting thread to read a node that is locked due to a concurrentinsert () or extractMin (). This
necessitates that locations be checked before modification.

The other noteworthy changes to the algorithm deal with how and when locks are acquired and released.
Sincemoundify () now uses hand-over-hand locking during a downward traversal of the tree, it always
locks the parent before the child. To ensure compatibility,insert () must lock parents before children. To
avoid cumbersome lock reacquisition, we forgo the optimization for insertingv at a node whoseval () = v,
and also explicitly lock the parent of the insertion point. Similarly, inmoundify (), we lock a parent and
its children before determining the appropriate action. The resulting code appears in Listings 7 and 8. Note
that the resulting code is both deadlock and livelock-free.

In comparison to the lock-free mound, we expect much lower latency, but without tolerance for preemp-
tion. The expectation of lower latency stems primarily from the reduction in the cost of atomic operations:
even though we must lock some nodes that would not be modified byCASin the lock-free algorithm, we
only need 32-bitCASinstructions. Furthermore, a critical section corresponding to aDCASin the lock-free
algorithm requires at most threeCAS instructions in the locking algorithm. In contrast, lock-freeDCAS
implementations require 5CASinstructions [7]. A series of suchDCASinstructions offers additional sav-
ings, since locks are not released and reacquired: amoundify () that would requireJ DCASes (costing
5J CASes) in the lock-free algorithm requires only2J + 1 CASes in the locking algorithm. A critical sec-
tion corresponding to aDCSSin the lock-free algorithm requires 2CASes in the locking algorithm, which
matches the Luchangcok-CSS for k = 2.

5 Additional Features of the Mound

Our presentation focused on the use of mounds as the underlying data structure for a priority queue. We
now discuss additional uses for the mound.

5.1 Mounds as a Replacement for Heaps

As with traditional heaps, if the mound is implemented with a linked data structure, then merging two
moundsM1 andM2 can be done inO(log(N)) time. Themerge () operation need only (a) create a new
root nodeR with value> anddirty = true, (b) atomically link the roots ofM1 andM2 as the children of
R, and then (c) callmoundify () on R. The cost of this approach is that the tree implementation may not
be amenable to binary search along a leaf-to-root path, resulting in an increase toO(log(N)) insert ()
complexity. Achieving atomicity formerge () is likely to require a more powerful atomic instruction than
DCASin the lock-free case. However, since merging is likely to be infrequent, as long as the instruction

11

Listing 7 The Fine-Grained Locking Mound Algorithm (1/2)
type LMNode

LNode∗ list B sorted list of values stored at this node
boolean lock B true if node locked

func setLock (i : N) : LMNode

F1: while true
F2: N ← READ(treei)
F3: if ¬N.lock and CAS(treei, N, 〈N.list, true〉)
F4: return N

func extractMin () : T

F5: R← setLock (1)
F6: if R.list = nil B check for empty mound
F7: tree1 = 〈R.list, false〉 B unlock the node
F8: return >
F9: tree1 ← 〈R.list.next, true〉 B remove list head, keep node locked
F10: retval = R.list.value
F11: delete(R.list)
F12: moundify (1)
F13: return retval

proc moundify (n : N)
F14: while true
F15: N ← READ(treen)
F16: d← depth
F17: if n ∈ [2d−1, 2d − 1] B Is n a leaf?
F18: treen ← 〈treen.list, false〉
F19: return
F20: L← setLock (2n)
F21: R← setLock (2n + 1)
F22: if val’ (L) ≤ val’ (R) and val’ (L) < val’ (N)
F23: tree2n+1 ← 〈R.list, false〉 B unlock right child
F24: treen ← 〈L.list, false〉 B update and unlock parent
F25: tree2n ← 〈N.list, true〉 B keep left locked after update
F26: moundify (2n)
F27: elif val’ (R) < val’ (L) and val’ (R) < val’ (N)
F28: tree2n ← 〈L.list, false〉 B unlock left child
F29: treen ← 〈R.list, false〉 B update and unlock parent
F30: tree2n+1 ← 〈N.list, true〉 B keep right locked after update
F31: moundify (2n + 1)
F32: elseB Solve problem locally by unlockingtreen and its children
F33: treen ← 〈N.list, false〉
F34: tree2n ← 〈L.list, false〉
F35: tree2n+1 ← 〈R.list, false〉

composes cleanly with existingDCASandDCSSimplementations, the impact will be minimal. For a fine-
grained locking mound, the implementation is straightforward.

In order to support Dijkstra’s algorithm, a priority queue must implement an efficientincreaseKey ()
operation. In a mound, this can be achieved by adding a booleanmoved field to eachLNode. Logically,

12

Listing 8 The Fine-Grained Locking Mound Algorithm (2/2)
type LMNode

LNode∗ list B sorted list of values stored at this node
boolean lock B true if node locked

proc insert (v : T)
F36: while true
F37: c← findInsertPoint (v)
F38: if c = 1 B insert at root?
F39: C ← setLock (c)
F40: if val’ (C) ≥ v B double-check node
F41: treec ← 〈newLNode(v, C.list), false〉
F42: return
F43: treec ← 〈C.list, false〉 B unlock root and start over
F44: continue
F45: P ← setLock (c/2)
F46: C ← setLock (c)
F47: if val’ (C) ≥ v and val’ (P) ≤ v B check insertion point
F48: treec ← 〈newLNode(v, C.list), false〉
F49: treec/2 ← 〈P.list, false〉
F50: return
F51: elseB unlocktreec andtreec/2, then try again
F52: treec/2 ← 〈P.list, false〉
F53: treec ← 〈C.list, false〉

if a node’smoved field is true, then the node does not exist. If aREADdetects amoved LNode, it is
responsible for removing the node via an atomicCAS. Given such a field,increaseKey () is simple: the
operation must atomically (a) set an LNode’smoved field to true and (b)insert () the new value of the
node. Special care is needed to prevent a value from being removed from the mound concurrently with
the increaseKey () which is likely to require a “4-compare-2-swap” in the lock-free case, with a trivial
locking implementation. The overhead isO(log(log(N)), an improvement over binary heaps. As in heaps,
the requirement for anincreaseKey () operation necessitates a mechanism for managing handles to queue
entries. In a mound, managing handles will be simple sinceLNodes are already reached by indirection.

5.2 New Opportunities for Mounds

Since the mound uses a fixed tree as its underlying data structure, it is amenable to three nontraditional
uses. The first, probabilisticextractMin (), is also available in a heap: since anyCMNode that is
not dirty is, itself, the root of a mound,extractMin () can be executed on any such node to select a
random element from the priority queue. By selecting with some probability shallow, nonempty, non-root
CMNodes, extractMin () can lower contention by probabilistically guaranteeing the result to be close
to the minimum value.

Secondly, it is possible to execute anextractMany (), which returns several elements from the mound.
In the common case, mostCMNodes in the mound will be expected to hold lists with a modest number
of elements. Rather than remove a single element,extractMany () returns the entire list from a node, by
setting thelist pointer tonil anddirty to true, and then callingmoundify (). This technique can be used
to implement lock-free prioritized work stealing.

Third, mounds can be used in place of bag data structures, by executingextractMin () orextractMany ()

13

on any randomly selected non-null node. While lock-free bag algorithms already exist [19], this use demon-
strates the versatility of mounds.

6 Evaluation

In this section, we evaluate the performance of mounds using targeted microbenchmarks. Experiments
labeled “Niagara2” were collected on a 1.165 GHz, 64-way Sun UltraSPARC T2 with 32 GB of RAM,
running Solaris 10. The Niagara2 has eight cores, each eight-way multithreaded. On the Niagara2, code
was compiled using gcc 4.3.2 with –O3 optimizations. Experiments labeled “x86” were collected on a
12-way HP z600 with 6GB RAM and a 2.66 GHz Intel Xeon X5650 processor with six cores, each two-
way multithreaded, running Linux kernel 2.6.32. The x86 code was compiled using gcc 4.4.3, with –O3
optimizations. On both machines, the lowest level of the cache hierarchy is shared among all threads. The
Niagara2 cores are substantially simpler than the x86 cores, and have one less level of private cache.

6.1 Implementation Details

We implementedDCASusing a modified version of the technique proposed by Harris et al [7]. The resulting
implementation resembles an inlined nonblocking software transactional memory [6]. We chose to imple-
mentDCSSusing aDCAS. Initial experiments using Luchangco’s k-CSS [14] did not offer a noticeable
advantage, since theDCSSdid not account for a significant fraction of execution time.

Rather than using a flat array, we implemented the mound as a 32-element array of arrays, where thenth

second-level array holds2n elements. We did not padCMNode types to a cache line. This implementation
ensures minimal space overhead for small mounds, and we believe it to be the most realistic for real-world
applications, since it can support extremely large mounds. We set theTHRESHOLDconstant to 8. Changing
this value did not affect performance, though we do not claim optimality.

Since the x86 does not offer nonfaulting loads, we used a per-thread object pool to recycleLNodes
without risking their return to the operating system. To enable atomic 64-bit reads on 32-bit x86, we used
a lightweight atomic snapshot algorithm, as 64-bit atomic loads can otherwise only be achieved via high-
latency floating point instructions.

We compare two lock-free mound implementations. The first adheres to the presentation in Section 3.
The second employs a small amount of laziness. Specifically, aftermoundify () restores the mound invari-
ant at a given node, it only recurses to a dirty child (Lines L22 and L26) if the child is of depth 12 or less.
This ensures that “hot” nodes at the top of the tree are kept clean, but allows for “cold” nodes to remain dirty
indefinitely.

6.2 Effect of Randomization

Unlike heaps, mounds do not guarantee balance, instead relying on randomization. To measure the effect
of this randomization on overall mound depth, we ran a sequential experiment where220 insert ()s were
performed, followed by219 + 218 extractMin ()s. We measured the fullness of every mound level after
the insertion phase and during the remove phase. We also measured the fullness whenever the depth of the
mound increased. We varied the order of insertions, using either randomly selected keys, keys that always
increased, or keys that always decreased. These correspond to the average, worst, and best cases for mound
depth. Lastly, we measured the impact of repeated insertions and removals on mound depth, by initializing
a mound with28, 216, or220 elements, and then performing220 randomly selected operations (an equal mix
of insert () andextractMin ()).

14

Insert Order % Fullness of Non-Full Levels
Increasing 99.96% (17), 97.75% (18), 76.04% (19), 12.54% (20)
Random 99.99% (16), 96.78% (17), 19.83% (18)
Decreasing N/A

Table 1: Incomplete mound levels after220 insertions. Incompleteness at the largest level is expected.

Initialization Ops Non-Full Levels
Increasing 524288 99.9% (16), 94.6% (17), 61.4% (18), 17.6% (19), 1.54% (20)
Increasing 786432 99.9% (15), 93.7% (16), 59.3% (17), 17.6% (18), 2.0% (19), 0.1% (20)
Random 524288 99.7% (16), 83.4% (17), 14.7% (18)
Random 786432 99.7% (15), 87.8% (16), 38.9% (17), 3.6% (18)
Decreasing 524288 N/A
Decreasing 786432 N/A

Table 2: Incomplete mound levels after manyextractMin () operations. Mounds were initialized with
220 elements, using the same insertion orders as in Table 1.

Table 1 describes the levels of a mound that have nodes with empty lists after220 insertions. For all but
the last of these levels, incompleteness is a consequence of the use of randomization. Each value inserted was
chosen according to one of three policies. When each value is larger than all previous values (“Increasing”),
the worst case occurs. Here, every list has exactly one element, and every insertion occurs at a leaf. This
leads to a larger depth (20 levels), and to several levels being incomplete. However, note that the mound is
still only one level deeper than a corresponding heap would be in order to store as many elements. The other
extreme occurs when every element inserted is smaller than all previous elements. In this “Decreasing”
case, the mound organizes itself as a sorted list stored at the root.

When “Random” values are inserted, we see the depth of the mound drop by two levels. This is due to
the average list holding more than one element. Only 56K elements were stored in leaves (level 18), and
282K elements were stored in the 17th level, where lists averaged 2 elements. 179K elements were stored
in the 16th level, where lists averaged 4 elements. The longest average list (14 elements) was at level 10.
The longest list (30) was at level 7. These results suggest that mounds should produce more space-efficient
data structures than either heaps or skiplists, and also confirm that randomization is an effective strategy.

We next measured the impact ofextractMin () on the depth of mounds. In Table 2, we see that
randomization leads to levels remaining partly filled for much longer than in heaps. After 75% of the
elements have been removed, the deepest level remains nonempty. Furthermore, we found that the repeated
extractMin () operations decreased the average list size significantly. After 786K removals, the largest
list in the mound had only 8 elements.

Initial Size Incomplete Levels
220 99.9% (16), 99.4% (17), 74.3% (18)
216 99.7% (13), 86.1% (14)
28 95.3% (6), 68.8% (7)

Table 3: Incomplete mound levels after220 random operations, for mounds of varying sizes. Random
initialization order was used.

15

 0

 5000

 10000

 15000

 20000

 25000

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

T
h

ro
u

g
h

p
u

t
(1

0
0

0
 O

p
s
/s

e
c
)

Threads

Mound (FGL)
Mound (DCAS)

Mound+ (DCAS)
Hunt Heap

Skip List (lin)
Skip List (qc)

(a) Niagara2

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h

ro
u

g
h

p
u

t
(1

0
0

0
 O

p
s
/s

e
c
)

Threads

Mound (FGL)
Mound (DCAS)

Mound+ (DCAS)
Hunt Heap

Skip List (lin)
Skip List (qc)

(b) x86

Figure 1: Insertion test: each thread inserts216 randomly selected values.

To simulate real-world use, we pre-populated a mound, and then executed220 operations (an equal mix
of insert () andextractMin ()), using randomly selected keys for insertions. The result in Table 3
shows that this usage does not lead to greater imbalance or to unnecessary mound growth. However, the
incidence of removals did reduce the average list size. After the largest experiment, the average list size was
only 3 elements.

6.3 Insert Performance

Next, we evaluate the latency and throughput ofinsert () operations. As comparison points, we include
the Hunt heap [10], which uses fine-grained locking, and two skiplist implementations. The first is a transfor-
mation of Fraser’s skiplist [4] into a quiescently consistent priority queue [8].1 The second is an unpublished
linearizable skiplist-based priority queue, achieved by applying Lotan and Shavit’s timestamp technique to
the quiescently consistent implementation [13]. Each experiment is the average of three trials, and each trial
performs a fixed number of operations per thread. We conducted additional experiments with the priority
queues initialized to a variety of sizes, ranging from hundreds to millions of entries. We present only the
most significant trends.

Figure 1 presentsinsert () throughput. The extremely strong performance of the fine-grained locking
mound is due both to its asymptotically superior algorithm, and its low-overhead implementation using
simple spinlocks. In contrast, while the lock-free mounds scale well, they have much higher latency. On
the Niagara2,CAS is implemented in the L2 cache; thus there is a structural hardware bottleneck after 8
threads, and high overhead due to our implementation ofDCASwith multipleCASinstructions. On the x86,
both 64-bit atomic loads andDCAScontribute to the increased latency. As previously reported by Lotan and
Shavit, insertions are costly for skip lists. The hunt heap has low single-thread overhead, but the need to
“trickle up” causesinsert ()s to contend with each other, which hinders scalability.

16

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

T
h

ro
u

g
h

p
u

t
(1

0
0

0
 O

p
s
/s

e
c
)

Threads

Mound (FGL)
Mound (DCAS)

Mound+ (DCAS)
Hunt Heap

Skip List (lin)
Skip List (qc)

(a) Niagara2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h

ro
u

g
h

p
u

t
(1

0
0

0
 O

p
s
/s

e
c
)

Threads

Mound (FGL)
Mound (DCAS)

Mound+ (DCAS)
Hunt Heap

Skip List (lin)
Skip List (qc)

(b) x86

Figure 2: ExtractMin test: each thread performs216 extractMin () operations to make the priority queue
empty.

6.4 ExtractMin Performance

In Figure 2, each thread performs216 extractMin () operations on a priority queue that is pre-populated
with exactly enough elements that the last of these operations will leave the data structure empty. The
skiplist implementation is almost perfectly disjoint-access parallel, and thus on the Niagara2, it scales well.
On the x86, the deeper cache hierarchy results in a slowdown for the skiplist from 1–6 threads, after which
the use of multithreading decreases cache misses and results in slight speedup.

The algorithms of the locking mound and the Hunt queue are similar, and their performance curves
match closely. Slight differences on the x86 are largely due to the shallower tree of the mound, and its lack
of a global counter. However, in both cases performance is substantially worse than for skiplists. As in the
insert () experiment, the lock free mound pays additional overhead due to its use ofDCAS. Since there
areO(log(N)) DCASes, instead of the singleDCASin insert (), the overhead of the lock free mound
is significantly higher than the locking mound. We observe a slight benefit from the use of laziness in the
“Mound+” algorithm, since it avoids someDCASes.

6.5 Scalability of Mixed Workloads

The behavior of a concurrent priority queue is expected to be workload dependent. While it is unlikely that
any workload would consist of repeated calls toinsert () andextractMin () with no work between
calls, we present such a stress test microbenchmark in Figure 3 as a more realistic evaluation than the
previous single-operation experiments.

The experiment has some surprising results. The most unexpected is the difference between quiescent
consistency and linearizability in the skiplist on the Niagara2. Their behavior is expected to differ only when
there are concurrentinsert () andextractMin () operations. We see that at higher thread counts, the
linearizable implementation experiences a significant drop. The drop roughly corresponds to an expected
inflection point related to hardware multithreading, and its severity suggests that moreextractMin ()

1We extended Vincent Gramoli’s open-source skiplist.

17

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

T
h

ro
u

g
h

p
u

t
(1

0
0

0
 O

p
s
/s

e
c
)

Threads

Mound (FGL)
Mound (DCAS)

Mound+ (DCAS)
Hunt Heap

Skip List (lin)
Skip List (qc)

(a) Niagara2

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h

ro
u

g
h

p
u

t
(1

0
0

0
 O

p
s
/s

e
c
)

Threads

Mound (FGL)
Mound (DCAS)

Mound+ (DCAS)
Hunt Heap

Skip List (lin)
Skip List (qc)

(b) x86

Figure 3: Equal mix of randominsert () andextractMin () operations on a queue initialized with216

random elements.

operations are incurringO(nun threads) overhead. Another source of overhead is that at high thread
counts, the shared counter used to achieve linearizability becomes a bottleneck.

On the x86, we see that the locking mound provides the best performance until 10 threads, but that it
again suffers under preemption. The lazy and regular lock-free mounds outperform skiplists until 6 threads.
As in theextractMin () test, once the point of hardware multithreading is reached, the large number of
CASes becomes a significant overhead.

6.6 ExtractMany Performance

One of the advantages of the mound is that it stores a collection of elements at each tree node. As discussed in
Section 5, implementingextractMany () entails only a simple change to theextractMin () operation.
However, its effect is pronounced. As Figure 4 shows,extractMany () scales well.

This scaling supports our expectation that mounds will be a good fit for applications that employ pri-
oritized or probabilistic work stealing. However, there is a risk that the quality of data in each list is poor.
For example, if the second element in the root list is extremely large, then usingextractMany () will not
provide a set of high-priority elements. Table 4 presents the average list size and average value of elements
in a mound after220 insertions of random values. As desired, extracted lists are large, and have an average
value that increases with tree depth. Similar experiments using values from smaller ranges are even more
pronounced.

7 Conclusions

In this paper we presented the mound, a new data structure for use in concurrent priority queues. The
mound combines a number of novel techniques to achieve its performance and progress guarantees. Chief
among these are the use of randomization and the employment of a structure based on a tree of sorted lists.
Linearizable mounds can be implemented in a highly concurrent manner using either pure-softwareDCASor

18

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

T
h

ro
u

g
h

p
u

t
(1

0
0

0
 O

p
s
/s

e
c
)

Threads

Mound (FGL)
Mound (DCAS)

Mound+ (DCAS)

(a) Niagara2

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h

ro
u

g
h

p
u

t
(1

0
0

0
 O

p
s
/s

e
c
)

Threads

Mound (FGL)
Mound (DCAS)

Mound+ (DCAS)

(b) x86

Figure 4: ExtractMany performance. The mound is initialized with220 elements, and then threads repeatedly
call extractMany () until the mound is empty.

Level List Size Avg. Value Level List Size Avg. Value
0 12 52.5M 9 15.46 367M
1 15.5 179M 10 13.81 414M
2 21.75 215M 11 12.33 472M
3 21.75 228M 12 10.57 538M
4 21.18 225M 13 8.80 622M
5 20.78 263M 14 7.22 763M
6 19.53 294M 15 5.47 933M
7 18.98 297M 16 3.67 1.14B
8 17.30 339M 17 2.14 1.45B

Table 4: Average list size and list value of mound nodes after220 random insertions.

fine-grained locking. Their structure also allows several new uses. We believe that prioritized work stealing
is particularly interesting.

In our evaluation, we found mound performance to exceed that of the lock-based Hunt priority queue,
and to rival that of skiplist-based priority queues. The performance tradeoffs are nuanced, and will certainly
depend on workload and architecture. Workloads that can employextractMany ()or that benefit from
fast insert ()will benefit from the mound. The difference in performance between the x86 and Niagara2
suggests that deep cache hierarchies favor mounds. In workloads that can tolerate quiescent consistency,
skiplists remain the preferred choice.

The lock-free mound is a practical algorithm despite its reliance on softwareDCAS. We believe this
makes it an ideal data structure for designers of future hardware. In particular, the question of what new
concurrency primitives (such asDCASandDCSS, best-effort hardware transactional memory [2], or even
unbounded transactional memory) should be added to next-generation architectures will be easier to address
given algorithms like the mound, which can serve as microbenchmarks and demonstrate the benefit of faster
hardware multiword atomic operations.

19

References

[1] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.Introduction to Algorithms, 2nd edition. MIT Press
and McGraw-Hill Book Company, 2001.

[2] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early Experience with a Commercial Hardware Transac-
tional Memory Implementation. InProceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating Systems, Washington, DC, Mar. 2009.

[3] K. Dragicevic and D. Bauer. Optimization Techniques for Concurrent STM-Based Implementations:
A Concurrent Binary Heap as a Case Study. InProceedings of the 23rd International Symposium on
Parallel and Distributed Processing, Rome, Italy, May 2009.

[4] K. Fraser.Practical Lock-Freedom. PhD thesis, King’s College, University of Cambridge, Sept. 2003.

[5] T. Harris. A Pragmatic Implementation of Non-Blocking Linked Lists. InProceedings of the 15th
International Symposium on Distributed Computing, Lisbon, Portugal, Oct. 2001.

[6] T. Harris and K. Fraser. Language Support for Lightweight Transactions. InProceedings of the 18th
ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications, Oct. 2003.

[7] T. Harris, K. Fraser, and I. Pratt. A Practical Multi-word Compare-and-Swap Operation. InProceed-
ings of the 16th International Conference on Distributed Computing, Toulouse, France, Oct. 2002.

[8] M. Herlihy and N. Shavit.The Art of Multiprocessor Programming. Morgan Kaufmann, 2008.

[9] M. P. Herlihy and J. M. Wing. Linearizability: a Correctness Condition for Concurrent Objects.ACM
Transactions on Programming Languages and Systems, 12(3):463–492, 1990.

[10] G. Hunt, M. Michael, S. Parthasarathy, and M. Scott. An Efficient Algorithm for Concurrent Priority
Queue Heaps.Information Processing Letters, 60:151–157, Nov. 1996.

[11] A. Israeli and L. Rappoport. Disjoint-Access-Parallel Implementations of Strong Shared Memory
Primitives. InProceedings of the 13th ACM Symposium on Principles of Distributed Computing,
1994.

[12] A. Kogan and E. Petrank. Wait-Free Queues with Multiple Enqueuers and Dequeuers. InProceedings
of the 16th ACM Symposium on Principles and Practice of Parallel Programming, San Antonio, TX,
Feb. 2011.

[13] I. Lotan and N. Shavit. Skiplist-Based Concurrent Priority Queues. InProceedings of the 14th Inter-
national Parallel and Distributed Processing Symposium, Cancun, Mexico, May 2000.

[14] V. Luchangco, M. Moir, and N. Shavit. Nonblocking k-compare-single-swap. InProceedings of the
15th ACM Symposium on Parallel Algorithms and Architectures, San Diego, CA, June 2003.

[15] M. Michael. Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects.IEEE Transactions
on Parallel and Distributed Systems, 15(6):491–504, June 2004.

[16] M. M. Michael. Scalable Lock-Free Dynamic Memory Allocation. InProceedings of the 25th ACM
Conference on Programming Language Design and Implementation, Washington, DC, June 2004.

20

[17] M. M. Michael and M. L. Scott. Simple, Fast, and Practical Non-Blocking and Blocking Concurrent
Queue Algorithms. InProceedings of the 15th ACM Symposium on Principles of Distributed Comput-
ing, May 1996.

[18] W. Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees.Communications of the ACM,
33:668–676, June 1990.

[19] H. Sundell, A. Gidenstam, M. Papatriantafilou, and P. Tsigas. A Lock-Free Algorithm for Concurrent
Bags. InProceedings of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures,
San Jose, CA, June 2011.

[20] H. Sundell and P. Tsigas. Fast and Lock-Free Concurrent Priority Queues for Multi-Thread Systems.
Journal of Parallel and Distributed Computing, 65:609–627, May 2005.

[21] R. K. Treiber. Systems Programming: Coping With Parallelism. Technical Report RJ 5118, IBM
Almaden Research Center, Apr. 1986.

21

