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Abstract

An algorithm framework is proposed for minimizing nonsmooth functions. The framework is variable-
metric in that, in each iteration, a step is computed using a symmetric positive definite matrix whose
value is updated as in a quasi-Newton scheme. However, unlike previously proposed variable-metric
algorithms for minimizing nonsmooth functions, the framework exploits self-correcting properties made
possible through BFGS-type updating. In so doing, the framework does not overly restrict the manner in
which the step computation matrices are updated, yet the scheme is controlled well enough that global
convergence guarantees can be established. The results of numerical experiments for a few algorithms
are presented to demonstrate the self-correcting behaviors that are guaranteed by the framework.

1 Introduction

The purpose of this paper is to present an algorithm framework for solving minimization problems involv-
ing nonsmooth (locally Lipschitz) objective functions. To frame the context and goals of this work, it is
worthwhile to recall some history on the design of algorithms over the past few decades.

Practical algorithms for minimizing smooth objectives primarily fall between two extremes. At one
extreme are steepest descent methods that only require first-order derivative (i.e., gradient) information.
Such methods have relatively cheap per-iteration costs and can attain a linear rate of convergence to a
minimizer. At the other extreme are Newton methods that require first- and second-order derivative (i.e.,
respectively, gradient and Hessian) information as well as solving linear systems of equations of dimension
equal to the number of variables. Such methods are relatively expensive, but can attain a quadratic rate of
convergence to a minimizer. For further details, see, e.g., [3], [4], [19], [45], and [52].

One often finds, however, that the most computationally efficient method for a given application does not
follow either of these extremes. That is, one often finds that with only approximate second-order information,
and with techniques that avoid expensive computations such as solving linear systems of equations, one can
better balance per-iteration costs with per-iteration improvement.

Along these lines, one of the most important developments in the design of smooth optimization algo-
rithms came with the advent of variable-metric algorithms in the 1960s; see [17]. This class of methods,
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which includes quasi-Newton methods such as those of the widely successful Broyden-Fletcher-Goldfarb-
Shanno (BFGS) variety (see [8], [21], [22], and [54]), often offer an attractive alternative between extremes.
Such methods only require first-order derivative information, can avoid the need to solve linear systems of
equations, and yet can offer superlinear convergence rate guarantees; see [18].

When it comes to minimizing nonsmooth functions, the array of available algorithms is more varied,
and attempts to characterize and compare them run into various challenges. For example, the ideas un-
derlying steepest descent, quasi-Newton, and Newton methodologies can all be extended for minimizing
nonsmooth functions, but practical methods often involve computations beyond obtaining (sub)gradients
and solving linear systems—e.g., they include proximal point, cutting plane, gradient sampling, and other
methodologies—making the computational trade-offs between methods less straightforward. In addition,
theoretical convergence rates for algorithms become more difficult to prove, meaning that one cannot rely so
easily on such characterizations when comparing methods. For example, despite being introduced decades
ago in the 1970s and being one of the most popular classes of methods for convex optimization, convergence
rate guarantees for bundle methods have been shown in comparatively fewer articles; for some examples,
see [51], [34], and [43]. Moreover, many of these guarantees focus on the rate achieved over the subsequence
of accepted (“serious”) steps, not always accounting for the work involved to compute such a step (which
might involve some number of intermediate “null” steps). For one exception, see [20].

All of this being said, many have observed that, as in smooth optimization, improved computational
trade-offs between per-iteration cost and improvement are often attained by methods that employ both first-
order derivative information and approximate second-order information. In this spirit, this paper proposes
a new variable-metric algorithm framework for solving nonsmooth optimization problems.

Variable-metric algorithms for nonsmooth optimization have previously been proposed; see, e.g., [6],
[27], [34], [36], [44], and [56]. Broadly speaking, they can be grouped into three categories. Firstly, there
are techniques not built on quasi-Newton-type updating. An important example in this group is Shor’s
R-algorithm; see [55] and the more recent work in [28] and [10]. Secondly, there are techniques that attempt
to employ quasi-Newton ideas, but only possess convergence guarantees when the updates are restricted to
ensure that the resulting Hessian approximations remain sufficiently positive definite and bounded in all
iterations; see, e.g., [15, 16]. Third, there are techniques that employ unadulterated quasi-Newton ideas.
Interestingly, convergence guarantees can be established for unadulterated BFGS in a few specific cases
(see [38]), though general guarantees for broad classes of functions remain elusive.

The algorithm framework proposed in this paper falls into the second of the categories in the preceding
paragraph, but is unique in that it exploits the self-correcting properties of BFGS-type updating. These
properties guarantee that a sufficient number of matrices generated by a BFGS-type updating scheme possess
useful properties for ensuring convergence without having to overly restrict the manner in which the updates
are performed. The hope is that the framework proposed in this paper can offer both practical performance
gains for various algorithm classes for nonsmooth optimization as well as outline how these useful properties
of BFGS-type updating can be incorporated into other algorithms. The results of our numerical experiments
shown in this paper provide evidence that the framework does indeed offer performance gains. One interesting
aspect of our approach, revealed by our numerical experiments, is that it is effective at recognizing when an
iterate is nearly stationary. This is in contrast to the behavior of an unadulterated BFGS approach, which,
if employed in practice, might break down (e.g., due to a failed line search) before any stationarity guarantee
has been offered.

1.1 Organization

In §2, we state our problem of interest, describe the proposed framework, and discuss at a broad level the
types of algorithms that adhere to the framework. In §3, we discuss the properties of the scaling matrices
employed in the framework, then show how these properties can be used to obtain generic convergence
guarantees. In §4, we present specific algorithms that adhere to the framework. The results of numerical
experiments are given in §5. Concluding remarks are provided in §6.

3



1.2 Notation

Let R denote the set of real numbers (i.e., scalars), let R≥0 denote the set of nonnegative real numbers,
let R>0 denote the set of positive real numbers, and let N := {1, 2, . . . } denote the set of natural numbers.
In addition, for any of these quantities, let a superscript n ∈ N be used to indicate the n-dimensional
extension of the set—e.g., let Rn denote the set of n-dimensional real vectors—and let a superscript n × n
with (n, n) ∈ N × N be used to indicate the n-by-n-dimensional extension of the set—e.g., let Rn×n denote
the set of n-by-n real matrices. A vector with all elements equal to 1 is denoted as 1 and an identity matrix
is denoted as I, where, in each case, the size of the quantity is determined by the context in which it appears.
With real symmetric matrices A and B, let A � (�) B indicate that A−B is positive definite (semidefinite).
Given a set X , its convex hull is denoted as convX .

2 Problem Statement and Algorithm Framework

In this section, we formally state our optimization problem of interest and our proposed algorithm framework.
We also outline ideas underlying various types of algorithms that adhere to it.

2.1 Problem Statement

Our problem of interest is to minimize an objective f : Rn → R, i.e., consider the optimization problem

min
x∈Rn

f(x). (P)

For now, only the following assumption is made about problem (P).

Assumption 2.1. The objective function f : Rn → R in problem (P) is bounded below over Rn, locally
Lipschitz on Rn, and continuously differentiable in an open set D with full measure in Rn.

Under this assumption, there exists a scalar finf ∈ R such that

f(x) ≥ finf for all x ∈ Rn, (2.1)

and, for any compact subset B of Rn, there exists a constant LB ∈ R>0 such that

|f(x)− f(x)| ≤ LB‖x− x‖2 for all (x, x) ∈ B × B. (2.2)

Assumption 2.1 does not preclude the possibility that f might have no minimizer, or that it might have
many local minimizers. The goal of our framework is to characterize a family of methods for generating a
sequence of iterates that is guaranteed, in the limit, to reveal a stationary point for f . (In other words, our
framework is not necessarily intended for global optimization.) Hence, it is worthwhile to derive stationarity
conditions for f that must be satisfied at any local minimizer.

Remark 2.1. One might be interested in situations when the objective can be unbounded below and/or when
it is extended-real-valued. We discuss such situations in our concluding remarks in §6.

Stationarity conditions for f can be derived following the treatment by [13]. (Indeed, many of the
following terms are often defined with a “Clarke” designation. We omit this designation for brevity.) Firstly,
the generalized directional derivative of f at x ∈ Rn with respect to s ∈ Rn is given by

f◦(x; s) = lim sup
x→x,α↘0

f(x+ αs)− f(x)

α
.

The subdifferential of f at x is then defined as

∂f(x) = {g ∈ Rn : f◦(x; s) ≥ gT s for all s ∈ Rn}.
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According to Rademacher’s theorem, any function f that is locally Lipschitz on Rn is differentiable almost
everywhere and its subdifferential at x (see Theorem 2.5.1 in [13]) is given by

∂f(x) = conv

{
lim
k→∞

∇f(xk) : {xk} → x with xk ∈ D for all k ∈ N
}
.

For a given ε ∈ R≥0, the ε-subdifferential of f at x (see [23]) is given by

∂εf(x) = conv ∂f(B(x, ε)), where B(x, ε) := {x ∈ Rn : ‖x− x‖2 ≤ ε}. (2.3)

A point x ∈ Rn is said to be stationary for f if 0 ∈ ∂f(x) whereas it is merely ε-stationary if 0 ∈ ∂εf(x).
The following fundamental and widely applicable result, which we attribute to Kiwiel, will be used later.

Lemma 2.1. (Lemma 3.2(iii), [35]) Let {xk} ⊂ Rn and {εk} ⊂ R≥0 be infinite sequences and define
{g̃k} ⊂ Rn such that g̃k ∈ ∂εkf(xk) for all k ∈ N. If, for x ∈ Rn, it follows that

lim inf
k→∞

max{‖xk − x‖2, ‖g̃k‖2, εk} = 0,

then 0 ∈ ∂f(x), i.e., the point x is stationary for f .

2.2 Algorithm Framework

The framework that we propose, entitled a Self-correcting Variable-metric Algorithm for Nonsmooth Optimization,
is stated below as SVANO. It consists of two main procedures: (i) Steps 2–4, the computation of a step
yielding a reduction in the objective function and (ii) Steps 5–7, the computation of quantities used to update
a scaling matrix to be used in the step computation procedure in the subsequent iteration. In SVANO, these
procedures are written in a generic manner so as to allow for flexibility in the choices of various algorithm
quantities. We discuss techniques for performing the step computation procedure next, in §2.3. Then, in
§2.4, we motivate the scaling matrix updating strategy.
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SVANO

Require: A matrix H � 0 with smallest (resp. largest) eigenvalue λmin ∈ R>0 (resp. λmax ∈ R>0); parame-
ters α ∈ (0, 1), η ∈ (0, λmin], and θ ∈ [λmax,∞); a point x1 ∈ Rn; and a positive definite inverse Hessian
approximation W1 ∈ Rn×n.

1: for all k ∈ N do
2: Compute, for some m ∈ N,

{xk,j}mj=1 ⊂ Rn with xk,1 ← xk,

{gk,j}mj=1 ⊂ Rn where gk,j ∈ ∂f(xk,j) for all (k, j) ∈ N × {1, . . . ,m}
ωk ∈ Rm≥0 with 1Tωk = 1,

and γk ∈ Rn

3: such that setting

Gk ←
[
gk,1 · · · gk,m

]
, (2.4)

sk ← −Wk(Gkωk + γk), (2.5)

and xk+1 ← xk + sk (2.6)

4: yields
f(xk+1) ≤ f(xk)− 1

2α(Gkωk + γk)TWk(Gkωk + γk). (2.7)

5: Choose yk ∈ Rn and compute βk as the smallest value in [0, 1] such that

vk ← βkHsk + (1− βk)yk (2.8)

6: yields

η ≤ sTk vk
‖sk‖22

and
‖vk‖22
sTk vk

≤ θ, (2.9)

7: and then set

Wk+1 ←
(
I − vks

T
k

sTk vk

)T
Wk

(
I − vks

T
k

sTk vk

)
+
sks

T
k

sTk vk
. (2.10)

8: end for

2.3 Step Computation Techniques

The step computation procedure in SVANO covers a wide range of nonsmooth optimization methods,
including those that employ cutting plane and gradient sampling methodologies using line search and/or
trust region techniques. Given a symmetric positive definite Wk (i.e., given Wk � 0), the procedure consists
of the selection of a set of points {xk,j}mj=1 in the vicinity of (and including) the current iterate xk ∈ Rn and
a set of vectors {gk,j}mj=1 where gk,j ∈ ∂f(xk,j) for each pair (k, j) ∈ N×{1, . . . ,m}. (One could instead set
gk,j as a convex combination of subgradients of f evaluated at a set of points, as in subgradient aggregation;
see, e.g., [29]. However, for simplicity in the algorithm statement, we do not state this option explicitly.)
Following the selection of these vectors, the framework requires a pair (ωk, γk) such that the step sk in (2.5)
leads to the reduction in f in (2.7). The vector ωk, required to be nonnegative with elements summing to
unity, should be viewed as a vector of weights such that, with Gk defined in (2.4), the step component Gkωk
is a convex combination of the elements in {gk,j}mj=1. The vector γk then represents a perturbation of this
convex combination, which, e.g., may arise due to the use of line search or trust region methodologies.

Let us make these ideas concrete by describing, for example, how all of these quantities may be derived
in a trust region framework. Suppose that at xk ∈ Rn, a set of points {xk,j}mj=1 (with xk,1 ← xk) and
vectors {gk,j}mj=1 ⊂ Rn are given as in the framework. In addition, suppose a set of scalars {fk,j}mj=1 is
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given. (These scalars would typically depend on values of f at xk and/or {xk,j}mj=1; see §4 for more detail.)
Then, a convex piecewise-linear model of f at xk is given by lk,m : Rn → R defined by

lk,m(x) = max
j∈{1,...,m}

{fk,j + gTk,j(x− xk,j)}. (2.11)

Also, given Hk � 0, a convex piecewise-quadratic model of f at xk is given by qk,m : Rn → R defined by

qk,m(x) = lk,m(x) + 1
2 (x− xk)THk(x− xk). (2.12)

A step toward minimizing f can be defined by the minimizer of qk,m within a region defined by a norm ‖ · ‖
and trust region radius δk ∈ R>0 ∪ {∞}, i.e., the minimizer of

min
x∈Rn

qk,m(x) s.t. x ∈ Xk := {x ∈ Rn : ‖x− xk‖ ≤ δk}. (2.13)

Solving (2.13) directly can be challenging due to the nonsmoothness of lk,m (and, hence, of qk,m) and due
to the presence of the trust region constraint (if δk <∞). One can reformulate it as the smooth constrained
quadratic optimization problem (QP) stated as

min
(x,z)∈Rn×R

z + 1
2 (x− xk)THk(x− xk)

s.t. x ∈ Xk and fk,j + gTk,j(x− xk,j) ≤ z for all j ∈ {1, . . . ,m},
(2.14)

but even this can be difficult to solve. Its dual, on the other hand, has properties that might make it easier
to solve than (2.14). Denoting the dual of ‖ · ‖ as ‖ · ‖∗, the dual of (2.14) (see Appendix A) is

sup
(ω,γ)∈Rm

+×Rn

− 1
2 (Gkω + γ)TWk(Gkω + γ) + bTk ω − δk‖γ‖∗ s.t. 1Tω = 1, (2.15)

where the vector bk ∈ Rm has as its jth component

bk,j = fk,j + gTk,j(xk − xk,j). (2.16)

The constraints of this dual merely involve an affine equality constraint and lower bounds on some variables.
Therefore, if ‖ ·‖∗ is polyhedral—or if δk =∞, in which case the solution (ωk, γk) of (2.15) must have γk = 0
(see Appendix A)—then it might be more efficient to employ an active-set method to solve (2.15) than a
method for minimizing (2.13) or one for solving the constrained QP (2.14). (See [31] and [15] for more on
special-purpose solvers for (2.15) in the case that (δk, γk) = (∞, 0).) In any case, if one solves (2.15), then
the solution to (2.13) can be recovered as stated as part of the following lemma; for a proof of this result,
see Appendix A.

Lemma 2.2. Given the solution (ωk, γk) ∈ Rm+ × Rn of the dual subproblem (2.15), the solution of the
primal subproblem (2.13) is given by xk −Wk(Gkωk + γk); hence, xk+1 in (2.6) with sk given in (2.5) is the
solution of (2.13). In addition, if f(xk) ≥ lk,m(xk), then one finds that

f(xk)− lk,m(xk+1) ≥ 1
2 (Gkωk + γk)TWk(Gkωk + γk), (2.17)

meaning that, if
f(xk)− f(xk+1) ≥ α(f(xk)− lk,m(xk+1)), (2.18)

then (2.7) holds.

Remark 2.2. Observe that the condition f(xk) ≥ lk,m(xk) in Lemma 2.2 is not restrictive. If f is convex
and fk,j = f(xk,j) for all (k, j) ∈ N × {1, . . . ,m}, then it is guaranteed since x 7→ fk,j + gTk,j(x− xk,j) is an
affine underestimator of x 7→ f(x). On the other hand, if f is nonconvex, then one can ensure the condition
using standard techniques. For example, in a bundle method approach, one can ensure it using standard
downshifting ideas; see, e.g., §3 in [53] and further discussion in this paper in §4.3. In a gradient sampling
method, one chooses fk,j = f(xk) for all (k, j) ∈ N×{1, . . . ,m}, from which one finds that f(xk) ≥ lk,m(xk)
automatically holds.
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There are also practical benefits of solving the dual (2.15) when {xk,j}mj=1 and corresponding quantities
are generated incrementally. For example, suppose that elements indexed by j ∈ {1, . . . ,m} for some m ∈ N
have been generated, but the resulting trial iterate defined as in (2.6) fails to satisfy (2.7). Then, suppose
that additional data indexed by j = m + 1 is generated in some manner to produce the next trial iterate.
The dual subproblem is the same as the previous one, except for the addition of a single dual variable (and
corresponding objective and constraint data entries). The previous optimal dual solution augmented with
the new variable initialized to zero represents a feasible solution of the subsequent dual problem, making it
an attractive starting point for solving the subsequent dual subproblem.

2.4 Scaling Matrix Updating Strategy

A critical feature of SVANO is that each element of the sequence of matrices {Wk}k≥2 is set by an update
performed during the previous iteration. The update (2.10) has the same form as a standard BFGS update
from the smooth optimization literature, and, indeed, the framework is designed to exploit the properties
induced by such an update. However, the framework allows flexibility in the choice of yk—in theory, any
element of Rn will suffice—as long as the scalar βk ∈ [0, 1] is chosen such that the bounds in (2.9) are
satisfied; see [14] for the use of this idea for stochastic optimization. One possible choice for yk is the
displacement between a subgradient of f at xk+1 with one at xk, which is natural since this is the choice
that can lead to local superlinear convergence guarantees when f is smooth. However, given that SVANO
is designed to solve nonsmooth problems, one should not consider this as the only reasonable choice for yk.
(For example, one might choose the difference between convex combinations of subgradients encountered in
the consecutive iterations.) An important conclusion of our analysis in §3 is that the bounds in (2.9) are
sufficient for ensuring convergence guarantees, and these bounds can be satisfied for any yk as long as vk is
chosen in (2.8) with sufficiently large βk ∈ [0, 1]. (The allowed ranges for η and θ are set so that (2.9) is
well-defined. Note that βk = 1 implies vk = Hsk, which, due to the ranges for η and θ, implies (2.9); hence,
βk ∈ [0, 1] always exists such that vk set by (2.8) satisfies (2.9).) We discuss a few choices for the matrix
H � 0 and the sequence {yk} in §5.

As is well known, applying the Sherman-Morrison-Woodbury formula to (2.10) yields the following up-
dating formula for {Hk} where Hk = W−1

k for all k ∈ N:

Hk+1 ←
(
I − sks

T
kHk

sTkHksk

)T
Hk

(
I − sks

T
kHk

sTkHksk

)
+
vkv

T
k

sTk vk
. (2.19)

Despite SVANO not requiring {Hk} explicitly, it is useful to define this sequence. For one thing, it can be
observed from (2.5) that the sufficient reduction condition (2.7) can equivalently be written as

f(xk+1) ≤ f(xk)− 1
2αs

T
kHksk, (2.20)

i.e., the condition requires that the reduction in f from xk to xk+1 is proportional to a quadratic function of
the step sk, which is a typical requirement for a descent method. In addition, the properties of the sequence
{Hk} corresponding to {Wk} will be of central importance in §3.

It is worthwhile to mention that (2.8) with H ≡ Hk would reflect a standard damping of the BFGS
update; see [48] and [45]. However, rather than employ an element of the sequence {Hk} in (2.8), we employ
the fixed matrix H. Since this allows us to ensure that (2.9) holds for the constants η and θ for all k ∈ N,
we are able to ensure the self-correcting properties that are central to our convergence analysis. One cannot
maintain such assurances if Hk is used in place of H in (2.8). Another alternative would be to employ a
sequence {Hk} with eigenvalues uniformly bounded below by λmin ∈ R>0 and above by λmax ∈ R>0. That
said, for simplicity, let us assume that H is fixed.

For ease of reference, we refer to {Hk} and {Wk} as Hessian approximations and inverse Hessian ap-
proximations, respectively. This terminology should be easy to accept since it is common in the literature
on quasi-Newton methods, even for nonsmooth optimization. However, since f is nonsmooth, the term
“Hessian” should be taken loosely as a matrix that approximates changes in the subgradients of f at nearby
points. See [13] for more information about generalized second derivatives.
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3 Convergence Properties of SVANO

In this section, we explore properties of any sequences {Wk} and {Hk} generated by (2.10) and (2.19),
respectively, then discuss generic convergence properties of the SVANO Framework. To start, it is immediate
that the updates (2.10) and (2.19) satisfy secant-like equations, namely

Wk+1vk = sk and Hk+1sk = vk. (3.1)

One can also derive a geometric interpretation of the updates for the Hessian approximations, revealing that
the kth update can be viewed as the combination of a projection to erase curvature information along sk—in
a sense, temporarily setting sTkHk+1sk to zero—along with a correction based on information contained in
vk to yield sTkHk+1sk = sTk vk > 0; see Appendix B. Most importantly for our purposes is that one can show
that sequences of such updates result in useful self-correcting properties, which we explore in §3.1. These
properties of the Hessian approximations, when cast in terms of the inverse Hessian approximations, yield
properties that we use to prove a convergence result in §3.2.

3.1 Self-Correcting Properties of BFGS Updating

It is illustrated in Appendix B that the update (2.10) is a combination of a projection and a correction
of the corresponding Hessian approximation. However, as these updates build upon one another from one
iteration to the next, it is important to characterize properties of the resulting matrices and their effects on
the computed steps after a sequence of updates. The fact that we show in this subsection is that as long as
vk is chosen to satisfy the two critical inequalities in (2.9) for all k ∈ N, then despite curvature information
along span(sk) being projected out with the update (2.10), the corresponding correction ensures that the
sequences of Hessian and inverse Hessian approximations satisfy useful inequalities.

Early work on the convergence of quasi-Newton methods by [47] and others (see, e.g., [12], [49], [50], and
[57]) involved analyses that bound the growth of the traces and the determinants of {Hk}. In what follows,
we follow the work in [11] involving a streamlined approach in which one bounds the growth of a function
defined by a combination of these quantities; see also the summary provided in [45].

Given H � 0, consider ψ : Rn×n → R defined by ψ(H) = tr(H)− ln(det(H)). It can be shown that ψ(H)
is positive (in fact, at least n) and represents a measure of closeness between H and the identity matrix
I (for which ψ(I) = n); in particular, ψ(H) is an upper bound for the natural logarithm of the condition
number of H. In addition, the update (2.19) implies that, for all k ∈ N, one has

tr(Hk+1) = tr(Hk)− ‖Hksk‖22
sTkHksk

+
‖vk‖22
sTk vk

(3.2a)

and (see [46]) det(Hk+1) = det(Hk)

(
sTk vk

sTkHksk

)
, (3.2b)

with which one can explicitly relate ψ(Hk+1) and ψ(Hk). Specifically, assuming that Hk � 0 and the iterate
displacement satisfies sk 6= 0, then by defining

cosφk :=
sTkHksk

‖sk‖2‖Hksk‖2
and ιk :=

sTkHksk
‖sk‖22

(3.3)

it follows from (3.2) that

ψ(Hk+1) = ψ(Hk) +
‖vk‖22
sTk vk

− 1− ln

(
sTk vk
‖sk‖22

)
︸ ︷︷ ︸

∈R

+ ln(cos2 φk)︸ ︷︷ ︸
≤0

+

(
1− ιk

cos2 φk
+ ln

(
ιk

cos2 φk

))
︸ ︷︷ ︸

≤0

. (3.4)

Nonpositivity of the latter two terms is easily verified; see Appendix C.
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By restricting the growth of ψ over {Hk} and noting that there must exist certain iterations in which
the latter terms in (3.4) are not too negative, one can prove the following theorem showing self-correcting
properties of the update (2.19). For completeness, we provide a proof of this theorem in Appendix C; see
also Theorem 2.1 in [11].

Theorem 3.1. Let {Hk} satisfy (2.19) and suppose that there exist (η, θ) ∈ R>0 × R>0 such that (2.9)
holds for all k ∈ N. Then, for any p ∈ (0, 1), there exist constants (κ, σ, µ) ∈ R>0 × R>0 × R>0 such that,
for any K ∈ {2, 3, . . . }, the following hold for at least dpKe values of k ∈ {1, . . . ,K}:

κ ≤ sTkHksk
‖sk‖2‖Hksk‖2

and σ ≤ ‖Hksk‖2
‖sk‖2

≤ µ. (3.5)

This theorem leads to the following corollary about the inverse approximations.

Corollary 3.1. Let {Wk} satisfy (2.10) and suppose that there exist (η, θ) ∈ R>0 × R>0 such that (2.9)
holds for all k ∈ N. Then, for any p ∈ (0, 1), there exist constants (ν, ξ) ∈ R>0 × R>0 such that, for any
K ∈ {2, 3, . . . }, the following hold for at least dpKe values of k ∈ {1, . . . ,K}:

ν‖Gkωk + γk‖22 ≤ (Gkωk + γk)TWk(Gkωk + γk) and

‖Wk(Gkωk + γk)‖22 ≤ ξ‖Gkωk + γk‖22.
(3.6)

Proof. Since the elements of {Wk} satisfy (2.10), it follows that the elements of {Hk} = {W−1
k } satisfy (2.19).

Hence, the conditions of Theorem 3.1 hold, meaning that the conclusions of Theorem 3.1 hold. Then, with
(2.5), the inequalities in (3.5) can be rewritten using the notation gk := Gkωk + γk as

κ ≤ gTkWkgk
‖Wkgk‖2‖gk‖2

and σ ≤ ‖gk‖2
‖Wkgk‖2

≤ µ. (3.7)

From the first and third of the inequalities in (3.7), it follows that

gTkWkgk ≥ κ‖Wkgk‖2‖gk‖2 ≥ (κ/µ)‖gk‖22,

so that the first inequality in (3.6) holds with ν := κ/µ. Meanwhile, from the second inequality in (3.7), it
follows that ‖Wkgk‖22 ≤ σ−2‖gk‖22, so that the second inequality in (3.6) holds with ξ := σ−2.

The role played by p in Theorem 3.1 and Corollary 3.1 can be understood as follows. For any given
p ∈ (0, 1), the results show that at least a fraction p of iterations—i.e., at least dpKe out of any K—
will involve good approximations in the sense that there exist constants such that (3.5) and (3.6) hold.
Since one can consider p to be arbitrarily close to 1, one can claim that nearly all iterations involve good
approximations. That said, the constants might be worse for p closer to 1; e.g., the closer p is to 1, the
smaller might be ν ∈ R>0 and the larger might be ξ ∈ R>0. These constants also depend on the values (η, θ)
employed in the algorithm; we remark on the empirical influence of these values in §5.

3.2 Convergence Results for SVANO

In this subsection, we provide a couple fundamental convergence results for SVANO. Here, our goal is to
prove generic results that are useful in various circumstances. In §4, we present a few algorithm instances
that fall under the SVANO Framework. For concreteness in that section, we prove a complete convergence
theory for one of those instances using the results provided here.

Our first result represents a fundamental component of the convergence theory for any algorithm that
falls under the SVANO Framework. In particular, it shows that there exists an infinite subsequence of
iterations in which the required decreases in the objective f guarantee that subsequences of {Gkωk + γk}
and {sk} vanish. The proof reveals that the self-correcting properties of the inverse Hessian approximation
scheme are critical. In particular, since at least a fraction of the approximations are good, the reductions
in f force the right-hand sides in (3.6) to vanish over a subsequence of iterations, which in turn force the
left-hand sides in (3.6) to vanish over the same subsequence of iterations.
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Theorem 3.2. There exists an infinite index set K ⊆ N such that the sequences {(Gk, ωk, γk)} and {sk}
computed by SVANO respectively satisfy

lim
k∈K,k→∞

‖Gkωk + γk‖2 = 0 and lim
k∈K,k→∞

‖sk‖2 = 0. (3.8)

For example, for a given p ∈ (0, 1), this set K may at least include the infinite set of indices for which
Corollary 3.1 guarantees the existence of (ν, ξ) ∈ R>0 × R>0 such that (3.6) holds for all k ∈ K.

Proof. It follows by (2.7) that, for all k ∈ N, one has

f(xk+1) ≤ f(xk)− 1
2α(Gkωk + γk)TWk(Gkωk + γk). (3.9)

For a given p ∈ (0, 1), let K ⊆ N be the infinite set of indices for which Corollary 3.1 guarantees the existence
of (ν, ξ) ∈ R>0 × R>0 such that (3.6) holds for all k ∈ K. Then, for all k ∈ K, it follows from (3.9) and the
first inequality in (3.6) that

f(xk+1) ≤ f(xk)− 1
2να‖Gkωk + γk‖22.

Since f is bounded below (see (2.1)) and monotonically decreasing, the first limit in (3.8) holds. Combining
it with the second inequality in (3.6) and sk from (2.5), the second limit in (3.8) follows.

The conclusions of Theorem 3.2 are not entirely consequential in their own right. However, the theorem
is fundamental in that it can be used to show that if the columns of Gk correspond to (convex combinations
of) subgradients of f evaluated at points in the vicinity of xk for all k ∈ N, then, as long as the vanishing
of {Gkωk + γk} implies the vanishing of {Gkωk} (at least over a subsequence), the first limit in (3.8) must
mean that a stationary point of f is revealed by a subsequence of the iterates. In order to have a formal
result along these lines to which we can refer later, we state the following theorem, which may be viewed as
a more practical version of Lemma 2.1.

Theorem 3.3. Suppose that there exists an infinite index set K′ ⊆ N such that

lim
k∈K′,k→∞

‖Gkωk‖2 = 0. (3.10)

In addition, suppose that for all k ∈ K′ there exists εk ∈ R≥0 such that, for all j ∈ {1, . . . ,m}, the vector
gk,j is a subgradient (or convex combination of subgradients) of f evaluated at a finite subset of B(xk, εk) as
defined in (2.3). Then, if for some x ∈ Rn one has

lim inf
k∈K′,k→∞

max{‖xk − x‖2, εk} = 0, (3.11)

then 0 ∈ ∂f(x), i.e., the limit point x of {xk}k∈K′ is stationary for f .

Proof. Under the stated conditions, it follows that gk,j ∈ ∂εkf(xk) for all (k, j) ∈ K′ × {1, . . .m}. Since
∂εkf(xk) is convex by definition and g̃k := Gkωk is a convex combination of {gk,j}mj=1, it follows that
g̃k ∈ ∂εkf(xk) for all k ∈ K′. Hence, with (3.10) and (3.11), the result follows from Lemma 2.1.

This theorem reveals useful consequences of the first limit in (3.8), insofar as this limit might be useful
toward proving (3.10). But what, if any, are useful consequences of the second limit in (3.8)? This depends
on the instance of SVANO of interest. For instances where, perhaps under additional assumptions about
the objective function f , one can guarantee the existence of {εk}k∈K′ and x ∈ Rn such that (3.11) holds,
the second limit is not of great interest in itself. However, for other instances, having the subsequence of
step norms converging to zero helps to ensure that (3.11) holds for some {εk}k∈K′ and x ∈ Rn. This is
demonstrated for our specific instance in §4.2.
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SVANO-BFGS-Step

Require: A minimum stepsize parameter α̃min ∈ R>0.
1: Set xk,1 ← xk and gk,1 ∈ ∂f(xk).
2: Set Gk ←

[
gk,1

]
, ωk ← 1, and s̃k ← −WkGkωk.

3: Run a weak Wolfe line search [38, Alg. 4.6] from xk along s̃k to set

α̃k ≥ α̃min with f(xk + α̃ks̃k) ≤ f(xk) + 1
2αα̃

2
kg
T
k,1s̃k, (4.1)

or terminate (i.e., break down) if no such α̃k is found within an iteration limit.
4: Set sk ← α̃ks̃k (meaning sk ← −Wk(Gkωk + γk) with γk = (α̃k − 1)gk,1).
5: Set xk+1 ← xk + sk.
6: return (sk, xk+1) to Step 5 in SVANO.

4 Instances of SVANO

Our goal in this section is to present instances of SVANO that yield the convergence guarantee in Theo-
rem 3.3. Specifically, we consider choices for computing the quantities in Step 2 of SVANO, and for these
quantities establish that (2.7), (3.10), and (3.11) hold. However, before doing so, it is instructive to show
how, if one tries to fit a classical BFGS strategy into the framework, certain behaviors might cause the
method to falter. This helps to motivate the more involved strategies that we present.

We stress that we are not attempting to claim that one cannot prove convergence for an algorithm that
makes use of a classical BFGS strategy. We merely hope to illustrate the gaps in the analysis that might
arise if one were to use such a strategy and try to employ Theorem 3.3 to prove convergence.

4.1 Classical BFGS Method

Let us follow [38] and discuss a BFGS method with a weak Wolfe line search. A description of a step
computation procedure for such an algorithm (written, in contrast to [38], with subgradients instead of
gradients) is presented as SVANO-BFGS-Step. This procedure should be viewed as an instance of the
step computation written as Steps 2–4 in SVANO. Rather than delineate the details of a weak Wolfe line
search, we direct the reader to Algorithm 4.6 in [38] and note that our required condition (4.1) corresponds
to “c1”= 1

2α, “s”= gTk,1s̃k, and “t”= α̃2
k, which with the subsequent choices for sk and xk+1 implies that (4.1)

yields (2.7) with Gkωk = gk,1 and γk = (α̃k − 1)gk,1. When the line search fails to produce a sufficiently
large stepsize, the algorithm breaks down; see §6.1 in [38].

The issues that may arise for this algorithm all relate to the line search. If for some k ∈ N the function f
is not differentiable at xk, then s̃k ← −WkGkωk = −Wkgk,1 might not be a descent direction for f from
xk. For this and other reasons (see §4 in [38]), the line search might not be able to produce a stepsize
within a prescribed iteration limit such that (4.1) holds. In such cases, one cannot guarantee the conditions
of Theorem 3.3, namely, (3.10), since vanishing of the sequence {Gkωk + γk} = {gk,1 + (α̃k − 1)gk,1}
might not correspond to vanishing of (a subsequence of) {Gkωk} = {gk,1} due to the large perturbations
{γk} = {(α̃k − 1)gk,1}. One can imagine various heuristics such that, if the line search would otherwise
break down, one might replace s̃k with −WkGkωk for some matrix of subgradients Gk evaluated at points
in B(xk, εk) for some εk ∈ R>0 and some nonnegative weight vector ωk that sums to unity. However, it is a
nontrivial task to determine such quantities to ensure that the weak Wolfe line search will be guaranteed to
return a stepsize above a prescribed positive threshold.

All of this being said, if SVANO-BFGS-Step yields α̃k ≥ α̃min for all k ∈ N (which occurs often
in practice for sufficiently small, but reasonable values of α̃min, at least until the algorithm has nearly
approached a stationary point), then the resulting instance of SVANO attains some of the guarantees
in §3.2. In particular, with α̃k ≥ α̃min for all k ∈ N, the conditions of Theorem 3.3 hold, and if gk,1 ∈ ∂f(xk)
or some heuristic is used to set s̃k ← −WkGkωk as described in the previous paragraph, then the supposition
about {gk,j}mj=1 in Theorem 3.3 also holds. Consequently, if a subsequence of iterates converges to a limit
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and the subgradients employed in the step computation are evaluated at points in narrowing neighborhoods
of each iterate, then a stationary point will be revealed by {xk}.

Other classical BFGS variants can be derived that employ a trust region mechanism instead of a line
search. However, the issues for such methods would be similar to those described above: if one finds that
a successful step is taken sufficiently often when the trust region radius is above a positive threshold (say,
proportional to ‖Gkωk‖2), then the algorithm has the potential to converge. However, it is nontrivial to
design an algorithm that maintains the spirit of a basic quasi-Newton algorithm and ensures that this occurs
under loose assumptions on f .

4.2 A Bundle Trust Region Method for Convex Minimization

Bundle methods are an extremely popular class of algorithms for solving nonsmooth optimization problems.
Modern variants of bundle methods have guarantees for solving both convex (see, e.g., [27], [30], [43], [37],
and [52]) and nonconvex (see, e.g., [1], [25], [26], [29], [33], [39], [42], and [53]) problems. Those for solving
convex problems are based on combining cutting plane and proximal point methodologies, whereas those
for solving nonconvex problems often employ the same ideas with modifications involving “downshifting”
and “tilting” of the cutting planes. We refer the reader to the references above for further information and
details.

In this subsection, we present an instance of SVANO using bundle method ideas for minimizing convex f .
Our instance is described by specifying an algorithm for the step computation procedure written generically
in Steps 2–4 in SVANO. In particular, see SVANO-Bundle-Step below. Through an inner loop, the
procedure computes trial steps through successive subproblem solves until one is computed satisfying a
descent condition, shown in our analysis below to imply that (2.7) holds. (This inner loop causes “null”
steps to occur until a “serious” step is computed, which causes the inner loop to terminate.) Each iteration of
the inner loop involves solving a subproblem of the form (2.13) by solving the dual (2.15) for (ωk,m, γk,m) ∈
Rm+ ×Rn and recovering the primal solution as described in §2.3. (We now include a second subscript on the
solution vectors since they change as the algorithm iterates over m ∈ N.) The “bundles” employed in the
loop are the tuples {(xk,j , fk,j , gk,j)}mj=1 where {fk,j}mj=1 and {gk,j}mj=1 are objective values and subgradients
evaluated at {xk,j}mj=1. As in a standard bundle method, these include elements of bundles computed in
previous “outer” iterations, but, for simplicity and since it is not required for convergence, we do not state
this in the algorithm explicitly.

SVANO-Bundle-Step

1: Set xk,1 ← xk, fk,1 ← f(xk,1), and gk,1 ∈ ∂f(xk,1).
2: for all m ∈ N do
3: Set Gk,m ←

[
gk,1 · · · gk,m

]
, then compute (ωk,m, γk,m) by solving (2.15).

4: Set xk,m+1 ← xk −Wk(Gk,mωk,m + γk,m).
5: Set fk,m+1 ← f(xk,m+1) and gk,m+1 ∈ ∂f(xk,m+1).
6: if lk,m(xk,m+1) = f(xk) then terminate since xk is stationary for f .
7: if f(xk)− fk,m+1 ≥ α(f(xk)− lk,m(xk,m+1)) then
8: Set sk ← −Wk(Gk,mωk,m + γk,m) and xk+1 ← xk,m+1.
9: return (sk, xk+1) to Step 5 in SVANO.

10: end if
11: end for

For concreteness in order to demonstrate a complete analysis for an algorithm that falls under the SVANO
Framework, we show that a standard convergence analysis for a bundle method can be adapted in order
to prove a convergence guarantee for SVANO with step computations using SVANO-Bundle-Step. We
present an analysis that proceeds in two stages. Firstly, it is argued that, for any k ∈ N in which the iterate
xk is suboptimal, the inner loop will terminate finitely, ensuring that the algorithm is well-defined in the
sense that it will either reach a minimizer of f in a finite number of iterations or generate an infinite sequence
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of outer iterates. For this, we borrow from results that are common in the literature on bundle methods.
In particular, our first few lemmas—for which complete proofs can be found in Appendix D—follow the
treatment in Chapter 7.4 of [52], which in turn borrows from [7] and [27]. (Motivation and analyses for
algorithms that combine bundle and trust-region-like ideas go back further as well; see, e.g., §4 of [32], the
article by [53] and references therein, and the book [40].) Secondly, it is argued that each accepted step
yields a sufficient reduction in f such that any limit point of the outer iteration sequence is a solution of
problem (P). For this, it is important to recognize that standard results cannot readily be applied since the
inverse Hessian updating scheme in SVANO does not guarantee that uniformly positive definite and bounded
approximations will be generated in all iterations. That said, we are still able to establish a meaningful result
due to the critical self-correcting properties of the updating scheme established in §3.1.

Toward proving that SVANO-Bundle-Step is well-defined, one may use a type of Moreau-Yosida
regularization function of f corresponding, for a given k ∈ N, to the symmetric positive-definite Hk and
trust region Xk (recall (2.13)); specifically, consider the function fHk,Xk

: Rn → R defined by

fHk,Xk
(x) = min

x∈Xk

f(x) + 1
2 (x− x)THk(x− x). (4.2)

This function provides a mechanism for quantifying the separation between f and the models lk,m and qk,m
defined in (2.11) and (2.12), respectively. To start, the following lemma states that if xk is not a minimizer
of f , then this Moreau-Yosida regularization function’s value at xk is strictly less than the objective function
value at xk. The proof of the result is based simply on the existence of another point in Rn that yields a
better objective function value than does xk. (Again, the proof of this result and those of Lemma 4.2 and
Lemma 4.3 can be found in Appendix D.)

Lemma 4.1. Suppose f is convex. For any k ∈ N, if xk does not minimize f , then fHk,Xk
(xk) < f(xk).

The next lemma shows that the Moreau-Yosida regularization function offers an upper bound for the
piecewise-linear and piecewise-quadratic model values corresponding to the optimal solution of (2.13).

Lemma 4.2. Suppose f is convex. For any (k,m) ∈ N×N, the value of lk,m evaluated at xk,m+1 is bounded
above by the optimal value of (2.13), which, in turn, is bounded above by the Moreau-Yosida regularization
function fHk,Xk

evaluated at xk; i.e.,

lk,m(xk,m+1) ≤ qk,m(xk,m+1) ≤ fHk,Xk
(xk). (4.3)

The following lemma now shows that the inner loop is well-defined in that if a minimizer of f has not
yet been obtained, then a point satisfying the condition in Step 7 will be computed.

Lemma 4.3. Suppose f is convex. For any k ∈ N, if xk is not a minimizer of f and δk ∈ R>0 (recall
(2.13)), then SVANO-Bundle-Step terminates.

Overall, unless the algorithm lands on a point that is optimal for f , the step computation procedure
terminates for any k ∈ N. Since the condition in Step 7 implies (2.18), it follows from Lemma 2.2 that the
computed step satisfies (2.7), meaning that the overall algorithm is well posed. Thus, all that remains is to
show that this instance of SVANO satisfies the remaining assumptions of Theorem 3.3. This is done in the
following theorem when one introduces a particular strategy for updating the trust region.

Theorem 4.1. Suppose f is convex. Consider the SVANO framework in which

• step computations are performed using SVANO-Bundle-Step, and

• with δ1 ∈ (0,∞), τ ∈ (0, 1), and (υ1, υ2, υ3) ∈ R>0 × R>0 × R>0, one sets at the end of each iteration
k ∈ N the next trust region radius as

δk+1 ←

{
τδk if max{υ1‖Gkωk + γk‖2, υ2‖sk‖2, υ3‖Gkωk‖2} ≤ δk
δk otherwise.

(4.4)
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Then, either the algorithm lands on a minimizer of f in a finite number of iterations or {δk} ↘ 0 and, with
K′ ⊆ N defined as the infinite index set such that δk+1 ← τδk for all k ∈ K′, one finds

lim
k∈K′,k→∞

‖Gkωk‖2 = 0 (4.5)

with any limit point of {xk}k∈K′ being optimal for f .

Proof. If the algorithm lands on a minimizer of f in a finite number of iterations, then there is nothing left
to prove. Thus, for the remainder of the proof, let us suppose that this does not occur.

Our next aim is to show that, with the update (4.4), one finds {δk} ↘ 0. To derive a contradiction,
suppose that there exists δ ∈ (0, δ1] such that δk = δ for all sufficient large k ∈ N. For p ∈ (0, 1),
let K ⊆ N be the infinite index set for which Theorem 3.1 and Corollary 3.1 guarantee the existence of
(κ, σ, µ) ∈ R>0 × R>0 × R>0 and (ν, ξ) ∈ R>0 × R>0 such that (3.5) and (3.6) hold, and, by Theorem 3.2,
such that (3.8) holds. By the optimality of (ωk, γk) with respect to (2.15) for all k ∈ Rn, it follows that, for
all k ∈ N, there exists tk ∈ Rn such that

sk = −Wk(Gkωk + γk) = δktk, ‖tk‖ ≤ 1, and tTk γk = ‖γk‖∗. (4.6)

(This fact is derived as (A.4) in Appendix A.) With πk representing the angle between tk and γk, the last
equation in (4.6) shows that there exists c ∈ R>0 such that

cos(πk) = tTk γk/(‖tk‖2‖γk‖2) = ‖γk‖∗/(‖tk‖2‖γk‖2) ≥ c/‖tk‖2 (4.7)

for all k ∈ N. On the other hand, by the first equation in (4.6), the second limit in (3.8), and the supposition
that δk = δ for all sufficiently large k ∈ N, one finds that ‖tk‖2 ↘ 0 over k ∈ K. This limit and (4.7) imply
that cos(πk)↗∞ over k ∈ K, a contradiction. Hence, we may conclude that {δk} ↘ 0.

Since {δk} ↘ 0, by construction of the update (4.4), it follows that there exists an infinite index set K′
such that (4.4) yields δk+1 ← τδk for all k ∈ K′. By (4.4), this implies that (4.5) holds. This limit, along with
the fact that the subgradients {gk,j} used in SVANO-Bundle-Step are evaluated at points in B(xk, δk) for
all k ∈ N, implies by Theorem 3.3 that any limit point of {xk}k∈K′ is optimal.

In (4.4), one may replace the last term in the max with υ3‖Gkωk‖Wk
, which uses the Wk-norm rather

than the Euclidean norm. One can show with this update, as in the proof above, that {δk} ↘ 0 and (4.5)
holds for K′ := {k ∈ N : δk+1 < δk}. Indeed, with this modified update, a similar argument as in the proof
above shows that {δk} ↘ 0, implying that {‖Gkωk‖Wk

}k∈K′ → 0. One then finds from (4.6) that

δkγ
T
k tk = −γTkWkGkωk − ‖γk‖2Wk

=⇒ ‖γk‖∗ = −
(

cos(π̃k)‖γk‖Wk
‖Gkωk‖Wk

δk

)
−
‖γk‖2Wk

δk
, (4.8)

where cos(π̃k) := γTkWkGkωk/(‖γk‖Wk
‖Gkωk‖Wk

). By nonnegativity of norms and since δk > 0 for all
k ∈ N, (4.8) shows that − cos(π̃k) ≥ 0 for all k ∈ N. Moreover, for k ∈ K′, one finds from (4.8) and (4.4)
(again, with the last term in the max replaced by υ3‖Gkωk‖Wk

) that

‖γk‖∗ ≤ −
(

cos(π̃k)‖γk‖Wk

υ3

)
−
‖γk‖2Wk

δk
. (4.9)

On the other hand, since f is bounded below, {f(xk)} is monotonically decreasing, inequality (2.7) holds
for all k ∈ N, and {‖Gkωk‖Wk

}k∈K′ → 0, it follows that {‖γk‖Wk
}k∈K′ → 0, which with (4.9) implies that

{γk}k∈K′ → 0. Combining this with {‖Gkωk + γk‖2}k∈K′ → 0 shows that (4.5) holds.

4.3 Bundle and Gradient Sampling Methods for Nonconvex Minimization

In this subsection, we describe two other methods that adhere to the SVANO Framework that are designed
for minimizing nonconvex and nonsmooth objective functions. We do not present complete details and
analyses for these methods, but direct the reader to articles for further information.
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Building on SVANO-Bundle-Step in §4.2, one can devise a bundle trust region method for minimizing
nonconvex f . The ideas for doing so that we discuss here can be found in §3, and in particular in “Inner
Iteration (3.3),” of [53]. Firstly, observe that when f is nonconvex, one should not employ bk,j as defined in
(2.16) since the mapping x 7→ fk,j + gTk,j(x− xk,j) is no longer guaranteed to be an affine underestimator of
x 7→ f(x). Instead, one can “downshift” the cutting planes for the subproblem, in particular by defining the
scalars instead to be

bk,j = min{f(xk)− r‖xk − xk,j‖2, fk,j + gTk,j(xk − xk,j)}, where r ∈ R>0. (4.10)

This ensures that f(xk) ≥ lk,m(xk), as required in the latter part of Lemma 2.2, and makes it less likely
that the pair (fk,j , gk,j) will influence the subproblem solution when xk,j is farther from xk. Two other
modifications should also be made in the step computation procedure, one required for theoretical reasons
and one due to practical considerations.

• For theoretical reasons, the algorithms proposed by [53] sometimes involve the use of a “Null Step” in
which a step of norm zero is accepted while (depending on certain verifiable conditions) either the local
model of the objective is improved through the addition of a (downshifted) cutting plane or the trust
region radius is reduced. (In the context of SVANO, one should skip the update of the inverse Hessian
approximation by setting Wk+1 ← Wk when a null step occurs; the update should only be employed
with a “Serious Step”.) When f is convex and the current iterate is not a minimizer, one can guarantee
that after a series of null steps the algorithm will eventually compute a serious step that makes sufficient
progress toward a minimizer. However, when f is nonconvex, one cannot always perform null steps
and guarantee that a serious step that makes sufficient progress will ultimately be produced. Instead,
under certain verifiable conditions (indicating that one cannot guarantee sufficient progress either by
reducing the trust region radius or adding a (downshifted) cutting plane), the proposed method falls
back to a line search along a computed step. (See Step (2)(c) in “Inner Iteration (3.3)” in [53].) Such
a fallback is also needed in the context of SVANO.

• For practical reasons (and to guarantee that a verifiable termination condition will ultimately be sat-
isfied), one should not expend additional computational effort to produce a serious step if one has
reasons to believe that the current iterate is approximately stationary. In particular, in the context
of SVANO, if (ωk, γk, sk) yields max{υ1‖Gkωk + γk‖2, υ2‖sk‖2, υ3‖Gkωk‖2} ≤ δk, then the step com-
putation should be terminated with a null step, one should skip (7) by setting Wk+1 ← Wk, and the
trust region radius should be decreased as in (4.4). (See Step (1) in “Inner Iteration” (3.3) in [53].)

The algorithm by [53] also involves other features that attempt to avoid line searches, although one does
not need to employ these features to maintain their convergence guarantees. (Indeed, in our implementation
used to obtain the results in §5, we ran a weak Wolfe line search after each successful step. This improved
the performance of the algorithm, which we believe was a consequence of it computing better steps and pairs
for the BFGS updating strategy.) Critically important for the analysis in [53] is an assumption that f , in
addition to being locally Lipschitz, is also weakly (lower) semismooth; see, e.g., [41]. It is only with this
assumption that one can guarantee that each line search will terminate finitely.

One can also devise gradient sampling strategies (see [9] and [35]) that adhere to SVANO. In particular,
this is easily done with modifications to the method proposed by [16]. This approach already employs
inverse Hessian approximations computed by BFGS updates, although in a more restrictive manner in that
an update is skipped if the curvature of the Hessian approximation along a computed step is not sufficiently
large relative to the norm of the step and the computed stepsize is not sufficiently large. (See Algorithm 5
in [16].) Within the SVANO Framework, this curvature condition does not need to be checked since the
self-correcting properties of the updates will ensure that the inverse Hessian approximations have eigenvalues
that are uniformly bounded below and above in a sufficient number of iterations. (One should still skip an
update if a computed stepsize is below a threshold, although, as shown in the analysis in [16], the stepsize
will be sufficiently large infinitely often if the algorithm does not terminate finitely.) As for the bundle
method described in the previous paragraph, one needs to assume that the objective function is weakly
(lower) semismooth in order to guarantee that the line searches terminate finitely.
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5 Numerical Experiments

We implemented SVANO in C++. The software includes three algorithms: SVANO-BFGS, which follows the
strategy in §4.1 (with no trust region constraint for the subproblems); SVANO-Bundle, which follows the
strategy in §4.3 that builds on the method from §4.2; and SVANO-GS, which, as described in §4.3, follows the
adaptive gradient sampling strategy from [16] with the addition of a trust region constraint. For solving the
arising subproblems, the code has its own specialized active-set QP solver that borrows ideas from [31], but
also allows for the variable-metric induced by Wk (see [15]) and a trust region constraint with ‖ · ‖ = ‖ · ‖∞,
meaning ‖ · ‖∗ = ‖ · ‖1.

Our implementation of SVANO allows for various choices of H and yk for all k ∈ N. For example, as
often proposed for BFGS methods for smooth optimization (e.g., see [45]), one might choose the former as
a multiple of the identity where the multiplying factor is determined by a [2] “two-point stepsize” strategy,
projected onto [η, θ], after the first accepted step. One could even update it with each iteration, as long as
the factor is projected onto [η, θ] for all k ∈ N. Another strategy would be to initialize H1 ← I, employ
(2.19) through iteration K ∈ N, then set H ← HK+1 for use in all subsequent iterations. As for yk, one
could choose the displacement gk+1,1− gk,1 or gk+1,1−Gkωk, where one should recall that Gkωk is a convex
combination of subgradients. However, for our experiments we simply set W1 ← I and yk ← gk+1,1 − gk,1
for all k ∈ N so that our comparison of the algorithms mentioned above would be based on common choices
of these values.

Our code sets δ1 ← 1, then sets the remaining values in the sequence {δk} according to (4.4) with
inputs τ ← 0.5 and υ1 = υ2 = υ3 ← 1. These values are used for the trust region radii in SVANO-Bundle

and SVANO-GS, for the sampling radius in SVANO-GS, and in the termination conditions (see below) in all
algorithms. In addition, at the beginning of each iteration k ∈ N of SVANO-Bundle and SVANO-GS, the code
initializes {xk+1,j} with those points from {xk,j} that are within B(xk+1, δk+1). The remaining inputs were
α ← 10−15, η ← 10−12, θ ← 20, and r ← 10−15. The parameter θ had a large impact on performance; we
discuss this more later in this section.

For test problems, we used the first ten from [24] with n = 50. Pertinent information about the problems—
namely, an indication of whether each problem is convex, the objective value at the initial point (f(x0)), and
the global minimum value of the objective (f(x∗))—are given in Table 1. For further information, including
the starting point for each problem; see [24].

Name Convex? f(x0) f(x∗)
maxq Yes 2500.0 0.0
mxhilb Yes 4.5 0.0
chained lq Yes 49.0 -69.3
chained cb3 1 Yes 980.0 98.0
chained cb3 2 Yes 980.0 98.0
active faces No 3.9 0.0
brown function 2 No 98.0 0.0
chained mifflin 2 No 232.8 -34.8
chained crescent 1 No 292.3 0.0
chained crescent 2 No 292.3 0.0

Table 1: Test problem information for n = 50.

Consistent with our theoretical analysis, the code terminates with a message of success when

‖Gkωk‖2 ≤ 10δk and δk ≤ 10−4 for some k ∈ N. (5.1)

The code terminates with a message of failure if the iteration limit of 104 is reached or a computed stepsize
is below 10−15, the latter playing the role of α̃min in Algorithm SVANO-BFGS-Step. The results obtained
with these stopping conditions are shown in Table 2. (It should be noted that since SVANO-GS is a randomized
algorithm, its performance on a single problem can change from one run to the next, even from the same
initial point. In each of our experiments, we show the results of a single run for each problem. In each case,
we have observed that the results we provide are representative of the algorithm’s average performance in
general.) In the table, an Exit of Stationary indicates a successful termination while that of Iteration
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or Stepsize indicates that the iteration or stepsize limit, respectively, was exceeded. The values δend and
f(xend) indicate the final elements of the sequences {δk} and {f(xk)}, and the counters #iter, #func, #grad,
and #subs indicate the number of iterations, function evaluations, gradient evaluations, and subproblems
solved.

SVANO-BFGS

Name Exit δend f(xend) #iter #func #grad #subs

maxq Stationary +9.77e-05 +2.22e-07 457 1005 465 458
mxhilb Stepsize +1.56e-03 +4.37e-02 134 2243 162 135
chained lq Stepsize +5.00e-02 -6.93e+01 173 3107 175 174
chained cb3 1 Stepsize +1.00e-01 +9.80e+01 314 7061 315 315
chained cb3 2 Stepsize +1.00e-01 +9.82e+01 136 2783 144 137
active faces Stepsize +2.50e-02 +1.11e-15 26 716 29 27
brown function 2 Stepsize +1.00e-01 +2.02e-08 308 5245 309 309
chained mifflin 2 Stepsize +5.00e-02 -3.48e+01 1009 22080 1034 1010
chained crescent 1 Stepsize +1.00e-01 +1.84e-01 121 4045 124 122
chained crescent 2 Stepsize +1.00e-01 +3.40e-03 291 5470 292 292

SVANO-Bundle

Name Exit δend f(xend) #iter #func #grad #subs

maxq Stationary +9.77e-05 +8.14e-07 260 470 653 315
mxhilb Stationary +9.77e-05 +5.92e-05 61 756 712 116
chained lq Stationary +9.77e-05 -6.93e+01 14 85 85 66
chained cb3 1 Stationary +9.77e-05 +9.80e+01 19 158 170 146
chained cb3 2 Stationary +9.77e-05 +9.80e+01 30 71 85 48
active faces Stationary +9.77e-05 +5.21e-05 16 160 153 18
brown function 2 Stationary +9.77e-05 +2.05e-07 17 86 66 39
chained mifflin 2 Stationary +9.77e-05 -3.48e+01 57 927 961 899
chained crescent 1 Stationary +9.77e-05 +8.20e-06 30 113 81 35
chained crescent 2 Stationary +9.77e-05 +2.50e-06 98 902 976 870

SVANO-GS

Name Exit δend f(xend) #iter #func #grad #subs

maxq Stationary +9.77e-05 +8.17e-07 225 658 351 226
mxhilb Stationary +9.77e-05 +1.15e-04 96 1191 701 101
chained lq Stationary +9.77e-05 -6.93e+01 17 473 238 18
chained cb3 1 Stationary +9.77e-05 +9.80e+01 4023 32550 4491 4069
chained cb3 2 Stationary +9.77e-05 +9.80e+01 137 419 165 138
active faces Stationary +9.77e-05 +6.44e-03 16 367 188 17
brown function 2 Stationary +9.77e-05 +3.77e-02 19 504 462 20
chained mifflin 2 Stationary +9.77e-05 -3.48e+01 2116 24228 2991 2135
chained crescent 1 Stationary +9.77e-05 +2.30e-05 38 211 66 40
chained crescent 2 Stationary +9.77e-05 +6.65e-03 1475 11284 1636 1479

Table 2: Termination status, solution properties, and counter values when SVANO-BFGS, SVANO-Bundle, and
SVANO-GS were employed to solve the test problems stated in Table 1.

One can see that SVANO-Bundle and SVANO-GS behave quite well in the sense that they terminate with
success for all problems. Which algorithm performs the best for a particular problem depends on the
performance measure of interest. In particular, SVANO-Bundle often requires fewer function evaluations, but
sometimes at the expense of more gradient evaluations and subproblem solves.

More striking in the results in Table 2 is the fact that SVANO-BFGS only terminated with a message of
success for one problem. For the remaining problems, the code terminated due to a small stepsize (below
10−15). This provides evidence for our discussion in §4.1, where we stated that the main issue with proving
convergence guarantees for a classical BFGS approach is that one cannot be sure that the stepsize would
remain sufficiently large. That being said, the final objective values yielded by SVANO-BFGS show that this
code did not always perform poorly in terms of the final objective value! For many problems, the final value
was close to optimal. (To try to verify approximate stationarity in practice, one could employ auxiliary
procedures; see, e.g., §6.3 in [38]. The effects of this are seen for a code with results in Table 4 later on.)

To illustrate the benefits of self-correction, we also ran the experiments with the same settings, except
with θ ← ∞, a choice that is not valid in terms of ensuring our convergence guarantees. The results with
these inputs are given in Table 3. Clearly, the performance is not as good. The final objective values are
often nearly optimal, but the code has a difficult time satisfying our termination criteria. We conjecture
that this behavior can be explained as follows. Firstly, observe from Corollary 3.1, namely, inequality (3.6),
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that the objective decrease that is guaranteed through (2.7) is at least

1
2α(Gkωk + γk)TWk(Gkωk + γk) ≥ 1

2α(ν/ξ)‖Wk(Gkωk + γk)‖22 = 1
2α(ν/ξ)‖sk‖22. (5.2)

It is through these relationships that Theorem 3.2 ensures that there exists a subsequence of iterations over
which ‖Gkωk +γk‖2 and ‖sk‖2 vanish. However, as θ ↗∞, one finds through the analysis in Appendix C—
specifically, (C.4) through the end of the proof of Theorem 3.1—that the values in Theorem 3.1 have κ↘ 0,
σ ↘ 0, and µ ↗ ∞. This, in turn, implies that ν ↘ 0 and ξ ↗ ∞, meaning that ν/ξ ↘ 0 in (5.2).
Consequently, small reductions in the objective (which is all that can be obtained near a minimizer) might
be obtained with relatively large ‖Gkωk + γk‖2 and ‖sk‖2. This means that numerous steps could be taken
near a minimizer until the trust region radius is reduced (recall (4.4)), which in turn means that numerous
steps could be taken near a minimizer until the termination condition (5.1) is satisfied. Overall, this influence
of θ on our numerical results shows that a practical benefit of our self-correcting framework is that it allows
our code to enforce theoretically sound termination criteria.

In theory, a small value for η might have a similar effect as a large value for θ as described in the previous
paragraph. However, we did not see the same effect in our experiments. Indeed, the value that we used
since it worked well in our experiments, namely, η ← 10−12, is relatively small. One possible theoretical
explanation for this is the fact that it enters as ln η in (C.4), whereas θ itself enters.

SVANO-BFGS (not enforcing (2.9))
Name Exit δend f(xend) #iter #func #grad #subs

maxq Stationary +9.77e-05 +2.35e-07 513 1392 611 514
mxhilb Iteration +1.56e-03 +9.31e-09 10000 478038 10145 10001
chained lq Stepsize +5.00e-02 -6.93e+01 343 2449 346 344
chained cb3 1 Stepsize +1.00e-01 +9.80e+01 500 2701 501 501
chained cb3 2 Stepsize +1.00e-01 +9.80e+01 2004 60334 2053 2005
active faces Stepsize +2.50e-02 +4.88e-15 37 160 40 38
brown function 2 Stepsize +1.00e-01 +2.82e-10 118 554 119 119
chained mifflin 2 Iteration +5.00e-02 -3.48e+01 10000 192578 11178 10001
chained crescent 1 Stepsize +1.00e-01 +4.23e-11 72 754 99 73
chained crescent 2 Stepsize +1.00e-01 +3.10e-14 546 2929 551 547

SVANO-Bundle (not enforcing (2.9))
Name Exit δend f(xend) #iter #func #grad #subs

maxq Stationary +9.77e-05 +5.11e-07 176 456 477 203
mxhilb Stepsize +3.91e-04 +8.96e-06 79 582 331 100
chained lq Stationary +9.77e-05 -6.93e+01 15 557 374 356
chained cb3 1 Stepsize +2.50e-02 +9.80e+01 205 4758 4867 4658
chained cb3 2 Iteration +1.25e-02 +9.80e+01 10000 897132 508499 498494
active faces Stationary +9.77e-05 +9.51e-05 20 465 383 24
brown function 2 Stationary +9.77e-05 +1.20e-09 17 435 369 74
chained mifflin 2 Stepsize +1.25e-02 -3.48e+01 75 1245 1116 1033
chained crescent 1 Stationary +9.77e-05 +2.50e-09 72 468 383 284
chained crescent 2 Stepsize +1.25e-02 +1.56e-03 144 4680 4215 4051

SVANO-GS (not enforcing (2.9))
Name Exit δend f(xend) #iter #func #grad #subs

maxq Stationary +9.77e-05 +1.01e-06 141 439 242 142
mxhilb Stationary +9.77e-05 +6.28e-07 115 768 409 120
chained lq Stationary +9.77e-05 -6.93e+01 17 755 491 18
chained cb3 1 Iteration +1.25e-02 +9.88e+01 10000 411205 2720 10002
chained cb3 2 Iteration +3.13e-03 +9.80e+01 10000 504074 147 10001
active faces Stationary +9.77e-05 +6.44e-03 16 440 353 18
brown function 2 Stationary +9.77e-05 +3.77e-02 19 551 461 20
chained mifflin 2 Iteration +6.25e-03 -3.47e+01 10000 459942 4333 10047
chained crescent 1 Stationary +9.77e-05 +1.06e-05 61 171 85 62
chained crescent 2 Iteration +7.81e-04 +2.29e-02 10000 495522 758 10032

Table 3: Termination status, solution properties, and counter values when SVANO-BFGS, SVANO-Bundle, and
SVANO-GS were employed to solve the test problems stated in Table 1. Unlike for Table 2, these results were
obtained with θ ←∞, meaning that the latter bound in (2.9) is not enforced.

For reference, we provide in Table 4 the results when solving the problems with LMBM1 (written in Fortran)
and HANSO2 (written in Matlab), both using their default settings. It is difficult to compare the performance

1http://napsu.karmitsa.fi/lmbm/
2https://cs.nyu.edu/overton/software/hanso/
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of these codes with our methods since the termination conditions for all codes are different. Indeed, while our
methods only terminate with a message of success if (5.1) is satisfied, LMBM and HANSO terminate due to other
sets of conditions. (See the caption of Table 4.) Variants of SVANO might benefit from tailored termination
conditions depending on the type of algorithm (e.g., a bundle versus a gradient sampling method) and class
of problem being solved, but in the interest of having consistent experiments based on our general theoretical
results, we have required (5.1). (It is worth mentioning that for the problems that SVANO-GS struggled to
solve—chained cb3 1, chained mifflin 2, and chained crescent 2—both LMBM and HANSO terminated
with Exit not equal to 1.)

LMBM HANSO

Name Exit f(xend) #iter #func Exit f(xend) #iter #func

maxq 1 +4.97e-06 460 501 1 +1.18e-08 494 1002
mxhilb 3 +1.25e-06 377 1385 2 +1.92e-12 473 1091
chained lq 3 -6.93e+01 219 1233 1 -6.93e+01 182 811
chained cb3 1 3 +9.80e+01 167 750 3 +9.80e+01 149 968
chained cb3 2 3 +9.81e+01 20 61 3 +9.80e+01 83 208
active faces 2 +7.40e-11 96 97 1 +2.35e-05 11 27
brown function 2 2 +1.36e-08 348 3195 1 +1.24e-04 24 102
chained mifflin 2 3 -3.48e+01 258 1890 3 -3.48e+01 962 2858
chained crescent 1 3 +2.65e-09 106 294 1 +9.45e-06 21 51
chained crescent 2 2 +6.12e-05 488 4351 3 +7.40e-07 92 453

Table 4: Termination status, final objective value, and counter values when LMBM and HANSO are employed
to solve the test problems stated in Table 1. For LMBM, an Exit of 1 means “the problem has been solved
with desired accuracy,” while an Exit of 2 or 3 means that changes in the objective were sufficiently small.
(See IOUT(3) in LMBM’s documentation.) For HANSO, an Exit of 1 means “norm of smallest vector in convex
hull of gradients below tolerance,” of 2 means a direction of ascent was computed, and of 3 means that the
line search failed.

6 Conclusion

We have proposed a framework for solving nonsmooth optimization problems. Its distinguishing character-
istic is that it maintains and benefits from the self-correcting properties of BFGS updating of the generated
sequence of inverse Hessian approximations. In particular, it benefits theoretically in that global convergence
guarantees can be established, and it benefits in practice in that instances of the framework are effectively
able to determine when iterates are nearly stationary for the objective.

Our discussions and analysis have been presented under Assumption 2.1. One might also be interested
in situations when f can be unbounded below and/or when it is extended-real-valued, i.e., when f : Rn →
(R ∪ {−∞,∞}). We claim that the proposed framework, which ensures monotonic decrease in f , is also
viable in such cases, at least as long as one has access to an initial iterate x1 in the effective domain of f , i.e.,
x1 ∈ dom(f) := {x ∈ Rn : f(x) < ∞}. If f is unbounded below and an iterate sequence {xk} is generated
such that {f(xk)} ↘ −∞, then there is nothing else that one should ask from the proposed framework.
Hence, for simplicity, our Assumption 2.1 precluded this case by ensuring that any such sequence {f(xk)} is
bounded below. As for cases when f is extended-real-valued, we claim that if any stationary point for f lies
in the interior of the effective domain dom(f), then, with slight modifications of the proposed framework—
e.g., to handle points encountered outside dom(f)—our analysis for our framework follows in essentially the
same manner as under Assumption 2.1.

It is worthwhile to point out that we have not discussed limited-memory BFGS, even though using limited
memory ideas is another alternative for ensuring that the inverse Hessian approximations have eigenvalues
that are uniformly bounded below (away from zero) and above. The primary reason for this omission is that
we have observed that limited memory BFGS techniques do not typically perform as well as a full memory
approach in the context of nonsmooth optimization.
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The authors would like to thank Andreas Wächter for hosting and guiding the third author during
that author’s visit to Northwestern University in the summer of 2017 while that author was implementing
the quadratic optimization solver for our software. They would also like to thank Michael L. Overton for
providing numerous valuable comments that helped to improve a draft of the paper. Last, but not least, the
authors would like to thank the anonymous referees whose very thoughtful reports and interesting exchanges
with us led to nice improvements to the paper.

A Primal and Dual Subproblems

In this appendix, we show that the dual of (2.13) is (2.15), how the solution of (2.13) can be recovered from
that of (2.15), and that Lemma 2.2 holds true.

As previously mentioned in §2.3, the primal problem (2.13) is equivalent to (2.14). A Lagrangian for this
problem, call it L : Rn × R × Rm → R, is given by

L(x, z, ω) = z + 1
2 (x− xk)THk(x− xk) +

m∑
j=1

ωj(fk,j + gTk,j(x− xk,j)− z),

with which we can write the dual problem for (2.14) (see [5]) as

sup
ω∈Rm

+

inf
(x,z)∈Xk×R

L(x, z, ω).

Differentiating L with respect to z, one finds that the “inner” infimum is attained only if 1Tω = 1, from
which it follows that the dual is equivalent to

sup
ω∈Rm

+

 inf
x∈Xk

 1
2 (x− xk)THk(x− xk) +

m∑
j=1

ωj(fk,j + gTk,j(x− xk,j))

 s.t. 1Tω = 1. (A.1)

Defining the characteristic χXk
: Rn → R ∪ {∞} as one that evaluates as 0 for x ∈ Xk and ∞ otherwise, the

inner infimum problem can equivalently be written as

inf
x∈Rn

L(x) + χXk
(x), (A.2)

where we define the quadratic function L : Rn → R by

L(x) = 1
2 (x− xk)THk(x− xk) +

m∑
j=1

ωj(fk,j + gTk,j(x− xk,j))

= 1
2x

THkx+ xT

−Hkxk +

m∑
j=1

ωjgk,j

+ 1
2x

T
kHkxk +

m∑
j=1

ωj(fk,j − gTk,jxk,j).
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The conjugate of L, namely L
?

: Rn → R, is given by3

L
?
(y) = 1

2

y +

Hkxk −
m∑
j=1

ωjgk,j

T

Wk

y +

Hkxk −
m∑
j=1

ωjgk,j


− 1

2x
T
kHkxk −

m∑
j=1

ωj(fk,j − gTk,jxk,j)

= 1
2

y − m∑
j=1

ωjgk,j

T

Wk

y − m∑
j=1

ωjgk,j

+ xTk y −
m∑
j=1

ωj(fk,j + gTk,j(xk − xk,j)).

In addition, the conjugate of χXk
, namely (χXk

)? : Rn → R, is given by

(χXk
)?(y) = sup

x∈Rn

(yTx− χXk
(x)) = sup

x∈Xk

yTx = sup
‖x−xk‖≤δk

yTx.

If δk = ∞, then (χXk
)?(y) = ∞ for all nonzero y ∈ Rn. Otherwise, defining the vector s := (x − xk)/δk so

that x = δks+ xk, the above implies that

(χXk
)?(y) = sup

‖x−xk‖≤δk
yTx = sup

‖s‖≤1

yT (δks+ xk) = xTk y + δk‖y‖?.

In either case, since the intersection of the relative interiors of the effective domains of L and χk is nonempty,
Fenchel duality implies the strong duality relationship

inf
x∈Rn

L(x) + χXk
(x) = sup

y∈Rn

− L?(y)− (χXk
)?(−y)

= sup
y∈Rn

− 1
2

y − m∑
j=1

ωjgk,j

T

Wk

y − m∑
j=1

ωjgk,j


+

m∑
j=1

ωj(fk,j + gTk,j(xk − xk,j))− δk‖y‖?,

where, for the case δk =∞, we set y = 0 and interpret δk‖y‖? as zero. Going back to (A.1), we now deduce
that this problem is equivalent to

sup
(ω,y)∈Rm

+×Rn

− 1
2

y − m∑
j=1

ωjgk,j

T

Wk

y − m∑
j=1

ωjgk,j

+

m∑
j=1

ωj(fk,j + gTk,j(xk − xk,j))− δk‖y‖?

s.t. 1Tω = 1.

Letting γ = −y and observing (2.16), this leads to (2.15), as desired.

Proof of Lemma 2.2. Let us show that with (ωk, γk) solving (2.15) and sk defined in (2.5), the point xk+1

in (2.6) solves (2.13). Firstly, optimality of (ωk, γk) implies that, with the optimal zk ∈ R for (2.14),

0 = −GTkWk(Gkωk + γk) + bk − zk1 (A.3a)

and 0 ∈ −Wk(Gkωk + γk)− δk∂‖γk‖∗. (A.3b)

3Recall that for A ∈ Rn×n, b ∈ Rn, and c ∈ R with A � 0, the conjugate of L : Rn → R defined by L(x) = 1
2
xTAx+ bT x+ c

is given by φ?(y) = 1
2

(y − b)TA−1(y − b)− c. For example, see [5].
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Using the fact that for any γ ∈ Rn one has

∂‖γ‖∗ = {t ∈ Rn : ‖t‖ ≤ 1 and tT γ = ‖γ‖∗},

it follows that there exists a vector tk ∈ Rn such that

0 = Wk(Gkωk + γk) + δktk, ‖tk‖ ≤ 1, and tTk γk = ‖γk‖∗. (A.4)

Hence, evaluating the dual objective function at (ωk, γk), one obtains

− 1
2 (Gkωk + γk)TWk(Gkωk + γk) + bTk ωk − δk‖γk‖∗

= − 1
2 (Gkωk + γk)TWk(Gkωk + γk) + bTk ωk − δktTk γk

= − 1
2 (Gkωk + γk)TWk(Gkωk + γk) + bTk ωk + γTkWk(Gkωk + γk)

= 1
2 (Gkωk + γk)TWk(Gkωk + γk) + bTk ωk − ωTk GTkWk(Gkωk + γk).

By duality theory, our desired conclusion follows as long as xk+1 is feasible for (2.13) and yields an objective
value equal to this dual objective value. To see that this is the case, first notice that, by (A.4),

‖xk+1 − xk‖ = ‖sk‖ = ‖Wk(Gkωk + γk)‖ = δk‖tk‖ ≤ δk.

Secondly, observe that the primal objective value at xk+1 is

qk,m(xk+1) = 1
2 (xk+1 − xk)THk(xk+1 − xk) + zk

= 1
2 (Gkωk + γk)TWk(Gkωk + γk) + bTk ωk − ωTk GTkWk(Gkωk + γk),

where the second equation follows from the definition of sk in (2.5), the result of multiplying (A.3a) on the
left by ωTk , and the fact that ωTk 1 = 1.

All that remains is to prove that inequality (2.17) holds under the assumption that f(xk) ≥ lk,m(xk).
Since xk is feasible for (2.13) yielding an objective value of qk,m(xk) = lk,m(xk) ≤ f(xk), it follows that

0 ≤ f(xk)− qk,m(xk+1) = f(xk)− lk,m(xk+1)− 1
2 (xk+1 − xk)THk(xk+1 − xk),

from which it follows that

f(xk)− lk,m(xk+1) ≥ 1
2 (xk+1 − xk)THk(xk+1 − xk) = 1

2 (Gkωk + γk)TWk(Gkωk + γk),

yielding (2.17), as desired.

B Geometric Properties of BFGS Updating

The update (2.19) performs a projection to eliminate certain curvature dictated by the Hessian approximation
Hk, as well as a corresponding correction that replaces this curvature for the new approximation Hk+1. The
details of this projection and associated correction in the Hessian approximation can be seen in the following
manner.4 For the sake of generality, let H ∈ Rn×n be symmetric positive definite, i.e., H � 0. An inner
product based on H (i.e., an “H-inner product”) is

〈s, v〉H := sTHv for all (s, v) ∈ Rn × Rn.

Given a matrix A ∈ Rn×n, let its “H-adjoint” with respect to this H-inner product, call it A∗ ∈ Rn×n, be a
matrix that satisfies

〈s,Av〉H = 〈A∗s, v〉H for all (s, v) ∈ Rn × Rn.
4The presentation in this appendix is based on notes by James V. Burke, Adrian S. Lewis, and Michael L. Overton, which

were shared with the first author by Michael L. Overton.
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Since H � 0, it is easily verified that the unique H-adjoint of A is A∗ = H−1ATH. One calls A an
“H-orthogonal” projection matrix if and only if it satisfies

A = A2 (i.e., A is idempotent) and A = A∗ (i.e., A is “H-self-adjoint”).

For example, given a nonzero vector s ∈ Rn, consider the matrices

P :=
ssTH

sTHs
and Q := I − P.

Note that P and Q are H-orthogonal projection matrices; i.e., P yields the H-orthogonal projection onto
span(s) while Q yields the H-orthogonal projection onto the subspace H-orthogonal to span(s). That is,
given t ∈ Rn such that 〈s, t〉H = 0 (i.e., t lies in the subspace H-orthogonal to span(s)), it follows that{

Ps = s

Qs = 0

}
while

{
Pt = 0

Qt = t

}
.

One may now interpret the updates yielded by (2.19) in terms of sequences of projections and corrections.
Specifically, note that (2.19) can be rewritten as

Hk+1 ← H
(n−1)
k +H

(1)
k where H

(n−1)
k := QTkHkQk with Qk :=

(
I − sks

T
kHk

sTkHksk

)
and H

(1)
k :=

vkv
T
k

sTk vk
.

Based on the discussion above, Qk yields the Hk-orthogonal projection onto the subspace Hk-orthogonal

to span(sk). Looking more closely, H
(n−1)
k has rank n − 1, remains positive definite on the subspace H-

orthogonal to span(sk), and

H
(n−1)
k sk = 0 while H

(n−1)
k t = Hkt if 〈sk, t〉H = 0. (B.1)

On the other hand, the matrix H
(1)
k can be written as

H
(1)
k =

vkv
T
k

sTk vk
=

(
‖vk‖22
sTk vk

)(
vkv

T
k

‖vk‖22

)
,

where, in light of the secant-like equation (3.1), the leading scalar ‖vk‖22/sTk vk = ‖vk‖22/vTkWk+1vk is the
inverse of a Rayleigh quotient for Wk+1 defined by vk. Since the so-called “curvature condition” sTk vk > 0

holds by (2.9), one finds that sTkH
(1)
k sk = sTk vk > 0, so one finds that H

(1)
k corrects the curvature along

span(sk) that, according to (B.1), has been projected out of H
(n−1)
k .

C Self-Correcting Properties of BFGS Updating

The purpose of this appendix is to provide a proof of Theorem 3.1. Firstly, observe that nonpositivity of the
latter terms in (3.4) follows since sk 6= 0 and Hk � 0 imply that cos2 φk ∈ (0, 1] and ιk ∈ R>0 for all k ∈ N,
since ln(r) ≤ 0 for all r ∈ (0, 1], and since 1− r + ln(r) ≤ 0 for all r ∈ R>0. Note also that

1− r + ln(r)↘ −∞ as r ↘ 0 or r ↗∞. (C.1)

These facts are used explicitly in the following proof.

Proof of Theorem 3.1. For all k ∈ N, define

ζk := − ln(cos2 φk)−
(

1− ιk
cos2 φk

+ ln

(
ιk

cos2 φk

))
≥ 0. (C.2)
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Hence, from (2.9) and (3.4), it follows for all k ∈ N that

ψ(Hk+1) ≤ ψ(Hk) + θ − 1− ln η − ζk,

from which it follows for all K ∈ N that

ψ(HK+1) ≤ ψ(H1) + (θ − 1− ln η)K −
K∑
k=1

ζk.

Since, for all K ∈ N, one has ψ(HK+1) ∈ R>0, this implies that

1

K

K∑
k=1

ζk <
1

K
ψ(H1) + (θ − 1− ln η). (C.3)

Now, considering fixed p ∈ (0, 1) and K ∈ N, let Jp,K be the set of indices corresponding to the dpKe
smallest elements of ζk for k ∈ {1, . . . ,K}, and let ζp,K denote the largest element of {ζk}k∈Jp,K . Then,

1

K

K∑
k=1

ζk ≥
1

K

ζp,K +

K∑
k=1,k/∈Jp,K

ζk

 ≥ ( 1

K
+
K − dpKe

K

)
ζp,K ≥ (1− p)ζp,K ,

which along with (C.3) and the fact that K ≥ 1 implies that, for all k ∈ Jp,K ,

ζk ≤ ζp,K <
1

1− p
(ψ(H1) + θ − 1− ln η) =: c0 ∈ R>0. (C.4)

Since the facts that cos2 φk ∈ (0, 1] and ιk ∈ R≥0 for all k ∈ N, (C.1), 1− r + ln(r) ≤ 0 for all r ∈ R>0, and

(C.2) together imply that ζk ≥ − ln(cos2 φk) for all k ∈ Jp,K , it follows from (C.4) that − ln(cos2 φk) < c0
for all k ∈ Jp,K , which means that cosφk > e−c0/2 =: c1 ∈ R>0 for all k ∈ Jp,K . That is, observing (3.3),
the first inequality in (3.5) holds for any constant κ ∈ (0, c1] and for all k ∈ Jp,K . Now observe that (C.2),
the fact that − ln(cos2 φk) ≥ 0 for all k ∈ N, and (C.4) imply for all k ∈ Jp,K that

1− ιk
cos2 φk

+ ln

(
ιk

cos2 φk

)
> −c0.

Hence, by (C.1), there exist c2 ∈ R>0 and c3 ∈ R>0 such that, for all k ∈ Jp,K ,

c2 ≤
ιk

cos2 φk
≤ c3.

Combining this with the fact (already proved) that cosφk > c1 for all k ∈ Jp,K and the fact that cosφk ≤ 1
for all k ∈ N, it follows, for all k ∈ Jp,K , that c21c2 ≤ ιk ≤ c3. Therefore, since ‖Hksk‖2/‖sk‖2 = ιk/ cosφk,

c21c2 ≤
ιk

cosφk
=
‖Hksk‖2
‖sk‖2

=
ιk

cosφk
≤ c3
c1

;

i.e., the latter inequalities in (3.5) hold for any σ ∈ (0, c21c2] and µ ∈ [c−1c3,∞).

D Proofs for SVANO-Bundle-Step

This appendix provides proofs for the results stated in §4.2 related to the SVANO-Bundle-Step algorithm.
The results and proofs are based on those found in §7.4 in [52], but modified to account for a variable-metric
quadratic term in the subproblem objective.
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Proof of Lemma 4.1. Let x̃ ∈ Xk be any point with f(x̃) < f(xk), the existence of which follows under the
conditions of the lemma. Restricting the minimization on the right-hand side of (4.2) to the line segment
[xk, x̃] and using convexity of f gives

fHk,Xk
(xk) ≤ min

x∈[xk,x̃]
f(x) + 1

2 (x− xk)THk(x− xk)

= min
∆∈[0,1]

f((1−∆)xk + ∆x̃) + ∆2 1
2 (x̃− xk)THk(x̃− xk)

≤ min
∆∈[0,1]

(1−∆)f(xk) + ∆f(x̃) + ∆2 1
2 (x̃− xk)THk(x̃− xk)

= f(xk) + min
∆∈[0,1]

∆(f(x̃)− f(xk)) + ∆2 1
2 (x̃− xk)THk(x̃− xk).

Since Hk � 0, this last minimization over ∆ ∈ [0, 1] involves a strongly convex quadratic function of ∆.
Moreover, since f(x̃) < f(xk), the value of ∆ ∈ [0, 1] that minimizes the function is strictly positive,
meaning that the optimal value of the problem is strictly negative.

Proof of Lemma 4.2. Let (k,m) ∈ N×N be given. Since Hk � 0, it follows by (2.12) that lk,m(x) ≤ qk,m(x)
for all x ∈ Rn, giving the first inequality in (4.3). Moreover, lk,m being a pointwise underestimator of
f throughout Rn means that lk,m(x) ≤ f(x) for all x ∈ Rn, which implies by (2.12) that qk,m(x) ≤
f(x) + 1

2 (x − xk)THk(x − xk) for all x ∈ Rn. Letting x̂ be the argument that solves the minimization
problem in the right-hand-side of (4.2) for x = xk, it follows along with the arguments above that

qk,m(xk,m+1) ≤ qk,m(x̂) ≤ f(x̂) + 1
2 (x̂− xk)THk(x̂− xk) = fHk,Xk

(xk),

which establishes the second inequality in (4.3).

Proof of Lemma 4.3. Let k ∈ N be given and suppose that xk is not a minimizer of f . Then, for any m ∈ N,
Lemmas 4.1 and 4.2 imply that

lk,m(xk,m+1) ≤ qk,m(xk,m+1) ≤ fHk,Xk
(xk) < f(xk), (D.1)

meaning that the termination check in Step 6 never tests true. Hence, to derive a contradiction to the
statement of the lemma, suppose that the algorithm generates an infinite sequence {xk,m+1}∞m=1 such that
no element satisfies the condition in Step 7.

Toward deriving the aforementioned contradiction, let us first show that the generated function values
{f(xk,m+1)}∞m=1 converge to the minimizer of f over Xk, namely, fXk

:= minx∈Xk
f(x). Notice that since xk

is not a minimizer of f , it follows that fXk
< f(xk). For any ε ∈ (0,∞), let

Mε := {m ∈ N : fXk
+ ε < f(xk,m+1)}.

Suppose that there exists a pair (m1,m2) ∈Mε ×Mε with m1 < m2. Then, since {lk,m}∞m=1 are pointwise
underestimators of f , we can conclude that

fk,m1
+ gTk,m1

(xk,m2+1 − xk,m1
) ≤ lk,m2

(xk,m2+1) ≤ fXk
. (D.2)

On the other hand, by virtue of m2 being an element of Mε, it follows that ε < f(xk,m2+1) − fXk
, which

combined with (D.2) implies that

ε < f(xk,m2+1)− fk,m1
− gTk,m1

(xk,m2+1 − xk,m1
). (D.3)

Since Xk is compact, there exists LXk
∈ (0,∞) such that (recall (2.2))

|f(x)− f(x)| ≤ LXk
‖x− x‖2 for all (x, x) ∈ Xk ×Xk.
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Since the subgradients of f on Xk are bounded, one can assume that LXk
is large enough such that

‖gk,m+1‖2 ≤ LXk
for all m ∈ N. Hence, from (D.3), one finds

ε < 2LXk
‖xk,m2+1 − xk,m1‖2 for all (m1,m2) ∈Mε ×Mε with m1 6= m2.

Since the set Xk is compact, there can only exist a finite number of points in Xk having a distance at
least ε/(2LXk

) from each other. Thus, the setMε must be finite. In turn, this means that for any ε ∈ (0,∞)
there can only be a finite number of points with objective function value in [fXk

, fXk
+ ε]. One may thus

conclude that the sequence {f(xk,m+1)}∞m=1 converges to fXk
.

Let us now use the established convergence of {f(xk,m+1)}∞m=1 to fXk
to derive a contradiction to

the supposition that {xk,m+1}∞m=1 is generated with no element satisfying the condition in Step 7. Since
{xk,m+1}∞m=1 is contained in the compact set Xk, there exists an infinite M⊆ N such that

lim
m∈M,m→∞

xk,m+1 = x for some x ∈ Xk.

Since {f(xk,m+1)}∞m=1 → fXk
, it follows that f(x) = fXk

. For any m ∈M, let m be the smallest element in
M that is strictly larger than m. It follows using the same argument that led to (D.2) that

f(xk,m+1) + gTk,m+1(xk,m+1 − xk,m+1) ≤ ll,m(xk,m+1) ≤ fXk
.

Taking limits over m ∈ M as m → ∞, using the uniform bound on the subgradient norms {‖gk,m+1‖}∞m=1

over Xk as described in the previous paragraph, and recalling the facts that limm∈M,m→∞ xk,m+1 = x and
f(x) = fXk

, one finds that

fXk
= f(x) = lim

m∈M,m→∞

(
f(xk,m+1) + gTk,m+1(xk,m+1 − xk,m+1)

)
≤ lim
m∈M,m→∞

lk,m(xk,m+1) ≤ fXk
.

Since limm∈M,m→∞ lk,m(xk,m+1) = limm∈M,m→∞ lk,m(xk,m+1), this proves that

lim
m∈M,m→∞

lk,m(xk,m+1) = fXk
,

from which it follows that

lim
m∈M,m→∞

(
f(xk)− f(xk,m+1)

f(xk)− lk,m(xk,m+1)

)
=
f(xk)− fXk

f(xk)− fXk

= 1.

We have reached a contradiction since this limit indicates that the condition in Step 7 would be satisfied for
some sufficiently large m ∈M.
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