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Abstract

This research investigates the problem of due-date coordination and negotiation between
the marketing and manufacturing entities within a make-to-order firm. Marketing is
concerned about satisfying customers who each have a preferred due-date for their orders
but are willing fo compromise in return for price discounts. Manufacturing is concerned
about the efficient ufilization of capacity and is not willing to offer any given order a
higher service levels unless the incurred cost is reimbursed. The reimbursement also
rewards manufacturing for risk sharing with marketing. Operating in an environment of
dynamic order arrivals, we design a Nash game between marketing and manufacturing.
Each party quotes a due-date based on its utility function defined by local cost structure, a
belief function of job completion times, and an agreed penalty when the quoted due-date
is missed. We identify properties for each agent's utility function under which a unique
Nash equilibrium exists. We observe that due to double marginalization the solution
(due-date quotation) achieved at Nash equilibrium is never the system optimum. In order
to bridge the gap between the competitive and global optimization of the system, we
derive transfer payments between marketing and manufacturing with which the system
optimal solution can be achieved at Nash equilibrium. We conduct sensitivity analysis on
the transfer payments such that they could be tailored for alternative utilities.




1. Introduction

Filling customer orders in a timely manner has become one of the most prominent
theme in recent years for make-to-order companies in a growing global and competitive
market. The escalating pressure for competent and improved customer service has
fettered make-to-order manufacturers to investigate ways to satisfy customer demand
quickly at a lower cost [1]. In contrast with the most of the literature on due-date
scheduling where the due-dates are assumed to be exogenous, in most real life situations,
the determination of the due-dates is negotiable and generally, is the responsibility of the
marketing department of the firm. When setting the due-dates, besides the customer
preferences, the firm is also constrained with the shop floor capabilities such as capacity
utilization. The capacity utilization, which is managed by the manufacturing department,
is the most important factor that determines the manufacturing flow times. In order for
the firm to maintain a cost-effective service for customers due-date quotation and
capacity utilization decisions should be coordinated. The due-date setting decision
mtegrated with the shop floor status has been studied recently in various contexts [2-7] in
which the problems are studied under centralized systems. Central models assume that
the departments within the company cooperates and do not deviate from the global
optimal solution. However, due to the fact that employees are rewarded based on their
departments’ performance, each department has incentives to behave according to their
own local cost structure in most cases. Thus, each department incurs only a portion of the
system cost so that the system optimal solution may not minimize each department's cost.
Consequently, coordinating the marketing and manufacturing departments becomes a
challenging issue that must be handled using appropriate mechanisms [8]. In resent years,
the coordination of operations has been mostly studied between independent agents
within a supply chain [9-12] as well as between departments within a firm [13-15].
Among the former group of work, Grout [10] proposes a model of incentive contracts
between a buyer and a supplier for timely delivery of orders. In his setting, the buyer
dominates the supplier and moves first by selecting an incentive scheme composed of on-
time delivery bonus and tardiness penalty for the supplier such that an optimum
probability of on-time delivery is ensured by the supplier who responds to that scheme by
selecting a flow time allowance that will minimize her expected cost. It is observed that
achieving exactly 100% on-time delivery performance is not optimal and many times it 1s
even unattainable, In the later group of work the coordination mechanisms designed



between internal markets are, in general, based on departments efforts that effect demand
and capacity outcomes and decisions in quantities and price.

In this paper, we propose incentive mechanisms for coordinating the marketing
and manufacturing departments over due-date quotation decisions. We consider a make-
to-order firm that operates in a decentralized fashion where marketing determines the
due-date to be quoted for the outside customer who has a preferred delivery date for her
order and manufacturing quotes its own due-date for the marketing whose preferred
delivery date is the one quoted to the outside customer. The due-date quoted fo marketing
is the date where a preset service level is ensured. Hence change in the due-date implies a
change in the capacity utilization. We define the service level as the cumulative
probability that the order will not be tardy given the manufacturer's quoted due-date. The
mentioned cumulative probability is calculated based on the believes regarding the
completion time of the order which is formulated as the belief function and assumed to
have the form of a Weibull probability distribution function. In real life applications
generally it is very tedious to capture the accurate flow time probability distribution in
which cases an approximation can be necessary. Employing Weibull distsibution
functions can be useful to carry out this task as one can generate various probabilistic
density structures by modifying the shape parameter. Weibull distributions can take the
shape of different distributions such as Normal, Lognormal, Gamma and several Pearson
type distributions [16] so that they can be used to model a high variety of systems. Also,
it should be noted that exponential and Raleigh distributions are special cases for Weibull
distribution. For our case assuming Weibull distribution for the belief function also
significantly facilitates our analysis. We assume that the belief function is identical for
each department and all parties are completely informed with all parameters in the
system.

The departments play a Nash game where the parties simultaneously choose their
due-date quotations and once announced, the decisions cannot be modified. In our model,
both marketing and manufacturing is penalized for quoted longer due-dates. The
marketing department is charged for the discount in price incurred as a result of deviation
between its quoted due-date and the customer's preferred delivery date. The
manufacturing charges the marketing with a constant price for processing the order,
however, issues a discount based on deviation of its promised delivery date from the
marketing's quoted due-date. Marketing is mainly responsible for the tardiness cost but
manufacturing compensates this to a certain degree only if realized completion date of the
order is later than the due-date quoted for the marketing by the manufacturing. As pointed
out above, for the manufacturing, promising earlier delivery dates means an increase in



the capacity and the incurred cost is charged to the department. In such a game each
department minimizes its own cost given the behavior of the other department, and
therefore neither department has an incentive to deviate from the equilibrium of the game.

In our analysis, we observe that for some nonrestrictive parameter settings there is
always a unique Nash equilibriwm for the game. Comparison of the game's equilibrinm to
the system optimal solution reveals the fact that the system optimal solution is never a
Nash equilibrium except for very special cases. Hence, the competitive decision making
reduces the efficiency and a need for a cooperative solution arises. To achieve that, we
propose a set of contracts that eliminates the incentives for the departments to deviate
from the optimal solution. These confracts specify transfer payments between
departments that are formed based on the cost entities within the system. We also conduct
sensitivity analysis on the ftransfer payments such that they could be tailored for
alternative local cost structures.

The next section elaborates the description of our model and related assumptions.
In Section 3, we present the central model. The details of the decentralized model the
analysis of equilibria are described in Section 4. Section 5 discusses the contracts that
achieve the coordination between the departments, and Section 6 concludes.

2. Model Description

We consider a make-to-order firm that serves due-date sensitive customers. The
marketing department of the firm is concerned about satisfying customers who each have
a preferred due-date for their orders but are willing to compromise in return for price
discounts. On the other hand, the manufacturing department is concerned about the
efficient utilization of capacity and is not willing to offer any given order a higher service
level unless the necessary cost to accomplish this is reimbursed. In this section we
formulate a model that can be used to analyze the competitive due date and capacity
management across these departments. In our setting, the marketing department receives
orders attached with preferred delivery dates which we will refer to as customer preferred
due dates (cd;) for job 4 throughout the rest of this paper. Based on the feedback from the
manufacturing department, the marketing agent may quote a later due date in return for a
certain amount of discount to the customer in the price of the job which is assumed
constant. We call this quoted due date as negotiated due date (dd;). As obvious, if the due
date received from the customer is the due date also quoted by the marketing manager,
the negotiated due date will be equal to the customer due date. We assume that the

negotiated due date can not be less than the customer due date since there is no incentive,



such as consideration of earliness penalty, for the firm to do so. On the other hand, there
is a certain penalty for tardiness which is linear in the amount of lateness when it is
positive. We do not consider the option of rejecting an order. Also we assume that the
customers will accept the quoted due dates as long as a discount proportional fo the
difference between dd; and cd; is offered by the marketing.

In our setting, none of the department managers are expected to have control over
the entire firm and therefore can not optimize it alone. Instead, each department will try
to optimize his or her own utility being aware that the other department will do the same
thing. The decisions of both marketing and manufacturing divisions highly depend on the
belief function regarding the completion date of the order which is shaped by three types
of input. These are namely, the information procured from the orders that are already
waiting in the system, the expectations regarding future arrivals of other orders and the
capacity utilization. The first type of input may include the due dates quoted for formerly
arrived orders (confirmed orders), their processing times and capacity allocated to them
by the manufacturing department. The unknown future customer orders (prognosed
orders) should be taken into consideration so as to give more accurate decisions that
hinge against the uncertainties so that expected loss of future opportunities can be
minimized. Clearly, the service level rendered by the manufacturing department for an
order becomes an other important influence on the belief on the completion time of that
order. As the service level increases the probability of earlier completion time increases.
It is assumed that the belief function has the form of a continuos probability distribution
function and mutually shared by two parts.

Since the manufacturing department is the responsible unit for the processing of
the orders, it can be looked as a supplier working for a specific retailer in a competitive
supply chain environment. Basically, it sells capacity, which comes with a cost, for the
orders issued by the marketing department. In our model, the capacity utilization is
represented by the promised completion time (pc;) quoted for the marketing by the
manufacturing department, which can be defined as the time where a certain prescribed
service level is first attained. In our study we define the service level, 4 (0 < 8 < 1), at
pc; as the probability that the job will be completed on or before pc;. We assume that this
service level 1s predetermined and fixed so that it is a given parameter. In the model pc;
will be employed as the decision variable for the manufacturing department and will
effect the belief function for the order completion time. Obviously as pc; decreases the
capacity utilization increases so that # can be attained at this new point. Therefore the
change in pc; means a change in the capacity utilization and thus, it represents the
capacity related decision of the manufacturing department. We consider capacity



utilization changes for a relatively short term such as running overtime, hiring part-time
or temporary workers, arrangements in lot sizes and schedules, altering process plans,
short term changes in order release procedures, expediting shipments etc. In fact, pe; can
also be regarded as the due date quoted for the marketing by the manufacturing. In this
setting, the marketing makes a constant payment to the manufacturing for processing the
job. However, a certain amount of this payment is returned by the manufacturing that is
proportional to the difference between pe; and dd;. As a result it can be clearly observed
that the relationships between the outside customer and the marketing and, between the
marketing and the manufacturing are similar where one side announces a preferred due
date and the other quotes a due date as a response to that.

On the arrival of a new order the following sequence of events takes place: (1)
outside customer places her order with a due-date; (2) simultaneously, the marketing and
manufacturing announce the negotiated due date and the promised completion time; (3)
the price of the job less the discount proportional to the difference between the negotiated
due date and the customer due date is charged to the outside customer and, the marketing
is charged by the manufacturing according to the price of processing the job less the
discount proportional to the difference between the promised completion time and the
preferred due date of the marketing which is the negotiated due date; (4) production
occurs and the job is completed; (5) tardiness costs are charged.

Let; be the realized completion time of order ¢ and, ¢ and  be the Weibull
density and distribution functions regarding the belief of the completion time. Both ¢ and
$ are also functions of pe;. We assume ®(z, pc;) is continuous when pe; > 0, 0 when
pe; < 0, increasing in = and decreasing in pc;, and differential for both z > 0 and
pe; > 0. As underlined above capacity is a function of pe; (vice versa) where as pe;
decreases capacity utilization increases and as capacity increases the value of the
cumulative distribution function increases for any z(0 < 2 < co0). Moreover,
®(0, *) = 0, so that completion times are positive and ®(pc;, pe;) = f forall pc; > 0. In
general, we consider any continuous density function assuring that the expected tardiness,
and thus the expected completion time, up-slopping with pe; in convex fashion. Let A be
the inverse of the scale parameter at the beginning for the belief function and z the
fractional increase in A's value representing the increase in capacity utilization.
Consequently, after the increment the resulting scale parameter will be 1/(A(1 + z)) and
assuming Weibull distribution

(1 + 2)=CIm0=t)” (1)

Pei



where « is the shape parameter for the density function.

Figure 1 can be employed to illustrate the events explained above. Before players
give any decision the customer orders are received and the present shop floor conditions
are realized at the first stage. Hence customer preferred due date, ¢d;, and the current 8-
service-level date, pe, {pc, = (— In(l — 9))1/ “/X), are established prior to the game
(Figure 1.a.). In the next stage, players announce their decisions simultaneously. The
customer due date is negotiated to dd; and the new #-service-level date is moved to pc; as
a result of change in the belief function that is due to the capacity adjustment at the
manufacturing department. Let A = (0,dd;], B = (dd;, pc;land C = (pe;, o0) (Figure
L.b.).

If ¢; € A then the customer's shipment will not be late and thus no tardiness
penalty occurs unless ¢; € C and dd; > pe; in which case the manufacturing is penalized
by the marketing forbeing tardy. We consider the possibility for the marketing's
negotiated due date being greater than the manufacturing's promised completion time in
our analysis both for global and competitive optimization. As will be elaborated in the
next section, the position of pe; with respect to dd; will make but direct impact on the
global optimization since for the center only the resulting capacity adjustment will be
meaningful and as long as global optimum resides in a region where pcf < ddf there will
be no incentive for the center for not to steer her decisions towards this region. In the
competitive game the manufacturing (marketing) manager may have incentives to take
his (her) decision below (above) marketing's (manufacturing's). This only happens when
cd; is less than pc, or very close to it. We assume that the deviation penalty will still be
charged when dd; > pc;. This assumption is needed to make our analysis more tractable
and can be justified by the implicit inclusion of holding or precipitated shipment as a
result of too early completion. It can be presumed that this cost is negligible in general so
that it is not included in our models but becomes notable as the service level at dd;
exceeds ¢ which is unwanted and thus, the marketing imposes incentives for the
manufacturing for preventing this happens as much as possible through charging him
with the mentioned deviation cost.

When @; € B, the order is tardy for the customer and the marketing pay all the
tardiness penalty. Manufacturing is not charged since the order is completed on or before
pe;. Note that if dd; > pe; then B = {§}. While dd; < pc;, & € C' means that the
manufacturing shares the tardiness penalty with the marketing proportional to the
difference between ¢; and pe; that is adjusted by .



We assume that there is no cost for placing and processing an order. The due date
delay costs which reflect discounts both from marketing to the outside customer and from
manufacturing to marketing increase quadraticaliy with the difference between dd; and
cd;, and pe; and dd; with cost coefficients g; and n; (g; > n;) respectively. The quadratic
discount function implies that a customer becomes less willing for any additional
deviation from her preferred due date with an increasing rate. Using such a function is
significantly helpful in our analytical analysis because of its well behavior towards
guaranteeing convexity and existence of equilibria. The marketing is charged tardiness
penalty a; (a; > g;) per unit of positive lateness from dd;. This penalty may represent the
proxies for loss of customer good will, supplementary shipping and handling costs due to
the tardiness and/or the cost of the reimbursement. The manufacturing is charged ~va; per
unit of tardiness from pe; by the marketing where 0 < -y < 1. This implies that if the job

_is competed after the manufacturing's promised time, the manufacturing shares the certain
portion of the tardiness cost specified by v which is exogenous. Let pc, be the first time
point at which § service level is guaranteed at the first stage of events where new order
arrival along with cd;, has been observed just before the competing sides' actions. Thus,
pe, reveals the initial and/or regular capacity utilization level allocated to the new arrival.
Finally, m; (m; > n;) is the coefficient of the cost for improving @-service-level from pe,
to pe; which is also assumed to be increasing quadratically with their deviation from each

other.
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marketing and manufactering,

In the following section we start our analytic analysis with elaborating the center's
meodel that is aimed to minimize the total system cost. As for further notation, [z]" is
used instead of max(0, z) and 2]~ instead of min(0, ). E|z] returns the expected value
of random variable = and u(pc;}is the expected completion time of the order when the
second argument in the density function is pc;. f®(x, *) denotes the first derivative of f

with respect to its ith argument.



3. Center's (System) Optimal Solution

In general, the problem of the center can be stated as minimizing the total cost of
due date quotation and capacity utilization management incurred within the firm. There
exists a substantial relationship between decisions regarding due date quotation and
capacity utilization. Whilst the due dates quoted for customers hinges on the service level
utilized in the manufacturing division of the firm, the capacity adjustments are carried out
based on the competent service quality which is mainly shaped by the market
requirements for being competitive. Basically, there are three cost components for the
center in this model; 1) cost due to the discounts that are granted in order to convince the
customer for a later due date, 2) tardiness cost and 3) capacity increment cost.
Consequently, the expected cost function of the center can be given as follows;

G, = gi(ddi — Cdz‘)z + mi(pco — pci)z -+ aiE[[”é“i — ddz]'*']

where

Elfe, — ddi]*] = [ (z — dd))¢(, pes)d

It should be underlined that the penalty due to the deviation between dd; and pc; does not
influence the center's model since it is but the transfer payment between the departments
within the firm. Basically, this transfer is similar to the supplier's price of the product
asked from the retailer in a supplier-retailer supply chain environment which is not
involved in the supply chain's profit function. Finally, we can write down the model of
the center as follows;

P(1) Min G,

s.t.

ddﬁ Z Cdi

yLe) S PCo



The first constraint ensures that the customer will not be quoted for a due date that
is earlier than her preferred due date and second constraint implies that the capacity
utilization cannot be reduced. Next we investigate the convexity of the center's cost
function.

LEMMA 1. Assuming ¢ is Weibull G, is a strictly convex function
PROOF. We first show that both dd; (dd; > 0) and pe; {pe; > 0) are convex in G,,.

2 . T
. G;jjgf’pc‘} = 2g; + a;p(dd;, pc;)

Since the density function is greater than or equal to zero and all cost coefficients are

strictly positive (7, is strictly convex when dd; > 0.

azGa(ddispci} — oo 82¢ T, pci
e = 2m + a; [ (€ ~ ddi)J—zapcg_ dx

Since expected tardiness is convex in pe; and all cost coefficients are non zero positive
numbers (G, is strictly convex when pc; > 0. Thus, we showed that all 1st principal
minors of the Hessian of &, are strictly positive. The determinant of the Hessian can be
written as follows;

2gi(2mi o+ aif;;(m - ddi)%@dw) + 2m;ap(ddy, pe;)
+ aip(ddy, pes)as 37 (= — dd) ZEEFL d — (0,)(dd;, pes))”

pct
It is clear that
Qgi(2mi + 0 fo (@~ ddi)g—z%%é?%—)dm) + 2myasd(dd;, pey) > 0
Hence if

a;p(dd;, pes)a; [ (x -~ ddi)%wdm ~ (a:®®)(dd;, pei))” > 0
2



the Hessian is positive definite meaning that (7, is strictly convex and this inequality is
binding when ¢ is any Weibull density function.
EJ

For the next Lemma let dd? and pcf be the due date and the promised completion date
values that minimize the unconstrained system cost function. Furthermore assume pe, is a

positive number large enough so that pc; is always going to be greater than 0.
LEMMA 2. dd? and pc? minimize P(1).

PROOF. Optimum value for ddf as a function of pc; can be found by computing the
derivative of (G, with respect to dd; after fixing pc; and solving it for dd;. The resulting
equation will be as follows;

ddf = cd; + 5-®(dd], pc])
In same manner the equation that gives pef can be derived and written as follows;
peg = peo = 5% oo (@ — ddi) P (ddy, peg)da

Since we haven't specified a certain distribution function we can't generate the closed
form values for these decision variables. Even if we assume a certain distribution function
it still may not be possible to obtain closed form definitions. In this case a simple
recursive search can be employed if not find to approximate these values in a very
reasonable time given that G, is strictly convex.

We know that ®(dd;, pc?) is positive. Therefore, dd? is always greater than cd;
for all pef > 0.1In the second equation pc! willalways be positive as long as pc, is a
sufficiently large positive number. Also we know that the expected tardiness increases in
pe; which means that the derivative of the second component at the right hand sight of the
equation is positive. Hence, pe] 2 pe

O

Consequently, we can drop the constraints from P(1).and use the closed form
function as the center's model. It is obvious that if ¢d; > pc, then dd; > pc;. However,
the statement is not true in the reverse direction unless (pc, — ¢d;) is large enough. Now



that we have introduced the center's model, we can start to investigate the game between
the marketing and manufacturing couple.

4. Due Date Quotation and Capacity Utilization Game

In this game, the sides are considered as independent players. The game, €2,
consists of a single move where players simultaneously choose their strategies. The
strategy space of the marketing, ¢, is limited with a lower bound, cd;, and has no upper
bound. Hence, dd; € oy = [cd;, M| where M is a very large arbitrary constant that will
never constraint the marketing in her decision. The strategy space for manufacturing, o,
is bounded with 0 and pc,, that is, pc; € oy = [0, pc,]. All sides have complete
information regarding others' cost functions and thus, all parameters in the model are
common knowledge. The belief functions over the completion time of the order identical
across both players.

Let H,(dd;, pc;) denote the player j's expected cost when players employ the joint
strategy of (dd;, pc;). In particular, j is equal to 1 for the marketing and 2 for the
manufacturing. The best response mapping for player j is a set-valued function
corresponding each strategy of player k (k # ), with a subset of ¢; and formally defined
as follows for each player in this game,

1 (pcs) = {ddi & ov | Hi(dds, pes) = m;golﬂl(x,pca}

ro(dd;) = {pCi € oy | Ha(dds, pei) = m;& Hz(ddi,x)}
2

In this setting a pure strategy Nash equilibrium is a pair of quoted due date and -
service-level date, (ddfv , pcfv ), such that each player chooses a best reply to the other

player's equilibrium decision. Namely,
dal’ € ry(pcf')

pczN € 'rg(ddf‘r)



In this study our focus is on examining the conditions under which a unique pure strategy
equilibrium can be guaranteed. Therefore, we do not take any mixed strategy analysis
into consideration.

4.1. Models of the Players

The marketing is charged for the deviation of negotiated due date from the
customer preferred due date and the tardiness. If the manufacturing completes the order
later than his promise he compensates the tardiness penalty that the marketing pays
determined by -y parameter. Marketing also charges the manufacturing for the deviation
between pc; and dd;. Following is the cost function of the marketing division;

Hy{dd;, pe;) =
gi(dd; — cd;)® + aif;;i(:c — dd;)d(x, pey)dx — fyaif;;(x — pe; Yz, pey)dz — ny(pe; -
dd;)?

where cd; < dd; < M.
LEMMA 3. For any pc; > 0, H1(dd;, pe;) is strictly convex in dd,;.

PROOF. Fix pc; and take the second derivative of Hy(dd;, pe;) with respect to dd; :

P ldtioe) 3, 1 0,(dds, pes) — I,

since g; > n; and a;¢(dd;, pc;) > 0 the second derivative will be strictly greater than 0.

Therefore the foregoing function is strictly convex.
0

Due to the fact that the density function will be equal to () when pc; < 0, we can go ahead
one step and conclude that A is strictly convex in general. Define dd; as the only value
that minimizes f; for a given p¢;. This value can be found using the equation
H(dd;, pes) =0,

2g;ed;—2npeita (1S (dd? pe;))
2{g;—nq) ) (3)

1;(pe;) = ddf = maz(cd;,



The manufacturing is charged for the deviation of promised completion date from
the negotiated due date and the tardiness with respect to the promised completion date.
Manufacturing is also charged for capacity increase. Following is the cost function for the
manufacturing division;

Hy(dd;, pe;) = my{pei — pe,)? + ”de'f;:(x — pe;)(z, pei)dx + ni(pe; — dd;)?
where 0 < pe; < pe,.
LEMMA 4., For any dd;, Hs(dd;, pe;) is strictly convex in pe;.

PROOF. Fix dd; and take the second derivative of H,(dd;, pc;) with respect to pc;:

5)2[—12(dd,-.m) Pl pes
B = 2mat ’YCLJ;Z(IB ~ pci) w%{%gldm + 21,

Here, m; and n; are strictly positive. It can be observed that the first derivative of the
expected tardiness form pc; is a positive constant number meaning that the second

derivative will be zero. Hence, Hs is strictly convex in pc;.

O

Let pcf be the value that minimizes H; and % the constant that is the derivative of the

expected tardiness from any pe;. The following equation gives pc;

ro(dd;) = pci = min (pco, Zmipcg?;i?iﬁ")ﬂaik) @

On contrast to the equation for dd}, pc} has a closed form definition. It is clear that if
2mipc, > ya;k, pct will always be greater than 0. Specifically, given Weibull
distribution we assume 2m;pc, > ai/( — in(1 — 6))®, so that pe} is greater than 0 for
any a(e > 1)and v (0 < v < 1).

4.2. Analysis of Equilibria

In this section, we relax the strategy spaces of the players and investigate the

existence of equilibria for the relaxed game (). We will relate results of our analysis to
the original game introduced in the previous section. In the relaxed case both players'



strategy spaces are identical and Ty =7y =( ~ o0, +00). First, we give some
preliminary results that characterize the players' best response mappings.

LEMMA 5. If pe; < cd; then my(pc;) > pey

PROOF. (i)In order to complete the proof we show that it is not possible that
r1(pei) < ed; when pe; < cd;. We can easily derive 7;(pc;) from (3) and rewrite the
inequality as follows;

e 2g;cd;~2nppe;a; (1-8{dd} pe;
Tl(pci) — giCl; i 2a(gi:fni) { Y4 z)} < Cdi

which can be reduced to
ai(1 — ®(ddy, pei)) < 2ni(pe; — edi) (5)

It is obvious that if pe; < cd;, the right hand side of the inequality will be negative and
since the left hand side is always positive the inequality will not hold implying that
ri(pe;) < ed; only when pe; > ed;. Hence if pe; < ed; then ry(pe;) > ed;and thus,
ri(pe) > pe

[l

Based on the implicit function theorem, rgl)(pci) and r?(ddi) can be calculated and

given as follows;

Aoy = O s8E ) L —e@®(dd;pe)-2n;
T (pe) = ~ | saom/ Sidt ) = Sosard(dd, po)—tn,
Doy &H, 2HY _ 2

T3 (ddl) - apciaddi/ ped | T Zmy2ngdyesk

It is obvious that 0 < i"‘:gl)(ddi) < 1. Let « be the shape paramefer of the Weibull

distribution. For Fgl) (pe;) we throw in the following lemma,

LEMMA 6. ~ o0 < T"gl)(pcz-) < lifg; > a;(1—0)/2fora>landf > 1—e7 L.

PROOF. First, note that the denominator is positive since ¢; > n; > 0 and
a;p(dd;, pe;) > 0. In order for ?Ei}(pci) to be less than 1 the inequality of



2g; + a;d(dd;, pe;) > — ;8P (ddy, pe;) where @ (dd;, pe;) < 0 should hold. After
plugging in any Weibull distribution where ®(pc;, pe;) = dand rearrangement, the
foregoing inequality is equivalent to the following one

9: > §ai(“5EE)p(dd;, pes) 6)
obviously the inequality holds where dd; < pc; or pe; < 0, since then the right hand sight
will be non-positive. Note that from Lemma 5 we know that when pc; < 0, dd; > 0 since

cd; > 0. Lets take (dd =P (dd;, pe;) and generate an upper bound for this term for the
cases where dd; > pc; and pc; > 0. Let ¢ be a function defined as follows

(eln(a 3% \

s 10 (1)) dd, \ @ = ] )
P(dds, pes) = (H22)6(dd, pes) = (P o (HRUZ0NA) (i)

This function is unimodular. After taking the first derivative of the function with respect
to dd; and equalizing it to zero, it can be shown that the value of dd?’ that maximizes 1
should satisfy the following equality;

-1
dd?—pe; (—tn(1-6))/*dd? “
e (O‘( et -1

Knowing that — ln(l — @} > 1 when 0 > l-e7}, we can observe that for & > 1 and
VW
§>1-e! 1<% <owhich means that 0 < 2%

z (1

Consequently the following chain of inequalities hold

<1 for any peg; > 0.

0 < 22 4aa¥, pe?) < p(dd?, pel) < 1 - B(ddY, pc?)

and since ddf’ > pcf’,
1—&(dd?, pel) <1 - B(pe?,pcf) =1- 6

Hence for any dd; and pc;, 1 — @is an upper bound for 1. Therefore we conclude that if
g; > a;(1 — 6)/2then inequality (5) holds and thus, — co < ?gl)(pci) < 1 for any given

BCi.
Ll



Now we are ready to introduce the following theorem

THEOREM 1. Assuming o > 1,0 > 1 — e land g; > a;(1 — 0)/2 there exists a unique
Nash equilibrium for Q. Moreover, there is also a umique Nash equilibrium for the

original game, ).

PROOF. We know from Osborne and Rubinstein [17] that if the set of actions of each
player is a non empty compact convex subset of a Euclidean space and each player's cost
function is continuous and quasi-convex, then there exists a pure strategy Nash
equilibrium. By Lemmas 3 and 4 along with the assumptions these conditions are met for
both  and Q and thus,for each game there is at least one equilibrium. Let (dd;, 7e?) be
the strategy pair at any equilibrium for {2 and (Ei—cf?, Py another strategy pair at another
equilibrium for the same game. If dd; > dd, then p¢¢ > pcy and dd; — dd; > pes — pey

since 0 < rgl)(ddz-) < 1. From Lemma 6 we know that under our assumptions

-0 < Fgl) (pe;) < 1 which implies that when - oo < F&l)(pci) if pe; > pey then
dd; < dd; should hold. This is a contradiction. Furthermore when 'rgl)(pci) is positive it
is less than 1 so that if Pe¢ > pe? then dd; > dd, and dd; — dd; < pe; — pe} which
implies another contradiction. Hence, given the foregoing assumptions the equilibrium
for {1 is unique.

Let (ddf,pef)be the strategy pair at the equilibrium for §2. With the same
assumptions, if at the equilibrium for &, dd; > ed;and ¢ < pe,, then ddf = dd; and
pef = pes. The equilibrium will be unique since the all foregoing conditions are also
valid for game Q for dd; > cd;jand pe; < pe, (ie 0< rgl)(ddi) <1 and
-0 < rgl)(pci) < 1).

If Ei?if < cd;, from Lemma 5, PcS > cd;. Let b =cd; wﬂj and &, n some
parameters such that 0 < § < 1 and 0 <% < 1. Since dd; is convex in r;(pc;) and
constrained by cd;, marketing will have to increase her decision by b units to cd;. As a
response, manufacturing will increase pc; by 8b. The best response of marketing to this
action is to move her decision either to dd; + 8nb or to some value that is less than dd;.
Either points are less than cd; and therefore marketing can't move. If marketing doesn't
move, the manufacturing will not move either. Consequently at the only equilibrium,
dd¢ = cd; and pef = ry(cd;). By using the same approach it can be shown that if
PEs > pe, then pef = pe, and ddf = r(pc, ).

O



Next, we show that the total cost of the system in €2 is higher than the center's optimal
solution.

THEOREM 2. Assuming ~v < 1, center's optimal solution is never a Nash equilibrium in
Q

PROOF. Note that G, is strictly convex. Hence, the only due date values that minimize
G, are dd? and pc?. If these values are equal to ddf and pc] respectively, then the center's
solution is an equilibrium. Due to the fact that ddf is strictly greater than cd; and pcf is
strictly less than pc,, if the equilibrium in §2 is observed at boundaries (i.e., ddf = cd; or
pef = pe,), the system optimal solution can't be the equilibrium. For the case where
equilibrium resides within the boundaries the following equalities should hold,

ddg = dd = cd; + £ B (dd?, pef) = S Inpgtell-0Ed ) %)

' : 2 pe, +2nadd? —vak
peg = pef = peo — g fage (& — ddi) 9P (ddf, peg)da = =G

It can be straightforwardly observed that equality (7) can only hold when dd? = pcf.

Hence,
[oo(@ — ddi)¢P(ddg, pef)dz = k and

2

pef = pco — 5k = pe, — 5-vk (8)

Since v < 1, equation (8) is infeasible implying that pc! # pcf and thus, ddf # dd;.
0

It may be possible for the system optimal solution to be a Nash equilibrium in (2, only if
the manufacturing is charged a; for unit tardiness from pc;. In other words, if ¢; > pey,
marketing pays a;(pc; — dd;) and manufacturing pays a.;(c; — pe;). Note that when
v =1, if dd; > pe;, then marketing is never charged for tardiness and manufacturing
pays all tardiness penalty to the customer (a,(¢; — dd;)) plus the tardiness penalty to the
marketing (a;(dd; — pc;)). In this case, the order can be tardy for marketing even if the
outside customer is serviced in time (i.e. pe; < ¢; < dd;) and manufacturing still makes a

payment to the marketing for being tardy.



8. Coordination in the Game

In Theorem 2, we show that competition degrades the system efficiency in the due
date negotiation and capacity utilization problem. A coordination mechanism that will
give necessary imcentives to the departments to cooperate can lead to lower costs.
Basically, the goal of the center is to initiate a contract that specifies the allotment of the
revenue from the sales across marketing and manufacturing divisions in such a way that it
obliterates any incentives to deviate from the center's optimal solution. To achieve this,
the share of each department can be devised based on the due dates bid by the divisions,
their deviation between each other, deviation of marketing's quoted due date from
customer's preferences and expected tardiness for both divisions. Suppose the center
distributes a fixed proportion of the revenue gained from the sale of order iamong
marketing and manufacturing. Let L denote that amount, L1 — T marketing's share and
Ly +T (L — Ly — T)manufacturing's share. Furthermore suppose L; and Ly are

constant while 7" is a function defined as follows;

T = By(dd; ~ cdi)? + B2 [ (2 — pes) (@, pei)da + Bzai [ (x — ddi)d(, pe;)de
+ Ba(peo — pes)® + Bs(pei — ddy)?

T can be looked as a transfer payment to manufacturing stipulated for marketing. The
objective is to determine the set of contracts, that is value ranges for the coefficients in T,
such that Nash equilibrium coincides with the optimal solution. No sign restrictions are
set for the coefficients and a negative value for a coefficient represents a payment from
manufacturing to marketing. After the transfer payments, cost functions of the players
become as follows:

TW=H+T and Ty = Hy — T

First, assume that 7} is convex in dd; for a given pe; and T is convex in pc; for a given
dd;. Next we determine the allotments in which ddf satisfies marketing's f{irst order
condition and pc? satisfies manufacturing's first order condition. After some algebraic
manipulation we produce the following equations for the coefficients that will accomplish
this:
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£3

(4)  Po=ra (10)
(488) By =mi+ 03 (11)
(iv)  Bs =my (12)

THEOREM 3.  Assuming any Weibull distribution where a>1, 6> 1~ e~ 1,
g; > a;(1 — 6}/2 and m; > a;8/8 and employing the foregoing equations there exists a
unigue Nash equilibrium for the new cost settings if the following inequality holds

—0; < B3 <0

PROOF. Following is the second derivative of Ty with respect to pe; for any contract that
satisfies equations (9-12)}

ST {dd;,pey) : &P {m,pe;

__.Za—pciz__.._ == — 2/33(%{“ aif;;i(:c e ddz)%?;—?c—ldiﬂ)

The term inside the parenthesis is positive. To have a convex cost function for

manufacturing (3 should be negative. Given this lets also write the second derivative of

the marketing's cost function with respect to dd;
62T15f§3:mfi2 o (Clui + ﬁg)(z_gh -+ cﬁ(ddh pcz))

To have a convex T}, s needs to be greater than — a;. Hence, in order to guarantee the
existence of a Nash equilibrium — a; < 3 < Oshould hold. This inequality implies that
—g; < B < 0and 0 < B4 < my. Granted that these inequalities hold, we can derive the
following results;

Wy &1 ,8m Y e 39(ddpey)

ry (pei) = deic'?pci/ 8dd? } T 2gitaip(ddi,pe;)

) ( &, 8T, ;8@ (dd; pe;)
rs(dd;) = — = % e,
=2 ( z) chiadd,-/apcf‘ Qmi"i"aéf:fz(m“ddi}%ﬁdm



From Lemma 6, 0 < ;r_gl)(pci) < 1. If we can show that

2m; + a@f;;(x - ddi)%fc’?mldw > a; 0% (dd;, pe;)

then 0 < [gl)(ddi) < 1 which from Theorem 1 ensures that optimal solution is the unique

equilibrium. For Weibull distribution the foregoing inequality is reduced to the following
one:

2m; > ag(ddi, pe;) (1 — 22) (13)
Obviously the inequality holds where dd; > pe;. For dd; < pe;, theoretically, the
maximum possible value for %‘fj(l - %gf) is 1/4and for ¢(dd;, pe;) it is 0. Hence, if
m; > ;6 /8 holds then (13) will indeed hold.

0

With these confracts the cost of deviation between division due dates are
eliminated. Also, instead of paying a penalty for his own tardiness, manufacturing shares
the whole tardiness penalty with the marketing specified by the selection of the
coefficients according to equations (9-12). According to these contracts all parts share all
the cost. Since SB35 cannot be equal to 0 or — a; (hence, 81 # 0or — g; and B, # Oor m;)
no cost entry is solely charged to one division. Specifically, if #3 = — a;/2, cost for each
entry is equally shared by the departments. If L; = Ly then the revenue is also shared and
as a result departments make the same profit at equilibrium. However, as 33 increases, the
marketing becomes more responsible for the due date deviation discount and the tardiness
penalty while manufacturing pays the most of the capacity increment cost. The opposite
happens as 33 decreases. One can also look for contracts such that each department's cost
is no greater than in the original Nash equilibrium.

6. Conclusions

In this paper, we propose a framework for coordinating the decisions of marketing
and manufacturing departments within a make-to-order company. We first analyze the
central model where the due date quotation and capacity utilization decisions are jointly
given. Second, we investigate the decentralized case in which the departments are

considered as independent decision makers. To model it, we consider a Nash game in



which the departments announce their own decisions simultaneously based on their local
cost structures. We characterize the basic properties of both models and comparison
analysis shows that except for very special cases, the equilibrium decisions never
optimize the central problem due to double marginalization. Next we propose a set of
rules for the allotment of the revenue that specifies nonlinear transfer payments based on
due date deviations, capacity utilization and tardiness. By these transfer payments one can
achieve to implement the cooperative solution where the incentives to deviate from
optimal solution are eliminated, thus, the central solution becomes the unigue Nash
equilibrium.

In our model we assume any Weibull distribution for the belief function that is
identical across departments. In general, for any distribution who has a closed form CDF
existence of equilibria can be proved as long as the capacity increment is modeled
appropriately in the function using the scale parameter so that it satisfies inequality (2).
For example, it could be shown that with any positive integer shape parameter Gamma
(Pearson Type HI) or Pearson Type V distributions as belief functions there is at least one
Nash eqguilibrium. Equilibria exist also for Pearson Type VI distributions when shape
parameters o and o are non-negative and ap > 1. Moreover, with these distributions,
the set of contracts that we propose in the previous section also provides the necessary
incentives so that the optimal solution is at equilibrium. However, uniqueness of the
equilibria should be further investigated for each distribution type.

Feature research may consider relaxing our assumption regarding identical belief
functions and complete information in the game. In many real situations, the departments
will keep their information private and as a result their belief functions will be different.
The players may not have incentives to reveal their true preferences leading to a lack of
trust between them which may make it very difficult to coordinate their actions. In such a
case, to achieve the coordination of the departments one should develop a mechanism
using appropriate transfer and/or penalty schemes so that the necessary incentives are
incurred for players to announce their true preferences. In our model we restrict ourselves
to a firm that never rejects an order and to customers who never cancel their orders.
However in certain situations, the optimal decision for the firm may be rejection of an
order for avoiding any loss of future opportunity or increased cost. Inclusion of this
option, however, necessitates a state dependent analysis of due date quotation and
capacity utilization management from a more strategical point. One may also attempt to
include other cost factors such as inventory and earliness costs in the model which will

possibly complicate the analysis.
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