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Abstract

We propose a new problem space genetic algorithm to solve single machine total weighted
tardiness scheduling problems. The proposed algorithm utilizes a set of global and time-dependent
local dominance rules, which are very useful for reducing the search space. They are also a
powerful exploitation (intensifying) tool since we know that the global optimum is one of the local
optimum solutions. Furthermore, problem space search method significantly enhances exploration
(diversification) capability of the genetic algorithm. In sum, we can improve the solution quality in
terms of the average deviation and total match as well as the robustness in terms of the maximum
deviation from the optimum solution as compared to the other local search algorithms reported in
the iiterature.
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1 Introduction

The single machine total weighted tardiness problem, 1] | 37 w;T;, may be stated as follows. A set of
jobs (numbered 1, ..., n} is to be processed without interruption on a single machine that can handle
only one job at a time. All jobs become available for processing at time zero. Job j has an integer
processing time p;, a due date d; and has a positive weight w;. Furthermore, a weighted tardiness
penalty is incurred for each time unit of tardiness T if job j is completed after its due date d;. The
problem can be formally stated as: find a schedule S that minimizes f(S) = 7., w7},

Lawler [9] shows that the 1] | 3~ w7} problem is strongly NP-hard. Various enumerative solution
methods have been proposed for both the weighted and unweighted cases. Emmons [7] derives several
dominance rules that restrict the search for an optimal solution to the 1| | ¥ 7 problem. Rinnooy Kan
et al. [16] extended these results to the weighted tardiness problem. Rachamadugu [15] identifies a
condition characterizing adjacent jobs in an optimal sequence for 1| | 3w, 7. Volgenant and Teerhuis
[21] use this condition as an improvement step for different dispatching rules. The branch and bound
(BB) algorithm of Potts and Van Wassenhove [13] can solve problem instances with up to 50 jobs.
Exact approaches used in solving the weighted tardiness problem are tested by Abdul-Razaq et al.
[1] who use Emmons’ dominance rules to form a precedence graph for finding upper and lower
bounds. Szwarc [20] proves the existence of a special ordering for the single machine earliness-
tardiness problem with job independent penalties where the arrangement of two adjacent jobs in an
optimal schedule depends on their start time. Although the presented results cannot be extended
to the 1| | 27 w;T; problem with job dependent penalties as stated by the author. Recently, Akturk
and Yildirim {2} proposed a new dominance rule and a lower bounding scheme for the 1] | ¥, w;T;
problem that can be used to reduce the number of alternatives in any exact approach.

Implicit enumerative algorithms for the total weighted tardiness problem, such as the BB
algorithm proposed by Potts and Wassenhove [13], guarantee optimality, but require considerable
computer resources both in terms of computation time and memory requirements. It is important to
note that, with respect to neighborhoods based on pairwise interchange, the number of local minima
is very high because of the nature of the scheduling problems. Therefore, several heuristics and
dispatching rules have been proposed to generate good, but not necessarily optimal, solutions as
discussed in Potts and Van Wassenhowe [14] and Akturk and Yildirim [3]. The obvious disadvantage
of these methods is that the solutions generated by simple heuristic methods may be far from
the optimum. This problem can also be tackled by local search methods. An overview of local
search methods for machine scheduling problems can be found in Anderson et al. [4]. Crauwels

et al. [6] present several local search heuristics for the 1| | ¥ w;7; problem. They introduce a



new binary encoding scheme to represent solutions, together with a heuristic to decode the binary
representations into actual sequences. This binary encoding scheme is also compared to the usual
permutation representation for descent, simulated annealing, threshold accepting, tabu search and
genetic algorithms on a large set of problems,

In this study, we propose a new local search algorithm by using a problem space genetic algorithm
(PSGA), (Storer et al. [18], [19], and Naphade et al. [12]), for the 1] | 35 w;T; problem. Several
features that demonstrate the effectiveness of local search heuristics are their ability to adapt to a
particular realization, avoid entrapment at local optima and exploit the basic structure of the problem.
Therefore, we will incorporate an efficient base heuristic, namely the ATC rule with global and
time-dependent local dominance relationships into the proposed PSGA algorithm to improve the
solution quality and robustness. Furthermore, the running time behavior of the proposed algorithm
as a function of the number of jobs seems much better than the local search algorithms discussed in
Crauwels et al. [6]. Each of these properties are discussed below starting with the global dominance

relationships.

2 Dominance Rules

The following lemma by Emmons [7] plays a major rule in the enumerative algorithms in the
literature.
Lemma 1: If d; < d;, p;: < p; and w; > w; then job ¢ globally precedes job j, i.e. ¢ => J.

Assume that this rule has already been applied to get a sequence for each job h, and let By, and Ay,
be the set of jobs which precede and succeed job h respectively in at least one optimal sequence. The
following theorem presents the three conditions of Rinnooy Kan et al. [16] generalizations based on
the Emmons’ rule.

Global Dominance Theorem: There exists an optimal sequence in which job i is sequenced before
job j, i.e. i = j, if one of the following three conditions is satisfied.
(a) pi < pj,w; > wy and d; < max{d;, hZB Pr+Di ks
€hy

) w; > wy,dy <dyjandd; 2 > pa— Py
heS— Ay

©di> 3,

hes—A;
Whenever jobs i and j satisfy the above theorem, an arc (¢, ) is added to the precedence graph
with any other arcs that are implied by transitivity. Let us demonstrate how these global dominance

rules can be implemented on the following 20-job problem. In the 0-1 global dominance matrix below,
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an entry of 1 indicates that the job in row ¢ globally dominates the job in column j. Furthermore,
RowSum(s) and ColSum(7) give the number of jobs guaranteed to be succeeding or preceding job 1,

respectively, in an optimum sequence.

7 | 1 Z 3 4 3 6 7 $ g 10 1 12 13 14 i3 16 17 18 19 20

Py 62 69 i 91 34 [ 56 G 31 i 15 7 7% 37 43 90 39 20 72 43

EA 124 236 328 329 373 385 405 412 438 494 547 571 657 3 758 836 901 N2 986 1074

i

w 4 3 7 2 2 3 16 3 1¢ 4 5 2 7 3 1 g 6 3 T 7

i

11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 [RowSum
{611 1 1 1 1 1 1% 1 1 1 1 1 1 1 1 i 1 1 19
216 9 0 1 1 1 1 1 1 1 1 1 1 i 1 1 1 H 1 1 17
31¢ 1 0 1 1 1 3 1 1 1 1 | 1 1 1 1 1 i 1 1 18
410 0 0 0 0 0 G 0 O O 0 0 O 6 0 ¢ 1 i 1 1 4
506 0 0 0 0 0 06 0 0 O 1 1 1 i 1 1 1 i 1 1 10
610 0 0 1 1 0 1 1 1 1 1 1 1 i 1 I 1 i 1 1 16
70 0 0 0 0 0 0 1 i 1 1 1 1 i 1 i 1 1 1 1 13
8(0 0 0 0O 0 0 O 0O O O 1 1 1 i 1 i 1 1 1 1 10
9.0 0 ¢ 0 0 0 © 0 O 1 1 1 1 1 1 i 1 1 1 1 11
jio 6 ¢ 0 0 6 0 0 6 O 1 1 1 I 1 1 1 i 1 1 10
110 0 0 0 0 O 0 0 6 0 0 1 1 I 1 1 1 1 1 1 9
12Z{0 0 0 0 0 © 0 0O O O O 0 0 0O 0 0 1 1 1 1 4
3]0 ¢ ¢ 0 0 O 0 O 6 O O 0 0 0 0 0 1 i i 1 4
410 0 0 0 0 O 0 O 6 O O 0 0 0 1 i 1 1 1 1 6
50 0 0 0 0 ¢ 06 ¢ 0 0 0o 0 0 9 0 0 1 1 1 1 4
({0 0 0 0 0 ¢ 0 ¢ 0 0 0 0 0 9 0 0 1 1 1 1 4
7/ 0 0 0 0O 0 O ¢ O 0 0 0 0 o 0 6 0 1 1 1 3
wio 00 0 0 0 06 0 0 0 0 0 0 O 0 0 0 0 1 1 2
vl ¢ ¢ 0 0 0 0 0 0 0 0 0 0 ¢ 0 0 ¢ 0 0 1 1
2010 0 0 0 ¢ 0 6 0 06 ¢ 0 0 0 0 0 1] 0 o 0 0 0
colsum (O 2 1 4 4 3 4 5 5 6 9 10 10 10 11 i1 16 17 18 19

Let N be the number of unscheduled jobs. If RowSum{i) = N — 1 then job ¢ will be scheduled to
the first available position. Similarly, if ColSum(j) = N — 1 then job j will be scheduled to the last

available position. If we proceed iteratively in the same manner, we obtain the following sequence {1,

and our problem is reduced to a 12-job problem.

Throughout the paper, we use the test problems generated by Crauwels et al. [6]. In their paper,
125 test instances are available for each problem size n = 40, n = 50 and n = 100. The instances
were randomly generated as follows: Foreach job 7 (7 = 1, ..., n), an integer processing time p; was
generated from the uniform distribution [1,100] and an integer processing weight w; was generated
from the uniform distribution [1,10]. Instance classes of varying difficulty were generated by using
different uniform distributions for generating the due dates. For a given relative range of due dates
RDD (RDD = 0.2, 0.4, 0.6, 0.8, 1.0) and a given average tardiness factor TF (TF = 0.2, 0.4, 0.6,



0.8, 1.0), an integer due date d; for each job j was randomly generated from the uniform distribution
[P(1-TF-RDD/2), P(1-TF+RDD/2)], where P = 3, ., p;. Five instances were generated for each
of the 25 pairs of values of RDD and TF, vielding 125 instances for each value of n.

These problem sets can be found at J. E. Beasley’s Weighted tardiness OR-Library at the web
site http://mscmga.ms.ic.ac.uk/jeb/orlib/wtinfo. html. In this web site, there are three files w40, wt50,
and wt100 contaming the instances of size 40, 50, and 100 respectively. Optimal values of solutions
are available for 124 and 115 of the 40 and 50 job problem instances, respectively. The values for
the unsolved problems given in the files wtopt40 and wtopt50 are the best known to Crauwels et al.
[6]. The values of the solutions not known to optimality have not been improved upon since and
may well be optimal. The best solution values known to Crauwels et al. for the 100 job problems
are given in file wtbest100a. These solution values were used as the best known by both Cranwels
et al. and Congram et al. [5]. Therefore using the best solution values known to Crauwels et al.
allows results from future heuristics to be compared directly with the tables given in these papers. A
dynamic programming based local search heuristic dynasearch by Congram et al. has in some cases
found better solutions to the 100 job problems than those known by Crauwels et al. The best known
solutions to date are given in the file wtbest100b in OR-Library.

We first used these data sets to evaluate the impact of the global dominance rule on each problem
set as summarized in Table 1. As a result, we can reduce the problem size for certain problem

instances.
# ok ok ok ok o ok ok ok ok & [nsert Table | around here s & % & ok 5 & & % 4ok

These results are also consistent with Hall and Posner’s [8] suggestion that the number of jobs
fixed by the global dominance rule indicates which problems are hard and which ones are easy. This
supports the idea that varying RDD and TF, as originally proposed by Potts and Van Wassenhove [13],

thus creating a range of problem difficulties.

2.1 Lecal Dominance Rule

We denote the global dominance theorem as a static dominance rule, and also employ a time-
dependent local dominance rule proposed by Akturk and Yildirim [2]. They show that the
arrangement of adjacent jobs in an optimal schedule depends on their start times. For each pair
of jobs ¢ and j that are adjacent in an optimal schedule, there can be a critical value ¢;; such that ¢
precedes j if processing of this pair starts earlier than ¢;; and j precedes ¢ if processing of this pair
starts after ¢;;. In their rule, there are two possibilities for each pair of jobs. Either there is at least one

breakpoint or an unconditional ordering. A breakpoint is a critical start time for each pair of adjacent
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Jjobs after which the ordering changes direction such that if ¢ < breakpoint, ¢ precedes j, denoted by
i < j, (or j precedes 1) and then j precedes ¢, denoted by j < ¢, (or ¢ precedes 7). If i unconditionally
precedes j, denoted by ¢ — 7, then the ordering does not change, i.e. 7 always precedes j when they
are adjacent, but it does not imply that an optimal sequence exists in which ¢ precedes j. They show

that there are at most three possible breakpoints for the 1| | 3 w,;T; problem as shown below.

by = [(widi — wyd; )/ (w; — wy)] = (p; + ) (1)
th; = d; — pi — p;{1 — wifwy) @)
t3 = di — pj — pi(1 — wj/w;) (3)

As a result, they state the following general rule that provides a sufficient condition for schedules
that cannot be improved by adjacent job interchanges. They show that if any sequence violates the
proposed dominance rule, then switching these jobs either lowers the total weighted tardiness or

leaves it unchanged.

General Rule:

IF d; = d;

THEN IF pyw; = pjw;
THEN j —+ 1
ELSE IF w; > w;

THEN{ — j
ELSEj ~ifort <t
i< jfort >t
ELSE IF p;(w; — w;) > (d; — di)w;
THEN ¢ < 7 fort < tjj
IF pyw; < pyw; A pi(w; — w;) > (dj — dijw;
THEN j <1 fortl <t <t
i< jfort >t
ELSE j <ifort > t};
ELSE IF pyw; < pywy;
THEN ¢ — j
ELSE i < j for t < t};
j=ifort >t

It is well-known that the shortest weighted processing time (SWPT) rule gives an optimal

sequence for the 1] | £ w;T; problem when either all due dates are zero or all jobs are tardy, ie.
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t > mazien{d; — p;}. Under this situation the problem reduces to total weighted completion time
problem which is known to be solved optimally by the SWPT rule as shown by Smith [17], in which
jobs are sequenced in non-increasing order of w;/p;. Furthermore, let V' be the set of pairs {7, j)
for which there is at least one breakpoint ¢;;, 4, € V. The largest of these breakpoints is equal
to # = maxgjev{ty, ty, 15} The following lemma by Akturk and Yildirim [2] can be used
to find an optimal sequence for the remaining jobs on hand after a time point ¢, We know that
t < mazen{d; — p;}, so we enlarge the region for which the 1} | 3 w;T; problem can be solved
optimally by the SWPT rule.

Lemma 2: If £ > £; then the SWPT rule gives an optimum sequence for the remaining unscheduled
jobs.

Potts and Van Wassenhove [14] applied an adjacent pairwise interchange (API) method starting
with the heuristic sequence obtained by applying the apparent tardiness cost (ATC) rule. The ATC
rule is a composite dispatching rule that combines the SWPT rule and the minimnum slack rule. Under
the ATC rule jobs are scheduled one at a time; that is, every time the machine becomes free, a priority
index is computed for each remaining job i. The job with the highest priority index is then selected to
be processed next. The priority index is a function of the time ¢ at which the machine became free as
well as the p;, the w;, and the d; of the remaining jobs. The index is defined as:

ai(t) = < exp (— maz (0, d; — t—ps) / (k- F)

P

where we set the look-ahead parameter & at 2 as suggested in Morton and Pentico [11], and p is
the average processing time of the remaining unscheduled jobs. Akturk and Yildirim [3] show that
the ATC rule performs quite well relative to the other dispatching rules. In the following example,
we will demonstrate how the proposed local dominance rule can be used to improve the weighted
tardiness criterion even for a reasonably efficient rule like ATC. Consider the 2-job problem where
(Job, d, p, w)= (i, 30, 6, 4), (4, 40, 4, 10). Since § = 5, the following ranking indexes can be

calculated for each job:

a;(t) = %exp(—(max(o,?)[}wtw 6))/(2%35)) < a;{t) = %?exp (—(max(0,40 —t—4}) / (2%5))

Therefore, we can easily show that 7 = i for all £ under the ATC rule. But the general rule indicates
that there is a breakpoint tfj for this pair, and ¢ should precede j if their processing starts in the
time interval [20, 31.6]. In this work the constructive heuristic we use is ATC augmented with global
dominance criteria denoted as ATC_GD. At each decision point we must decide which job to schedule
next. We first determine the set of eligible jobs using global dominance criteria. If only one job is
eligible, it is scheduled. If more than one job is eligible, we use ATC priorities to determine the next

job.



There are different ways to implement an API method. The most obvious one is a strict descent
method (STRICT), in which the only adjacent pairwise interchanges leading to a decrease in the
objective function value are accepted. But, there can be many neutral moves for the 1| | 35 w;T}
problem, especially at the beginning of the sequence. Hence, another API method would be to
implement the earliest due date (EDD) rule as a tie breaking criterion when there is a neutral move.
In Tables 2 and 3, we compare three different API methods, namely STRICT, EDD as a tie breaking
criterion, and the proposed local dominance rule (LDR) to improve the initial sequence given by the
ATC_GD rule on each test problem. As we have discussed above there are 125 instances for each
value of n. In Table 2, we give statistics on the pairwise comparison of STRICT, EDI} and LDR
based API methods. For example, when we compare the STRICT method with EDD, (<) represents
the number of instances (out of 125) in which the STRICT gives a smaller weighted tardiness value
than the EDD, where as (=) represents the number of instances in which both methods give the same

value, and (>) represents the number of instances for which the EDD gives better results.

¥k %k ok & ok & & % % ¢ [nsert Tables 2 and 3 around here # % % % % % % = % %

As it can be seen from these tables, all of the APl methods provide a significant improvement over
the ATC rule in terms of the average deviation and the maximum deviation from the optimum (or best
known) solution, and the number of times (out of 125) that an optimum (or best known) solution
is found, denoted as total match, for each problem type. These runs are taken on a PC Pentium II
400 MHz, and the average CPU times are in seconds. Furthermore, both EDD and LDR based API
methods are better than the strict API method as expected. Since the computation times are so small
for the smaller problems, we can only make meaningful comparisons for larger problems. In sum,
the proposed local dominance rule not only provides a better solution quality, but also results in a
smaller CPU time compared to other API methods. The LDR method is faster because there is no
need to consider the change in the objective function value for each pair of jobs and make a change
accordingly. We swap jobs if they violate the general rule. Therefore, we stop when all pairs satisfy
the general rule, as opposed to defining an arbitrary fixed number of iterations in the descent methods
with neutral moves. We also improve the solution quality because the descent methods with neutral
moves swap a job pair arbitrarily (or according to the EDD rule as in our case), whereas in the LDR
method there is actually no neutral move and at each time point for each job pair one job dominates

the other one,



3 Problem Space Genetic Algorithms

In this section we describe Problem Space Genetic Algorithms (PSGA) for the single machine
weighted tardiness problem which rely heavily on the methods developed in previous sections. We
then present computational results on the test problems of Crauwels et al. [6] introduced earlier.
Problem Space Genetic Algorithms have been used successfully in the past on various scheduling
problems [12], [19]. At the heart of a PSGA is a constructive heuristic H() which maps a problem
instance to a sequence. Given any sequence, the objective function V() (total weighted tardiness)
can be calculated. The heuristic H{) operates on data from the problem instance. For example if
the base heuristic is shortest processing time (SPT) first dispatch, then the relevant data used by H ()
are the job processing times. Now suppose the processing times are perturbed randomly, and H () is
applied to the perturbed processing times. The likely result is a new sequence. This new sequence
can be evaluated with the objective function V(). Of course the original (unperturbed) processing
times must be used when evaluating the objective function of any sequence. Let P be an /V-vector of

processing times and b be a vector of perturbations. We form the following optimization problem:
min VIH(P +b)]

The result is an optimization problem defined on b € R, the space of perturbations. Properties
of this optimization problem have been discussed previously in [18], but may be summarized as
follows. The optimal solution exists in the space under quite general conditions. The gradient of
V() is zero at every point in the space. Intuitively, good solutions will tend to lie near the point
b == 0. This makes sense since we expect the heuristic to provide reasonable solutions to the original
problem when perturbations are small. Conversely, with large perturbations, the perturbed data bears
little resemblance to the original data, and the heuristic can be expected to produce poor sequences.
We need a derivative free means to search this real valued perturbation space as the gradient is zero
everywhere. We propose two methods, random search and genetic algorithms. In random search we
generate each element of the perturbation vector from a Uniform (—#,8) distribution where 8 is a
tuning parameter. Thus in our example we would perturb each processing time, apply SPT to obtain
a sequence, then apply V() to measure the objective function value of the sequence. We repeat this
procedure many times (i.e. generate many sequences) and report the best solution found.

A PSGA uses the perturbation vector as the encoding of a solution (or chromosome). Note that
a chromosome (perturbation vector) b may be decoded into a sequence by applying H (P - b), and
its value by applying V{H (P + b)]. Unlike many applications of genetic algorithms to sequencing

problems, standard crossover operators may be applied under this encoding.



In this work, the perturbation scheme involves assigning a perturbation b; to each job 7. Ateach
decision point, ATC priorities a, are calculated for each eligible job j. Next the ATC priorities a; are

normalized into the interval [0,1] yielding n; as follows:

Let apin = IDE'IIJ. a; and amee = m?x a; Then 1y = (ij — amm)/(amm - amm)

Perturbations are then added to the normalized priorities, and the job with the highest perturbed
normalized priority n; + b; is scheduled next. Once the entire sequence has been constructed in this
fashion, we have the additional option of performing adjacent pair-wise interchange (API) to further
improve the sequence. We experiment with two different base heuristics for the PSGA, one with API
and one without. For the tuning experiments, we used the base heuristic with API included.

As is standard with genetic algorithms, several design parameters must be specified. We first
define these parameters and provide further detail on the PSGA. Then we report the results of
experiments designed to determine appropriate a priori values of the tuning parameters in an unbiased

manner.

3.1 PSGA Description

In each iteration (or generation) of the PSGA a population of chromosomes (perturbation vectors) is
created. The number of such perturbation vectors, ‘POPSIZE’ is one parameter of the PSGA. The
initial population of perturbation vectors is created using random search as described above. We
simply create POPSIZE N-vectors where each element of each vector is Uniform (-6, #). Thus the
perturbation magnitude 0 is the second tuning parameter of the PSGA. The number of generations
(iterations) for which the PSGA is set to 200 in all experiments. Clearly more iterations will yield
better results, but with diminishing returns. 200 generations seems to balance performance and
computation time in a reasonable way. In the testing phase we will contrast the merits of one long run
against several shorter runs.

A new generation of solutions is created from the previous one by ‘selectively breeding solutions’.
Selectivity is accomplished by selecting members of the old generation for breeding in such a way
that preference is given to better solutions. In our algorithm we compute a “fitness’ f{i} for each
member ¢ of the current generation. Specifically, f(¢) is the probability that solution 4 will be selected

for breeding. Fitness is calculated from V' (7) the total weighted tardiness of solution 7 as follows:
Let Vipae = max V(i) Then f{4) = (Vinaz — V())™/ D (Vinge — V(&))"

The tuning parameter 7 determines the selectivity of the algorithm. Note that as  increases, better

solutions having increasingly greater chances of being selected. If 7 is too large, the population will
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quickly loose diversity and converge so that all members of a generation are identical. If w is too
small, the algorithm will converge very slowly thus using excessive computation time.

In our case we use two reproduction methods, sexual and asexual. In asexual reproduction, an
individual from the current population is selected randomly according to fitness f(i), and passed
directly to the next generation. In sexual reproduction, two ‘parent solutions’ are selected according
to f(z) and combined through crossover to produce an ‘offspring’ solution which is passed to the
next generation. The percent of solutions “%SEXUAL’ generated by sexual rather than asexual
reproduction is another tuning parameter of our PSGA. We also implemented “elitist reproduction’.
Here the best member of generation k is automatically passed as the first member of generation & +1.
This guarantees that the best solution is not lost to random selection.

When using sexual reproduction, parent solutions must be combined to form an offspring using a
crossover operator. We experiment with two well known and simple crossover operators, single point
and uniform. In single point, an integer uniform[1, N — 1] random number C' is generated. Then
elements 1 to ' from parent 1 and elements C + 1 to N of parent 2 are copied to create the new
offspring vector. In uniform crossover, we select elements of the offspring one at a time. For each
element j in the offspring vector, we select element j from either parent with probability 0.5.

Once a new generation of perturbation vectors has been created, mutation is applied. Each element
of each vector in the new generation may be mutated. The probability of mutating an element is given
by the mutation probability tuning parameter ‘MUTPROB?’. If selected for mutation, the element is

replaced by a newly generated uniform U(~#6, 8} random perturbation.

3.2 Tuning Experiments

With so many tuning parameters, it is necessary to conduct experiments to determine appropriate
values for each of the parameters. Further, it is necessary to assure that the experiments do not bias
the final results of the tuned algorithm. To maintain unbiasedness, we generated a set of problems
independent of the problems ultimately used in testing. Based on some initial trials, an experiment
was designed to study the tuning parameters at levels given in Table 4. The last two factors RDD and
TF determined the type of problem generated. By varying the RDD and TF factors, the experiments
covered a broad range of problem types. This will help find tuning parameter values that work well
across the range of possible problem types. For each of the 25 combinations of RDD and TF, 1
problem with 100 jobs was generated. A full factorial experiment was conducted over all factors. For
each combination of tuning parameters and for each test problem, two algorithm runs were made with

different random number seeds, yielding two replicates.
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In our first pass analysis of the results of the experiment we observed that the variance was not
constant across the factors RDD and TF. As non-constant variance violates the basic assumptions of
the analysis of variance, remedial measures were necessary. The reason for non-constant variance
was readily apparent. Some combinations of RDD and TF produced easy problems with ‘loose’
due dates. Regardless of the tuning parameter values, the PSGA easily found a solution with zero
total weighted tardiness. Other combinations of RDD and TF produced problems with a spectrum of
difficulty levels. In general we observed higher variance on harder problems. Within each of the 25
cells formed by combinations of RDD and TF, we had 192 responses. To stabilize the variance we
transformed each response to be percentage from best solution among the 192 in each cell. We then
performed an analysis of variance on the transformed data.

From the results of an analysis of variance, we first note that crossover type and selectivity
parameter 7 have no significant effect on the results. For subsequent testing runs of the algorithms,
we chose to use single point crossover and selectivity 7 = 4 arbitrarily. We also note the percent
sexual reproduction has little effect. We discuss this further below.

Perturbation magnitude 6, population size, and mutation probability all showed significant effects.
It is expected that population size would be significant. Since the number of generations was fixed at
100, twice the number of solutions are generated with POPSIZE 100 as opposed to 50. As one would
expect, both solution quality and computation time increase with population size. In the testing phase
we will use both population sizes to indicate the marginal returns of generating more solutions.

The perturbation magnitude § was also significant as expected. The experiment results show
that 6 = 0.5 performed poorly, and that § = 1 was marginally better than § = 2. Our experience
with Problem Space Search methods indicates that performance is poor when ¢ is too small, but that
performance is reasonably robust when ¢ is larger than its optimal value. The experimental results
match precisely what we have learned from experience. Since § = 1 provided the best results, we
chose this level in subsequent testing.

The final significant tuning parameter was mutation probability. A closer examination revealed
an interaction between population size and mutation probability. When both mutation probability and
population size were at their Jow levels (0.01 and 50 respectively), algorithm performance was poor.
At all other combinations of levels, performance was roughly the same. Mutation is necessary to
maintain diversity in the gene pool of a genetic algorithm. This is especially true in problem space

genetic algorithms where we have found that aggressive selectivity works well. Our conclusion is that
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when both POPSIZE and MUTPROB are at their low levels, diversity is lost too quickly leading to
poor performance. Since we will test with both small and large population sizes, and since mutation
probability interacts with POPSIZE, we decided not to fix MUTPROB a priori, but rather to examine
its effects in testing as well.

We noted previously that no difference in performance was observed when the percent sexual
reproduction varied from 80% to 100%. Mason [10] suggests that in many applications of genetic
algorithms, crossover is unnecessary, and that 100% asexual reproduction works as well. Mason’s
suggestion is somewhat controversial as it calls into question one of the basic premises of genetic
algorithms. To test Mason’s conjecture in the context of our problem, we set percent sexual
reproduction to 0 as well as to 0.8 in the testing phase. In addition, we also include in the testing
phase the random search algorithm described previously. This may be viewed as a ‘naive’ search
strategy. By comparing results from random search to the various versions of genetic algorithms, we
can determine the value of an evolutionary strategy on this problem. While we will discuss results of
testing in greater detail soon, the quick summary is that random search performed poorly relative to
all versions of genetic algorithms. Further, the algorithm without crossover performed worse than the
versions with crossover, but the difference was quite small.

To summarize, we proceed to the testing phase having fixed the following tuning parameters as

perturbation magnitude § = 1.0, selectivity m = 4, and the crossover type is single point.

4 Computational Results

To test the efficiency of the proposed PSGA, the required programs were coded in C language,
compiled with Borland compiler, and run on a Gateway 2000 model GP6-400 PC Pentium II 400
MHz with a memory of 96 MB Ram. The proposed algorithm was tested on a series of randomly
generated problems developed by Crauwels et al. {6] as discussed in Section 2. In addition, we
also generated new 125 test problems for n = 200 using the same uniform distributions for p;, wy,
RDD and TF. These new test problems and the computer codes for PSGA and LDR methods can be
obtained from the authors.

In addition to the parameters discussed in the previous section, we also tested a few versions of the
PSGA. We created two versions with different base heuristics; ATC with global dominance, and ATC
with global dominance and the local dominance rule based API method. We also experimented with
several short GA runs against one longer run. In the first case we made 1 run of 1000 generations,
denoted as single-start. In the second case we ran the GA five times for 200 generations each, denoted

as multi-start. To summarize, we will test various PSGA algorithms as summarized in Table 5. In
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each problem instance, all combinations of the levels of these parameters are investigated. Itis a 2°

full-factorial design, which corresponds to 32 alternative parameters settings,

so% & & % ok ok & % &+ & Insert Table 5 around here s # % % % & & & # %o

These alternative algorithms are compared in terms of the average deviation and the maximum
deviation from the optimum (or best known) solution, the number of times (out of 125) that an
optimum (or best known) solution is found, denoted as total match, and the average CPU times in
seconds as summarized in Tables 6 to 9 for each value of n. We also report the average number of
generations that gives the iteration number in which the best solution is found. If this number is small
that means the same solution can be found in a shorter run with a less CPU time. The best known
solution values known to Crauwels et al. for the 100 job problems are given in file wtbest100a. In our
tables, these results are given as n = 100 (A), whereas the best known solutions to date are given as
n = 100 (B). Therefore, in some cases we found better solutions to the 100 job problems than those
known by Crauwels et al. indicated as the number of improvements. As a result, total match values
for n = 100 (A) indicate the number of times we found the same solution given in file wibest100a,
hence the actual match to the best known solution is the summation of total match with the number of
improvements. In order to find a best solution to each one of the 125 instances for 200 job problems,
we took a very long run with an API method with the following parameters: POPSIZE=100, the
maxinum number of generations = 5000 (as opposed to 200 in all experiments), RSEXUAL = 0.8,
MUTPROB = 0.01, @ = 1.0, 7 = 4, the crossover type is single point, and the number of restarts is
10 (instead of 5 in the multi-start).

* % % % %k % % ok x « Insert Tables 6, 7, 8 and 9 around here s # # % * * % x * %%

In this section, we also test the validity of several questions. The first question is raised by Mason
[10] that in many applications of genetic algorithms the crossover operation is unnecessary. in Tables
6 and 7, we compare these algorithms for the single-start PSGA, whereas in Tables 8 and 9 for
the multi-start PSGA. The algorithm without crossover (i.e. RSEXUAL=0 or asexual) performed
worse than the versions with crossover (i.e. RSEXUAL=0.8) for both the single and multi-start
PSGA, especially for the maximum deviation criterion. This difference becomes even more evident
for the multi-start PSGA. The second question is related to the number of restarts. Crauwels et al.
reported that in order to obtain higher quality solutions, multi-start versions are preferable to single-
start Jonger run versions. Specifically, their multi-start GA version, denoted as GA(B,5) in their
notation, performed better than the single-start GA, denoted as GA(B,1), although GA(B,5) takes

approximately five times longer CPU time than the GA(B,1). In our case, the average CPU times are
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more or less equal. When we compare Tables 6 and 7 with Tables 8 and 9, we can also conclude that
the multi-start PSGA is slightly better than the single-start PSGA for n = 40, 50 and 100. But, when
n = 200 the single-start PSGA is better, implying that 200 iterations in each run may not be long
enough for the multi-start PSGA.

Next, we discuss the importance of capturing local minima information to guide the local search
heuristic. As we have mentioned above, there are 32 alternative PSGA algorithms. For each
algorithm, we compare a straightforward PSGA implementation, denoted as GA, with another using
a local dominance rule based API search, denoted as GA+LDR. The difference between GA and
GA+LDR is quite striking. By defining and searching through a set of local minima, we were able
to improve the solution quality in all measures significantly with a relatively small increase in the
CPU time. In terms of the overall solution quality, the best solution is given by the parameter
setting of RSEXUAL=0.8, MUTPROB=0.01 and POPSIZE=100 for both single and multi-start
versions of PSGA+LDR. They are also better than the corresponding best single and multi-start local
search heuristics reported in the literature. It is important to note that a genetic algorithm with the
permutation representation performed so poorly compared to other local search heuristics, Crauwels
et al. did not even report their results. In their study, the best results were obtained with tabu search.
Genetic algorithm with their binary encoding scheme became comparable and used less computation
time than the other local search heuristics, but still tabu search gave the best results in terms of the
average and maximum deviation. The overall results of Crauwels et al. were very good, so that
there was little margin to improve upon them. In PSGA. an intelligent mixture of exploiting the basic
structure of the problem through global and time-dependent local dominance rules, and an efficient
problem space search heuristic with the genetic algorithm improved the results quite significantly.
Based on our computational results, the proposed PSGA provided the largest total match, and the
smallest average and maximum deviation (which also indicates its robustness) on a large set of
test problems compared to the different versions of other local search algorithms, namely simulated
annealing, threshold accepting, tabu search and genetic algorithm, reported in Crauwels et al.

We will now elaborate on computational time requirements of the proposed algorithm. Another
important contribution of the PSGA is its running time behavior as a function of the number of jobs.
In Crauwels et al., the local search heuristics were run on a HP 9000 - G50 computer. In their study,
the genetic algorithm was the fastest among the other local search heuristics. Since our runs were
taken on a PC Pentium II, we could not compare the computational difficulty of the PSGA with the
other local search heuristics in terms of the actual CPU requirements. Instead, we normalized both of
the algorithms, i.e. single and multi-start PSGA+LDR, and GA(B,1) and GA(B,5) by Crauwels et al.,

in terms of the average CPU requirements for n = 40, and plotted them as a function of the number
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of jobs as shown in Figure 1. It is important to note that Crauwels et al. did not take runs for n = 200.
A gradual increase in running time is another advantage of problem space search heuristic over the

other local search heuristics in the literature,
sk % % %ok % % % % % % [ngert Figure 1 around here s # # % % % % ¥ s xox

Finally, these various genetic algorithms are compared to random search with # = 1.0 as
summarized in Table 1. It can easily be seen from these results that random search performed poorly
relative to all versions of genetic algorithms, This result indicates the value of an evolutionary strategy
of the genetic algorithms on this problem. When we analyze the impact of the local dominance rule
based API search, denoted as RS+LDR, over the random search, RS, the results are consistent with
the previous ones. It makes a significant improvement over the RS algorithm, but the amount of

improvement still was not good enough to be comparable with the other genetic algorithms.

® %ok ok ok ok %k % o+ % % Insert Table 10 around here # # % % % % % % % #%

5 Concluding Remarks

We propose a new problem space genetic algorithm to solve single machine total weighted tardiness
scheduling problems. In sum, the global dominance rules are very useful for reducing the search
space. The time-dependent local dominance rule based API local search method is a powerful
exploitation (intensifying) tool since we know that the global optimum is one of the local optimum
solutions. If we search through a set of local optimum solutions, it is most likely that our search
space will contain the good solutions. Finally, problem space search method significantly enhances
exploration (diversification) capability of the genetic algorithm. When we combine all of these
attributes, we can improve the solution quality in terms of the average deviation and total match
as well as the robustness in terms of the maximum deviation from the optimum solution. Another
important positive characteristic of the proposed algorithm is its running time behavior as a function
of the number of jobs compared to the other local search algorithims reported in Crauwels et al. [6] as

discussed in the previous section.
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Figure 1: CPU Time Comparison
Ave #of | Ave #of | Ave #of | Global Dom, # of
Jobs in the | Jobsin the | Remaining Matrix Problems | Percent Ave.
First biock | Last Block Jobs Density Solved | Reduction | CPU time
n=46 10.0720 0.2720 29.6560 59.2226% 18 25.8600% | 0.0034%6
=350 12.4400 0.1920 37.3680 59.8740% 17 25.2640% 1§ 0.002288
=100 1 255920 1.0640 73.3440 60.8698% I8 26.6560% | 0.017752
n=200 | 559840 0.0960 143.9200 61.5298% 20 28.0400% | 0.1096%6

Table 1: Problem Reduction Analysis
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STRICT STRICT STRICT | STRICT STRICT STRICT j EDD EDD  EDD
< = > < = > < = =
EDD EDD EDD LDR LDR 1.DR LPR LDR LDR
n=40 5 59 61 5 59 61 0 125 0
n=50 6 45 74 6 45 74 0 125 0
n=100 2 36 87 2 36 87 0 121 4
n=200 3 30 92 3 30 92 0 124 1
Table 2: Comparison of Adjacent Pairwise Interchange Algorithms
ATC_GD | ATC_GD | ATC_GD
+ + +
ATC ATC GD API_STRICT | API_EDD | API_LDR
Total Match 19 19 27 45 45
n=40 Ay, Dev. 18.3198% 17.0541% 10.6982% 5.3883% 5.3883%
Max. Dev. | 274.4681% | 355.3191% 274.4681% 106.4815% | 106.4815%
CPU Time 0.060880 0.000032 0.000040 0.000000 0.600000
Total Match 18 18 23 30 30
n=50 Av. Dev. 50.2877% 12.1905% 6.0318% 5.5521% 5.5521%
Max. Dev. | 4200.0000% | 181.8182% 128.2828% | 128.2828% | 128.2828%
CPU Time 0.001928 0.000152 0.000168 0.000000 0.006048
Total Match 18 18 22 24 25
=100 (A) Av. Dev. | 41.4829% 39.5478% 12.3147% 10.6911% | 10.6910%
Max. Dev. | 2225.0000% | 2225.0000% 161.7647% 161.7647% 1 161.7647%
CPU Time 0.006624 0.001264 0.001368 0.000712 0.000792
Total Match 18 18 22 24 25
=100 (B) Av. Dev. 41.4833% 39.5482% 12.3151% 16.6915% 10.6914%
Max. Dev. | 2225.0000% | 2225.0000% 161.7647% 161.7647% | 161.7647%
CPU Time 0.006624 0.001264 0.001368 0.000712 0.000792
Total Match 21 21 24 24 24
=200 Av. Dev, 16.1682% 15.4521% 12.1565% 11.9809% 11.9809%
Max. Dev. | 154.0462% 157.0588% 141.7910% 141.7910% | 141.7916%
CPU Time 0.026304 0.004000 0.003680 (.003080 0.002536
Table 3: Comparison of Single Pass Algorithms
Factoss i Levels Values
POPSIZE 2 50 100
Perturbation magnitude ¢ 3 0.5 1.0 2.0
Selectivity o 2 2 4
%SEXUAL 2 30% 100%
Crossover type 2 Single point  Uniform
MUTPROB 2 0.01 0.05
RDD 5 0.2 0.4 0.6 08 1.0
TF 5 0.2 0.4 06 08 1.0

Table 4: Tuning Experimental Settings
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Parameter Level 1 Level 2

Base Heuristic ATC with global dominance  ATC with global dominance and LDR
POPSIZE 50 100

%SEXUAL %% 80%

MUTPROB 0.01 0.05

Single/Multi-start 1 run, 1000 generations 5 runs, 200 generations each

Table 5. Problem Space Genetic Algorithm Parameters

RSEXUAL=0.8
MUTPROB=(.01 MUTPROB=0.05
POPSIZE=50 POPSIZE=100 POPSIZE=50 POPSIZE=100
GA GA+LDR GA GA+LDR GA GA+LDR GA GA+LDR
Total Match 81 122 86 125 73 125 79 125
Ave. Dev. | 0.2562%  0.0024% | 0.1829%  0.0000% | 0.0610%  0.0000% | 0.0481%  0.0600%
11=40 Max. Dev. | 8.1181%  0.2027% | 6.7039%  0.0000% | 0.8360%  0.0000% | 0.5564%  0.0000%
Ave. Gen. 2253 259 224.38 9.74 244.31 5.97 277.18 4.78
Av. CPU Time | 13.2922 14.6906 | 262695 293271 12.8452 14.4796 25.842 29.1102
Total Match 57 119 66 121 56 121 57 124
Ave. Dev. | 0.4275%  0.0118% | 0.2109%  0.0025% | 0.2527%  0.0135% | 0.2103%  0.0001%
n=50 Max. Dev. | 9.6561%  0.6918% | 8.0882%  0.1455% | 8.0882%  1.2690% | 8.0882%  0.0160%
Ave. Gen. 27431 54.53 238.95 33.75 405.3 34.15 365.57 42.11
Av. CPU Time | 183628 20.7581 36.2945  41.5422 17.8326 20.5417 | 358942  41.0212
Total Match 40 95 39 101 39 86 42 83
Ave. Dev. | 1.0003%  0.0208% | 0.1324%  0.0032% | 0.3505%  0.0110% | 0.2703%  0.0162%
n=100 (A) Max. Dev. | 82.0000%  0.9733% | 2.6787%  0.0990% | 11.4206% 0.2158% |2.1103%  0.2996%
Ave. Gen. 557.8 211.09 565.89 148.24 618.26 208.38 604.62 233.98
# of Improv. 0 3 0 5 0 0 ] 0
Av. CPU Time 52.29 60.8376 | 103.8529  120.75 50.4594 59.166 101.5403  118.9731
Total Match 40 94 39 103 39 86 42 33
Ave. Dev. | 1.0007%  0.0212% | 0.1328%  0.0035% | 0.3509%  0.0113% j02707%  0.0166%
n=100 (B) Max, Dev. | 82.0000%  09733% | 2.6787%  0.0990% |11.4206% 0.2158% |2.1103%  0.2996%
Ave. Gen. 557.8 211.09 565.89 148.24 618.26 208.38 604.62 233.98
# of Improv. 0 0 0 0 0 0 0 0
Av. CPU Time 52.29 60.8376 | 103.8529 12075 50.4594 59.166 | 101.5403 1189731
Total Match 30 55 33 62 32 47 33 48
Ave. Dev. | 0.8536%  0.1377% | 0.4040%  0.0409% | 0.7844%  0.1344% | 0.6591%  0.0707%
n=200 Max. Dev. | 16.8116%  4.6004% | 7.7960%  1.2159% | 9.0829%  1.9015% | 6.5804%  0.5871%
Ave. Gen. 709.29 42925 685.41 418,91 611.95 429.07 628.56 433.7
Av. CPU Time | 149.251 181.9651 | 297.3957 3620465 | 1437175 176.8252 |287.5416 3517038

Table 6: Results for Single-Start PSGA with RSEXUAL=0.8
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RSEXUAL=( (ASEXUAL GA)

MUTPROB=0.01

MUTPROB=(.03

POPSIZE=50 POPSIZE=100 POPSIZE=50 POPSIZE=100
GA GA+LDR GA GA+LDR GA GA+LDR GA GA+LDR
Total Match 72 123 88 124 72 125 77 125
Ave. Dev. | 0.3203%  0.0025% 23112%  0.0005% | 0.0801%  0.0000% | 0.0532%  0.0000%
n=40 Max. Dev. | 9.3750%  0.2517% | 274.4681%  0.0590% | 0.8360%  0.0000% | 1.1415%  (.0000%
Ave. Gen. 271.04 42.36 239.42 23.25 270.93 12.16 278 6.61
Av. CPU Time 12.938 14.6666 26.1992 29.4514 12,7987 14.5248 | 255321  28.9674
Total Match 56 116 39 121 55 124 52 123
Ave, Dev. | 04174%  0.0235% 0.2813% 0.0018% | 0.2716%  0.0009% | 0.2208%  0.0007%
n=56 Max. Dev. | 9.6561%  1.4074% 8.0882% 0.0840% | 8.0882%  0.1065% | 8.0882%  0.0840%
Ave. Gen. | 328.94 84.66 346.13 67.87 402.54 46,53 368.82 40.58
Av, CPU Time | 17.9765 20.7405 36.5096 41.5517 17.8655 20.5303 | 35.6569  40.9649
Total Match 33 93 40 99 40 85 38 85
Ave. Dev. | 1.2025%  0.1432% 1.0512% 0.0604% | 0.2223%  0.0309% | 0.2688%  0.0150%
n=100 (A) Max. Dev. | 82.0000%  53400% | 82.0000%  5.2851% | 1.4748%  2.2962% |3.1843%  0.4862%
Ave, Gen. 607.5 2553 58432 187.98 621.67 241.76 595.98 187.92
# of Improv. 0 1 0 2 0 1 0 2
Av. CPU Time | 51.9356 60.7868 1039084 1213718 | 50.5797 59.7257 11014332  118.6591
Total Malch 33 93 40 101 40 86 38 86
Ave. Dev, | 1.2029%  0.1436% 1.0516% 0.0608% | 0.2226%  0.0313% | 0.2692%  0.0154%
n=100 (B) Max. Dev. | 82.0000%  5.3400% | 82.0000%  5.2851% | 1.4748%  2.2962% |3.1843% 0.4862%
Ave. Gen. 607.5 255.3 584.32 187.98 621.67 241.76 595.98 187.92
# of Improv. 0 ¢ 0 0 0 0 0 0
Av. CPU Time | 51.9356 60.7868 103.9084 1213718 | 50.5797 59.7257 1101.4332 118.6591
Total Match 31 50 34 46 30 47 33 48
Ave. Dev. | 1.0872%  0.4333% 0.7553%  0.2038% | 0.9147%  0.2054% | 0.8067%  0.1085%
n=200 Max. Dev. | 14.9957% 23.8433% @ 8.9499% 7.5132% | 11.0941%  6.0470% | 8.8588%  1.1656%
Ave. Gen. 698.38 450.03 716.74 461.05 668.12 494,25 681.4 447.09
Av. CPU Time | 1482765  180.0397 | 296.1482  360.6524 | 144.1365  178.562 |287.4377 352.0335

Table 7. Results for Single-Start PSGA with RSEXUAL=0 (ASEXUAL)
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RSEXUAL=0.8

MUTPROB=0.01

MUTPROB=0.05

POPSIZE=50 POPSIZE=100 POPSIZE=50 POPSIZE=100
GA GA+LDR GA GA+LDR GA GA+LDR GA GA+LDR
Total Match 77 125 94 125 70 125 71 125
Average Dev. | 0.1281%  0.0000% | 0.1588%  0.0000% | 0.0473%  0.0000% | 0.0554%  0.0000%
n=40 Max. Dev. | 54124%  0.0000% | 9.3750%  0.0000% j 0.5095%  0.0000% | 0.6311%  0.0000%
Ave., Gen, 78.41 10.83 78.46 7.89 90.22 8.64 90.57 572
Av. CPU Time | 13.4297 14.7395 | 26.5028 29,6225 12.8930 14.5849 | 259505  29.2781
Total Match 63 123 68 123 53 124 54 123
Average Dev. | 0.1892%  0.0070% | 0.1488% 0.0102% | 0.2131%  0.0000% | 0.1875%  0.0013%
=30 Max. Dev. | 5.0882%  0.8075% | 8.0882%  1.2690% | 8.0882%  0.0038% | 8.0882%  0.1455%
Ave, Gen. 99.70 19.45 97.84 15.02 109.02 15.73 108.16 15.84
Av, CPU Time | 18.6542 20.9085 | 36.9680  41.7975 18.0119  20.6300 | 364179  41.4591
Total Match 38 94 40 103 41 83 39 87
Average Dev. | 0.9569%  0.0750% | 0.1875%  0.0030% | 0.4145% 0.0137% | 04016% 0.0135%
=100 (A) Max, Pev. | 82.0000% 52851% | 1.5324%  0.1532% | 2.8310%  0.2505% |3.2094%  0.2996%
Ave, Gen, 134.26 73.09 133.75 69.48 124.62 70.48 122.84 65.25
i of Improv. 0 4 0 3 0 1 0 0
Av. CPU Time ; 52.2604 60.7866 | 104.7119 121.5111 | 30.8340 595725 [102.1507 1194516
Total Match 38 98 46 105 41 85 39 87
Average Dev. | 0.9573%  0.0754% ; 0.1879%  0.0034% | 0.4153%  0.0141% | 0.4020% 0.0138%
n=100 (B} Max. Dev. | 82.0000%  3.2851% | 1.5324%  0.1532% | 2.8310% 0.2505% | 3.2094%  0.2996%
Ave. Gen. 134.26 73.09 133.75 69,48 124.62 70.48 122,84 65.25
# of Improv. 0 0 0 0 0 0 0 Y
Av. CPU Time | 522604 60,7866 | 1047119 121.5111 | 50.8340  59.5725 [102.1507 1194516
Total Match 30 47 29 55 31 48 31 48
Average Dev. | 0.9134%  0.1280% | 0.5751% 0.0541% | 0.9648%  0.1933% | 0.8092%  0.1129%
n=200 Max. Dev. | 12.7390%  4.6639% | 7.0449%  14723% |92044%  7.1767% | 4.3796% 1.0511%
Ave. Gen, 141.85 113.71 138.16 110.88 104.04 99.91 102.46 95.75
Av. CPU Time | 150.5809 1802802 | 297.5878 361.1792 | 144.0840 176.5761 289.8469 353.2201

Table 8: Results for Multiple-Start PSGA with RSEXUAL=0.8
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RSEXUAL=0 (ASEXUAL GA)

MUTPROB=0.01

MUTPROB=0.05

POPSIZE=50 POPSIZE=100 POPSIZE=50 POPSIZE=100
GA GA+LDR GA GA+LDR GA GA+LDR GA GA+LDR
Total Match 68 124 79 125 72 125 75 125
Average Dev. | 0.2672%  0.0002% | 0.0913%  0.0000% | 0.0637%  0.0000% | 0.0516%  0.0000%
n=40 Max. Dev. | 9.3750%  0.0217% | 6.7039%  0.0000% | 0.6094%  0.0000% |0.8133% 0.0000%
Ave, Gen. 89.94 17.88 91.69 12.44 90.25 9.54 89.19 7.97
Av, CPU Time | 13.0656 14.793 26,2642 29.541 12.8786 14.5952 | 25.8398  29.2362
Total Match 49 121 59 121 47 124 49 123
Average Dev. | 0.4030%  0.0147% § 0.1960%  0.0059% | 0.2690%  0.0000% | 0.2366%  0.0048%
n=50 Max. Dev. | 9.6561%  1.2690% | 8.0882%  (.5999% | 8.0882%  0.0038% :8.0882%  0.5999%
Ave, Gen, 110.52 28,27 114.26 25.71 109.39 20.24 107.34 16.39
Av, CPU Time | 18.3262 20.87 36,7861 41.8314 18.016 206431 | 36.2967  41.5255
Total Match 33 89 36 91 38 86 40 89
Average Dev. | 1.1953%  (L1503% | 0.3965%  0.0197% | 0.3942%  0.0155% | 0.3804%  0.0106%
=100 (A) Max. Dev. | 82.0000%  8.5119% | 53555%  0.4841% | 3.4492%  0.4056% |3.1372%  0.2996%
Ave. Gen. 138.38 78.13 138.48 78.33 131.92 75.38 130.79 69.51
# of Improv. 0 1 0 2 0 1 0 1
Av. CPU Time | 51.921 60,4638 | 104.1166 1211499 50.99 59.7868 | 102.0101 119.5655
Total Match 33 90 36 92 a8 86 40 90
Average Dev. | 1.1957%  0.1507% | 03968%  0.0201% | 0.3%46%  0.0159% | 0.3808% 0.0110%
n=100 (B) Max. Dev. | 82.0000% 8.5119% | 5.3555%  04841% | 3.4492%  0.4056% |3.1372% 0.299%6%
Ave, Gen. 138.38 78.13 138.48 78.33 131.92 75.38 136.79 69.51
# of Improv. 0 0 0 0 0 0 0 0
Av. CPU Time | 51.921 60.4638 | 1041166  121.1499 50.99 59.7868 | 102.0101 119.5655
Total Match 28 45 30 47 30 43 32 46
Average Dev. | 1.3365%  0.3806% | 1.1073%  0.2375% | 1.1123%  0.2192% | 1.0092%  0.1889%
n=200 Max. Dev. | 13.8390% 12.1552% | 19.1154%  7.3135% | 10.5611% 7.7178% | 8.6886% 7.8672%
Ave. Gen. 145.94 113.73 146.72 112.44 125.28 105.22 122,51 1771
Av. CPU Time | 149.5396  179.8973 | 298.0862  359.9304 | 1455843 1779311 |290.1471 355.2068

Table 9: Results for Multiple-Start PSGA with RSEXUAL=0 (ASEXUAL)
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25000 Iterations 50000 Iterations
RS RS+LDR RS RS+LDR
Total Match 31 103 33 110
Average Dev. | 2.4793%  0.0314% | 2.2619%  0.0119%
n=40 Max. Dev. | 26.7423%  0.9102% | 26.7423%  0.5139%%
Ave. Gen. | 914806 374290 | 1841438  6440.94
Av. CPU Time | 7.0350 8.2294 12.9610 152357
Total Match 26 80 27 86
Average Dev. | 3.1341%  0.0902% | 2.8740%  0.0553%
n=50 Max. Dev. | 13.6284%  1.2690% [ 12.1585%  1.2690%
Ave. Gen. | 8803.82 4990.54 | 19836.09  9146.75
Av. CPU Time | 9.7129 11.5011 18.1188 21.1330
Total Match 26 42 27 43
Average Dev, | 5.3077%  1.0659% | 4.9205%  0.9978%
=100 (A) Max. Dev. | 35.6467% 11.2013% | 35.6467% 11.2013%
Ave, Gen. | 9777.14 779074 | 17960.20  16411.95
# of Improv. 0 0 0 0
Av. CPU Time | 253008 29.9983 492616 57.8269
Total Match 26 42 27 43
Average Dev. | 5.3081%  1.0663% | 4.9209%  0.9982%
=100 (B) Max. Dev, | 35.6467%  1.9547% | 35.6467% 11.2013%
Ave. Gen. | 9777.14 779074 | 17960.20 16411.95
# of Improv. 0 0 G 0
Av. CPU Time | 25.3008 29.9983 49.2616 57.8269
Total Match 26 32 27 32
Average Dev, | 7.4089%  3.2840% | 7.0378%  3.0545%
n=200 Max. Dev. | 39.7894% 33.1734% | 37.1451% 32.6274%
Ave. Gen. | 9766.06 9098.85 18789.19  17955.82

Av. CPU Time

71,7826 85.4151

142.1866  169.7462

Table 10: Results for Random Search Algorithms
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