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Abstract

CUTGEN], presented in Gau and Wischer (1995), is a problem generator for the one~dimensional cutting
stock probiem. Gau and Wischer also present an analysis of problems generated by CUTGENI using a
colunm generation algorithm. This analysis is used to propose a set of benchmark problems for the one-
dimensional cutting stock problemn. This paper provides a further analysis of the CUTGENI problems
using the First-Fit Decreasing (FFD) algorithm. The FFD analysis is used to propose a different set of
benchmark problems for the one-dimensional cutting stock problem.

1 Introduction

This paper provides an analysis of one-dimensional cutting stock problems generated by the problem
generator CUTGENT1 (Gau and Wiischer (1995)) using the First-Fit Decreasing (FFD) algorithm. The
remainder of this section reviews the cutting stock problem and the FFD algorithm. Section 2 examines the
CUTGENT problem generator. Section 3 presents the FFD analysis of the CUTGEN] problems and
section 4 presents the conclusions of the analysis and proposes a different set of benchmark problems for
the one-dimensional cutting stock problem.

1.1 The Cutting Stock Problem

The one-dimensional cutting stock problem (CSP) can be stated as follows:

Given a set of order requirements, O, and for each requirement / in @, a demand, dj, and a length, /,
and given a set of inventory items, J, each of length L, with a sufficient quantity of items in I to meet
all of the demand in @ (guaranteeing a feasible solution). What is the minimum number of inventory
itemns in I required to meet all of the demand in 07

The otie-dimensional cutting stock problem can be formulated in many ways. The classical formulation
involves the application of cutting patterns to the inventory items (Gilmore and Gomory (1961, 1963)). A
cutting pattern is defined as an m-tuple {ay;, @y, ..., dny) where m is the number of order requirements in O
and a represents the amount of demand for order being met by cutting patternj. A valid cutting pattern is
defined by constraints 1 through 3:

Zli a; <L (1)
e

a; 20 (2)
a; an integer (3)

By introducing the decision variable x; representing the number of cutting patterns j to be cut and the set P
representing the valid cutting patterns from O onto £, the formulation is:

CSP:  Min ) X, @
jeP



s.t. Z%‘x; =d,VieO Q)

jeP
x; 20 (&)
X, an integer (7}

The cutting stock and the bin-packing problems are equivalent (Coffman et al., 1996).

1.2 First Fit Decreasing Heuristic

The FFD algorithm first sorts the order requirements into non-increasing order such that /;z0,>...2/,. The
algorithm then cuts the first order requirement from the first inventory item with at least /; remaining
length. This is repeated until no order requirements remain.

The FFD algorithm has been extensively studied in the context of cutting and packing problems. In
general, as the average size of the order requirement decreases, the worst-case performance of FFD
improves. The worst-case behavior for FFD is:

FFD(L) < %1— -OPT(L)+3 (8)

Where L is any list of ordered items, FFD(L) is the FFD solution and OPT(Z) is the optimal packing
(Baker (1983)). Coffman et al. (1996} provides an excellent discussion of the worst-case and average-case
FFD performance.

2 CUTGEN1 Problem Generator

2.1 Background

Gau and Wiischer (1995) present a problem generator for the one-dimensional cutting stock problem. Five
parameters are identified that define problem classes. The parameters are listed in Table 1.

m Number of order requirements

L Inventory length

vl Minimum order requirement relative to inventory length
V2 Maximum order requirement relative fo inventory length
dbar Average order demand

Table 1 — CUTGEN1 Parameters

The parameter # is the number of order requirements (|Q|) and L is the length of the stock inventory pieces.
The order lengths, [, are generated from a uniform distribution between vi*L and v2*L. The order
demands, d;, are generated such that the average demand for all order requirements is dbar. The outcome
of this is that each problem generated for a specific m and dbar will have the same total number of
demands (Zd)).

2.2 Benchmark Problems

Gau and Wischer (1995) propose a set of benchmark problems for the one-dimensional cutting stock
problem. These problems are generated using a specific set of values for the above parameters. Table 2
shows the possible values.



m 25,50, 75

L 10,000
vi .0001
v2 25,.50,.75, 1.00

dbar 5,10,20

Table 2 - Benchmark Problem Parameters

With all of the combinations of these values, 36 classes of problems are generated. A column generation
algorithm is used to analyze the benchmark problems. The algorithm is based on Gilmore and Gomory’s
seminal work (Gilmore and Gomory (1961, 1963)). The algorithm solves a relaxed problem with the
integer constraint relaxed (constraint 7). Difficult problems are identified by long solution times because,
according to Gau and Wischer (1995), most cutting stock solution methods embed column generation.
Gau and Wischer propose that six problem classes as the hardest problems. The six problem classes are in
Table 3.

m v2 Dbar
50 50 5

50 .50 10
50 S 1.50 20
75 .50 5

75 50 10
75 50 20

Table 3 - Hardest Berchmark Problem Classes

The hardest classes of problems are defined as those classes, which on average, have the longest solution
time.

3 First Fit Decreasing Analysis

3.1 Lower Bounds

A critical difference between Gau and Wiischer’s analysis and this analysis is the use of the FFD heuristic.
The FFD analysis compares the FFD solution to a lower bound for the CSP. To calculate a lower bound for
the CSP, the integer constraint for valid cutting patterns is relaxed (constraint 3). By relaxing this
constraint, a solution to the cutting stock problem can be constructed by inspection. The equation to
calculate the lower bound for this relaxed problem (without constructing a solution) is:

Zli 'di

LBﬂ i 9
I A ®

The lower bound equation 8 can also be rewritten as a function of the average order requirements.
Calculating the average as follows:

A=t (10}

And substituting equation (10) into equation (9), the result is:

2.4,
LB =||&— |. 4 11
1 I 11



A better lower bound for CSP uses the number of large order requirements. A large order requirement is
defined as an order requirement such that />.50*L. In other words, an order requirement that is larger than
half of the size of the inventory pieces. Two or more of these large pieces cannot be cut from the same
inventory piece. If the number of the large pieces dominates the solution, the better lower bound is:

LB, =Y d, (12)

isB
where B is the set of large order requirements. An improved lower bound for the CSP is a combination of
LB, and LB;:
>4

LB, =max| > d,,|| % |- 4 (13)
ieB L

3.2 Analysis Results

Table 4 shows the analysis of the CUTGENI problem classes using the FED algorithm. The Gap Average
is the average difference between the FFD solution and the lower bound (equation 13). The right-hand
columns display the frequency of the solutions for each problem class. The maximum gap for the FFD
algorithm is for these problem sets is approximately 22% using equation (8). The highlighted rows are the
difficult classes identified by Gau and Wischer.
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Table 4 — FFD to Lower Bound Average Gap

An alternate presentation of the data in Table 4 is in Table 5. The data in Table 5 is sorted by gap standard
deviation. A definite patiern appears in this table. In general, as the v2 parameter increases, the average
gap and the gap standard deviation increase. Note that the difficult problems identified by Gau and
Wischer are near the top of Table 5 and the FFD algorithm consistently solves these problems to within 4%
of the lower bound and on average, to within 1% of the lower bound.
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Table 5 — FFD to Lower Bound Average Gap by Standard Deviation

Table 6 shows the FFD results for each of the difficult problems identified by Gau and Wischer for each
problem class. Note that the most difficult problems for the difficult problem classes are solved to within
1.35% of the lower bound.
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Table 6 — Most Difficult Preblem for each Class

Figure 1 shows the actual gap (the difference between the number of inventory items consumed) between
the FFD solution and the lower bound. Note that all of the larger gaps occur at the larger average order
requirements. The FFD algorithm solves problems with smaller order requirements more consistently than
those problems with larger order requirements.



Actual Gap by Average Order Requirements
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Figure 1 ~ Actual Gap by Order Requirements

3.3 Identification of Difficult Problems

The problem classes identified as difficult by Gau and Wischer are consistently solved with small gaps by
the FFD algorithm. Figure 2 displays a consistent pattern to the FFD solutions as plotted against the
average order requirements. There are seven distinct lines in the chart. Each of these lines correspond to a
value of m*dbar, for which there are seven values in the problem classes proposed by Gau and Wischer.

FFD by Average Order Requirements

1,000
900
800
700
800
500
400
300
200
100

FFD Solution

T { T ]

- T T g

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 00.00%
Average Order Requirements as Percent of Inventory Length

Figure 2 - FFD Solution by Order Requirements

LB, and LB, can be used to partition the problems into two sets. The first set contains problems where LB;
is the larger of the two lower bounds. The second set contains the problems where LB, is the larger lower



bound. The second set is defined by problems dominated by the large order requirements. In Figure 2, the
large order requirement dominated problems appear furthest from the seven distinct lines.

Figure 3 shows only one group from Figure 2. The analysis on the other groups provides results similar to
those presented in the remainder of this section. The group presented is for problems for which m*dbar is
500. These problems are generated in the classes where (m,dbar) is (25,20) and (50,10). Removed from
Figure 3 are the problems that are dominated by the large order requirements. Added to Figure 3 isa line
representing the lower bound as calculated using equation 8 (LB;). Note how the FFD solutions diverge
more from the lower bounds as the average order requirements increase.

500 Count FFD Solutions by Average Order Requirements
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Figure 3 - 560 Count FFD Solutions by Average Order Requirements

Table 7 displays the analysis results for three different sets of 500 count problems. The first two sets, set A
and set B, are problems where the lower bound is not dominated by large order requirements (the largest
lower bound for the problem is LB;). These problems are split into two subsets. Set A has problems where
the average order requirements are less than 1/3 of the inventory length and set B has problems where the
average order requirements are greater than 1/3 of the inventory length. The final category (set C) is made
up of those problems with the lower bound dominated by large order requirements (the largest lower bound
for the problem is LB,). It should be noted that all of the problems dominated by large order requirements
have an average order requirement of greater than 1/3 the inventory length.



SetA SetB SetC
Average Order]
Requirements as} 19.60% 42.77% 47 .90%
Percent of L
Percent FFD 32.25% 0.00% 31.16%
Optimak
Average Gap) 1.14% 4.74% 3.10%
Average Gap o 0 o
Standard Deviation 1.14% 8.58% 3.27%
Minimum Average 0.00% 0.57% 0.00%
Gap
Maximum A‘“’";g: 7.36% 18.18% 15.89%

Table 7 - 500 Count FFD Analysis Results

Generally, FFD can consistently generate good solutions for those problems that are not dominated by large
order requirements (set A). FFD is good at generating optimal solutions for both the problems dominated
by large order requirements and those problems not dominated with small average order requirements (set
A and set C). FFD is most inconsistent generating solutions for problems with order requirements larger
than 1/3 the inventory length (set B). The most difficult problems for FDD appear to be non-dominated
large average order requirement problems.

Therefore, we suggest that a more comprehensive set of benchmark problems would include problems that
are hard for both approaches (FFD and column generation). The last several problem classes in Table 5
present a wide spectrum of problems. It is proposed that these problem classes are used as the benchmark
problems for the one-dimensional cutting stock problem. Table 8 presents the proposed benchmark
problem classes.

m v2 Dbar

25 1.00 5
25 1.00 10
23 1.00 20
50 1.00 3
50 1.00 10
20 1.00 20
75 1.00 5
75 1.00 10
75 1.00 20

Table 8 - Proposed Benchmark Problem Classes using CUTGEN1

4 Conclusions

CUTGENT1 is a problem generator for the one-dimensional cutting stock problem presented in Gau and
Wiischer (1995), A column generation based algorithm is used to analyze the generated problems and a set
of difficult benchmark problems are proposed. The difficult problems are identified by on average, long
solution times of the column generation algorithm. In this paper, a different set of benchmark problems are
identified using the FFD heuristic. The benchmark set encompasses problems that are difficult for the
column generation algorithm and the FFD heuristic. Analysis shows that problems that are not dominated
by large average order requirements are the most difficult for the FFD heuristic.
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