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Abstract

Benders decomposition is a popular method for soiving problems by resource-directive decomposition.
Often, the resource allocations from the master problem lead to infeasible subproblems, as resources are
insufficient to meet demand. This generally requires the use of feasibility cuts to reach a feasible solution,
which can be computationally expensive. For problems in which subproblems have limited capacity, we
propose an efficient algorithm which shifts excess demand to other sources of capacity. The advantages of
the algorithm are that it is quick, requires only one solution of each subproblem in each Benders iteration,
and does not add any feasibility cuts into the master problem. A computational study is performed on
a fleet sizing problem to illustrate the algorithm’s efficiency when compared to the traditional feasibility
cut method.
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1 Introduction

Benders decomposition [Benders, 1962}, also known as Benders’ partitioning or outer linearization, is a pop-
ular method for solving problems by resource-directive decomposition. It has been appled, with success,
to both linear and mixed integer programming problems in a variety of applications. These include solving
two-stage recourse problems {Van Slyke and Wets, 1969, the multicommodity distribution system design
problem [Geoffrion and Graves, 1974}, the quadratic assignment problem [Bazaraa and Sherali, 1980}, hi-
erarchical production planning problems [Aardal and Larsson, 1990] and the parallel replacement problem
[Cher, 1998}, among others.

In general, Benders decomposition works in an iterative fashion. First, the configurative variables (usually
the complicating variables) are determined in a master problem and then the remaining, lower-level decision
variables are found in subproblems. At each iteration, optimality cuts are generated from the subproblem
dual variables and added into the master problem. It is well known that solving the Benders master problem

can be computationally intensive. Magnanti et al. (1978, 1981} proposed finding “pareto-optimal” cuts to
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accelerate Benders decomposition, with multiple optimal solutions from the subproblems. Minoux {1984]
suggested solving the master problem only to obtain a feasible solution and a lower bound, due to the
disadvantage of degeneracy and round-off errors in the simplex method. Aardal and Larsson [1990] priced
out the benders primal cuts such that the remaining Lagrangean relaxation problem could be solved easily
by dynamic programming. However, Holmberg [1994] showed that relaxing the Benders primal cuts does
not yield a lower bound that is as good as the bound from Lagrangean relaxation of the original problem.

In this paper, we are concerned with the feasibility of the subproblems once the master problem has
been solved and allocations to the subproblems have been made. This is not always a problem. In Geoffrion
and Graves [1974], it is assumed that the transportation subproblem always has capacity that is greater
than the total demand, so as to preclude the possibility of an infeasible solution. The Benders’ subproblems
of the hierarchical production planning model are always feasible [Aardal and Larsson, 1990, as unlimited
overtime production is allowed. Similarly, as the assumption of constant demand implies that the total
number of machines is constant over time in [Chen, 1998], the subproblem for each asset group does not
encounter infeasibility. The power plant expansion problem has complete Tecourse, provided that at least
one zero-leadtime technology is available [Birge and Louveaux, 1997]. In this paper, we are concerned with
problems in which the subproblems have fixed, limited capacity. Specifically, we illustrate this problem with
a rental fleet sizing model which decomposes the fleet by truck type and age. As it is assumed that only
new trucks can be purchased, the subproblems with older trucks have an upper bound on capacity. ‘While
it is possible to penalize the acquisition of additional capacity with arbitrarily high prices, it has been our
experience that the convergence of the Benders procedure may be slow with this assumption, thus further
motivating the development of our algorithm.

Classical Benders decomposition deals with the infeasibility of subproblems by means of generating fea-
sibility cuts [Van Slyke and Wets, 1969]. Obviously, solution of the master problem is more computationally
expensive with the addition of both optimality and feasibility cuts. We are therefore motivated to propose
a feasibility algorithm which shifts excess demand to other sources of capacities (from the infeasible sub-
problem to a different subproblem) such that a feasible solution can be found quickly, and no additional
computational burden is placed on solving the master problem. The algorithm, by construction, also has the
benefit of only requiring one solution of each subproblem in each iteration of the Benders procedure. Thus,
the master problem need not be reformulated and solved repeatedly until all the subproblems are feasible.

We review the traditional feasibility cut approach of Benders decomposition and present the details of
the demand-shifting feasibility algorithm in Section 2. In Section 3, a case study on a fleet gizing problem
{llustrates how the demand-shifting algorithm works effectively on dynamic problems of multiple dimensions
(space and time). The computational effectiveness of the algorithm is analyzed, along with a comparison to
a traditional, feasibility-cut generating scheme. Conclusions and directions for future research are given in

the final section.



2 Demand-Shifting Feasibility Algorithm

In this paper, we consider a large scale linear program (P) of the following form:

min ¢X 4+ hY

subject to:
DX+ BY =d
AX <r
Xz20Y>20

where B and D have a block separable structure,

B,

Bz

Bx

Dy

Dy

Dy

and h = [hl,hz,...h}(} and d = [d1,d2,...d}{].

(1)
2

As solving large problems of type P can be demanding, decomposition procedures are generally employed.

We observe that the problem (P) can be decomposed into k independent subproblems (SPy) by fixing the

X variables. Without loss of generality, Constraints (1} and {2) can be regarded as demand and resource

allocation constraints. The Benders subproblem (SP) is defined as follows:

(SP) min T8, mYa
subject to:
BiYy = dp — DpX k=1.K
Y, >0

The Benders master problem (MP) is defined as follows:

(MP) min cX +

subject to:

AX <r

K
ZZZWk(n}(dk“DkX) n=12..N
k=1

X=0

(3)

4)



The solution of $P}, in the n?™ iteration produces 7y, the dual variables of Constraints (3}, which
are used to construct the optimality cut in Constraints (4). Basically, each subproblem (SPy) finds a
myopic optima of ¥y, given the fixed proportion of allocation on X. Acting as a coordinator, the master
problem (M P) then adjusts its allocations through the subproblem price information {7 kny), embedded
in the Benders cuts. Iterations between the master problem and subproblems proceed until a prespecified
stopping criteria is met (or optimality is reached}.

For specific problems, valid inequalities can be derived and included in the master problem to avoid
infeasible subproblems. These are often referred to as induced constraints {Birge and Louveaux, 1997]. In
Geoffrion and Graves [1974], feasibility is guaranteed as an induced constraint forces total demand to not
be greater than the available supply in a given subproblem. Unfortunately, induced constraints are problem
dependent. Without induced constraints, feasibility cuts may need to be generated in the form of Constraints

(5) [Birge and Louveaux, 1997} to guarantee feasibility, as in (MP'} below:
(MP") min ¢X -+ z
subject to:

AX <r

K
z> Zﬂ'k(n}{dk - DpX) 7

k==l

i,..N

K
0> oumlds—DeX) m=1,..M (5)
Rl

Xz0

Here, () are the dual variables of Constraints (3) when (SPy) has no feasible solution at the mth
iteration. The general Benders procedure, with the addition of feasibility cuts, works as follows:

0. Initialization: Set m = 0,n = 0; Select initial allocation X.

1. Solve the Benders subproblems 8P, k = 1,..K sequentially. If SPy is infeasible for any &, stop and
set m == m -+ 1. Construct feasibility cuts as in (5) and add it into the master problem (M P’). Else, go to 3.

9. Solve the reformulated master problem (M P’) and pass the new allocation decision X to the subprob-
lems SF;. Go to 1.

3. Check optimality. If optimality condition holds or a stopping criteria is reached, stop. Else, set
n = n+ 1, generate optimality cuts as in (4) and continue to Step 4.

4. Solve {MP'}. Given new X, go to L.

As seen by the procedure, feasibility cuts are generated for each infeasible subproblem until all the
subproblems are feasible, before any optimality cuts can be added. If many feasibility cuts are added, the
process can become computationally expensive in addition to the fact that the master problem becomes
increasingly more difficult to solve with a greater number of constraints. This can make the traditional

feasibility cut procedure very unappealing.



We propose a demand-shifting feasibility algorithm to alleviate this problem in that it does not require
the addition of feasibility cuts, reformulation, and solution of the master problem in each iteration. Without
loss of generality, suppose SPig is infeasible at one iteration, ie., BroYio < dro ~ DroX. Note that
(dpo — DroX — BroYko) can be regarded as excess demand, where Dyp.X is the first-stage capacity allocation
from the master problem and BpgYio is the second-stage capacity allocation. Satisfying the constraint
BioYio = diro — DX is equivalent to shifting excess demand to other sources of capacities. This idea of
demand-shifting can be applied to a variety of infeasible subproblem instances, although problem-dependent
structures may need to be exploited individually. In the next section, we illustrate how the demand-shifting
algorithm works in the context of a rental fleet sizing problem.

The Benders decomposition with the demand-shifting feasibility algorithm can be described as follows:

0. Initialization: Set n = 0; Order the subproblems and select initial allocation X.

1. Solve the Benders subproblems SP, k = 1,..K sequentially with excess (infeasible) capacity ar-
bitrarily high. If any subproblems SP is infeasible (excess capacity is acquired), shift excess demand
dio ~ Do X — BroYeo to the next subproblem, thereby constructing a feasible solution to SF.

2. Check optimality. If optimality condition holds or a stopping criteria is reached, stop. Else, set
n = n + 1, generate optimality cuts as in (4) and continue to Step 4.

3. Solve (M P'"). Given new X, go to L.

The ordering of the subproblems is problem dependent. As demand is shifted from one problem to
the next, the shift should occur according to increased cost for capacity. The benefits of this method, as
compared to the traditional feasibility cut procedure are numerous: (1) each subproblem is solved only once
in each Benders iteration as feasibility is assured with the demand-shifting algorithm; (2) no feasibility cuts
are added into the master problem; (3) the master problem need not be reformulated and solved repeatedly

to find feasible solutions of the subproblems.

3 Application to a Rental Fleet Sizing (RFS) Problem

Determining the number of vehicles to be maintained in a transportation system at each location over a
certain time period is traditionally known as the fleet sizing problem [Turnquist and Jordan, 1986, Klincewicz
et al., 1990, Beaujon and Turnqguist, 1991]. In the context of the truck rental industry, the fleet sizing problem
is concerned with determining how many trucks of various types (generally different sizes) are needed to
service customer demand while minimizing total costs, which include capital and operating costs. The size
of the fleet can be altered through the purchase or lease of additional vehicles or the sale of excess vehicles.
Typically, a customer reserves a truck of specified size at a given location for a given departure time to be
taken to another location within a given time frame.

There are generally two types of truck movements: (1) loaded, where the customer moves the truck and
(2) empty, where the company moves the truck in order to service demand at an alternate location. The

loaded truck travel time is uncertain, as travel routes and speed are customer dependent. Average travel



time between cities can be estimated from historical information. However, empty truck travel time tends to
be deterministic as it is mainly dependent on the travel distance (and is performed by professional drivers).

As fleets a,ré diverse, in that trucks vary in capacity and age, the assignment of a truck to a customer
carries a cost. Thus, a fleet sizing model must account for operational details, such as how to allocate
trucks to meet customer demands and how to move empty trucks, as well as tactical decisions such as the
procurement and disposal of trucks over time. The allocation of trucks to meet customer demands involves
considerations of a truck’s age, as older trucks tend to be more expensive to operate and maintain, as well
as the capacity, as larger capacity trucks can be substituted for smaller trucks originally requested by the
customer, This is defined as an “upgrade” policy, as customers are upgraded to a larger truck.

Define the following variables and parameters:

L = number of locations, { = 1,2, ...L;

H = number of time periods in the planning horizon with { = 1,2, ... H;

K = number of truck types with respect to truck capacity, £ = 1,2, ..K;

N = maximum age for trucks to be kept in the fleet, a =0,1,...N;

Apoaxe =maximum time periods to move loaded trucks from one location to another, A = 1,2, ... Amax;

By (N) =percentage of loaded trucks taking A time periods from location [ to I';

wyp =time periods to move empty trucks from location [ to I';

I f’“((}) =initial Aeet of type k trucks of age a at location [;

d¥,(t) =demand for type k trucks to move from location ! to I’ leaving at time period t.

Additionally, m*9(z), v%2(¢), c*2(t), p**(t) and s¥%(t) are inventory costs for idle trucks, maintenance
costs for loaded trucks, operating & maintenance costs for moving empty trucks, purchase prices and salvage
values, respectively, for each truck of type k and age @ in period £. Note that these costs are differentiated
as the customer pays the operating costs of moving a loaded truck.

ke k¢
Decision variables X[3°(t) and dj;,

(t) define empty movement and demand allocation, or loaded flow
with down-grade k', of type & trucks of age a, from location ! to I’ in period {. Variables B{c’“(t}, S:“’“{t)
and I f ®(t) are the number of type k trucks of age a purchased, sold and held in inventory, respectively, at
location { in period ¢.

We present the following fleet sizing model (RFS). The objective function minimizes empty truck oper-
ating and maintenance costs, loaded truck maintenance costs, idle truck maintenance costs, purchase costs
less salvage revenues for all the trucks in the fleet within the overall time-space network, as follows:

K H K N Asiax

k' k,a
min 3553 Y (PeewXESH) + 050 > Au (V) 2 AT O)
ka=l t=1 k=1 a=0 (l I GLZ A==zl k'=1
H K N L

+ SOSTSTS w1 (s) + P40 B — F20)SP(E))

t=1 k=1 am0 =1

subject to:



Demand allocation with the downgrade policy:

K N
S = () VE=1,2, K, L =1,2,..L, t=1,2,..H (6)
k! =k a==0

Flow balance at each location node in time:

L )\m&x

wle R,
> 2 BV Z dy " (E = A+ Z XEE — wm) + I (= 1) + BPA(E) - 57°(2)
om]l Aeel kot == Ul
Lok
=3 dy )+ ZXH, @O +IF) VE=1,2,..K, a=01,.N, I=12.L t=1,2..H
V=1 kf ol V=1
{(7)
Restricting purchases to only new trucks:
BM(#) =0 Vk=1,2,..K, [=12,..,Lt=12.Ha=12.N (8)
Restricting the sale to only used trucks:
SOty =0 Vk=1,2,.K, |=1,2,..,L t=12.H (9)

And restricting all variables to be non-negative:

L5 20, X5A@) 20 (L £), BE(E) 20, SP) 20, IP*(t) >0

ViL,IYe I, t=1,2,..H, k¥ =12..K, a=01,.,N

Note that the flow balance constraints (7) in the RFS model present a network flow structure as shown
in Figure 1. The figure illustrates three different types of truck movements: empty (dotted line), local and
one-way loaded movements (solid line). Loaded movements are associated with travel time probebilities,
which are differentiated by arc boldness. Idle trucks can be treated as inventory (double line) from one time
period to the next time period. Additionally, for each time-space node, a purchase node and a salvage node
are included to model asset acquisition and disposal decisions. Flow is balanced over time and space, in that
all the inflow plus truck inventory (including purchese and salvage) must equal the outflow of trucks and
ending inventory in every time period at each location.

Demand allocation, referred to Constraints (6) are the complicating constraints in the RFS model. Given
customer demand on a certain type of truck, the loaded truck flows are allocated based on vehicle age and
the down-grade policy. We observe that if the complicating demand allocation variables, Eﬁ:’k’&(t), are fixed,
the RFS problem can be decomposed into a set of minimum cost network flow subproblems, one for each
truck type k and age a. In each of these subproblems, time periods and locations are intertwined within the
entire transportation network, hence there is no direct way to decompose by time and location. As a result,

the demand allocation constraints are separated and solved in the master problem.
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Figure 1: Illustration of flow balance constraint, for truck type & and age a, at time-space node (¢+2, 12)



The Benders primal subproblems, P8(k, a), are defined as follows:

H L
min Z Z WJI’XH-' (t} + z Z(m ,a(t)Ifc a(t) + pk a(t)BIa a( ) Sk’a(t}Sf’a(t))
t=1(1,0')eL? t=1 [=1
subject to:
L
SOXEA) + 1) - BE(1) + 5B()
1=l
= I}(0) — Z }: 2 Vi=1,2,.L (10)
Vet =1
Z X5o() + I(t) - E Xt —wi) = IPO(E = 1) = Bf*() +8P°(t) =
t"w«l lrml
L e Kk k' k,
S5 Bur ZEW (- A) — Z Z dn Vi=1,2,..L, t=23 . H (11)
U=1 A=1 k=1 =1 k'=1

Xpi) 20, BfP@) =0, )20, U0 =0  vli)el? t=1,2..H

Previously defined Constraints (8) and (9) are also included in the subproblems. The limitation on
purchasing or leasing used trucks in this problem (Constraint {8)) can lead to infeasible subproblems. In
other words, at a certain iteration, the demand allocation determined by the master problem, as in the
right-hand side of Constraints (10} and {11}, may be too great to be handled by some subproblem defined
by truck type and age.

To alleviate this concern, valid inequalities are derived from the flow balance of the time-space network.
They are based on the facts that (1) given an initial fleet of trucks, the demand allocated to each location
in the first time period cennot exceed its initial inventory; and (2) in any given time period, the feasible
demand allocation cannot be more than the sum of incoming empty trucks, idle trucks from the previous
period and returning loaded trucks, up to the current period. Now, we prove that the following inequalities
are valid.

The first inequality states that the demand allocated in the first period cannot exceed the initial fleet:

Theorem 1 Given k < K and a > 1, at each locotion [,

L) 2 E Z &) V=121 (12)

UV=1k'=1

are velid inequolities to the RFS model.
Proof. Recall Constraints (10) and note that for all a > 1, Bf “*(¢) = 0, for all { and ¢, by Constraint (8)

and for all I,1' and t, X}3°(t) > 0,SP*(t) > 0, and I>*(t) > 0. Therefore, at t = 1, Constraints (10) imply
that



L k

)-S5 S @M 20 Mi=1,2,..L

V=1 k=1
and (12) are valid inequalities. m
The second inequality says that the allocated demand in any time pericd cannot exceed the initial fleet,
as excess capacity (used trucks) cannot be acquired. This in turn means that the total loaded flow across

any time period cannot exceed the initial fleet.

Theorem 2 Givenk < K anda > 1, for ollt > 1,

f\mux
ZI’°“0)>ZZ 3 ﬂm(/\(ZEﬁlkai) V=23, . H (13)
Ie= (LY Bl Atob1E kim=l

are valid inegualities to the RFS model.

Proof. Consider a cut in the network between any time period ¢ and ¢t + 1, ¢ < H. In traditional
network fiow theory, the maximum flow in a network is equal to the minimum cut [Ahuja et al., 1993].
this problem, the maximum loaded flow in the network is restricted by the truck capacity, which has an
upper bound equivalent to the initial fleet. Thus, the maximum capacity of the system at any time period
is the total of initial fleet of trucks at all the locations 1, IF*(0).

The amount of loaded flow in a cut between any time periods ¢ and ¢t + 1 is equivalent to the loaded flow
that departed from time t, plus the loaded movements that departed time ¢ — 1 with more than one travel
time period, etc. This is reflected in the multiple travel periods, as given in the right hand side of (13). As
this is the maximum loaded flow across the cut, it is bound by the initial fleet and (13) are valid inequalities.

Now, the restricted Benders master problem (PM) is defined, with the inclusion of the valid cuts (12)

and (13}, as follows:

m 2%

z K N
Z Z ka(t)z)\ﬁw )Zaﬁ’ka(t)+22zk'“

t=1 (L, )e L? Assl k=1 k=1aw=0

K
min E

k=1

iM=

10



subject to:

L k
ku. >Eekan(ILa(0 szﬁlka{l)
V=1 k=1
L Amﬂ.x
+ 227"?,’:&'”(2 Z Bri(A) E ﬁizk (PR Z Z Ezsz . “
Jae] E==2 {romy Meml kfaml M=l k=]

Yk=1,2,.K, a=0,1,.N, n=12 . # of generated optimality cuts

Z Zdﬁ,’“ “)=dh(t) Vek=1,2,.K, LI =1,2,..[, t=1,2,..H
k! sk a=0

35K (1) 2 0, 2" unrestricted, Yk, K =1,2,..K, a=0,1,..N, LI =1,2,.L t=1,2.H

gpe

Again, and 'Tt“ * are the dual variables associated with (10} and (11).

Solving the master problem with the valid inequalities (12) and (13) dramatically decreases the require-
ment of purchasing used trucks in RFS. In particular, at the first time period £ = 1, no used trucks need be
purchased as the location of the truck inventory is known with certainty at the beginning of the problem.
Nevertheless, adding these valid cuts cannot guarantee, in general, feasibility of the subproblems beyond
t = 1. This is because the valid inequalities (13} restrict total flow between any time periods ¢ and ¢+ 1,
but demand allocations, Eﬁ?k”a(t), are for each node ([,t). Thus an allocation may be feasible according to
(13), but because of the distribution of capacity over space, the allocation may be infeasible. In essence,
infeasibilities are due to the dynamics and high dimension of the problem as well as multiple travel time
periods .

Further note that subtracting the excess purchases from allocated demand is not sufficient for achieving
feasibility. The dynamic time-space structure accumulates excess demand at other nodes in later time periods.
Thus, subtracting excess purchases still leave downstream infeasibilities. Although, we could also price the
excess (infeasible) capacity arbitrarily high (or in some stepwise fashion), that leads to slow convergence in
our experience as the subproblems must be continually re-solved.

In the demand-shifting algorithm, we allow excess (infeasible} capacity to be acquired. Then, the excess
capacity, which corresponds to excess allocated demand, is determined at each location in each time period.
Once determined, the excess is removed and shifted to the following subproblem, which is then solved and
the process is repeated.

In the fleet sizing application, we push excess demand for a used truck group towards newer trucks
such that available used trucks are sufficient to cover the allocated demand and the remaining flows are
all balanced. Assume that the maximum in-service vehicle age N = 3 and total truck types K = 3. This
leads to 12 subproblems, as shown in Figure 2. We begin with the oldest truck group N == 3. At a certain
iteration, given the allocated demand from the master problem, if there is no need to buy any trucks of age

N, it means that all subproblems PS{k, N) are feasible. If feasible, the demand allocation for the age N

11
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Figure 2: Order of Demand-Shifting in the RFS application with 12 Asset Classes

trucks are fixed and the age N — 1 group of trucks are then examined. Suppose that there exists an infeasible
subproblem PS(k*, N - 1). In order to avoid purchasing age N —~ 1 trucks, the excess demand allocation to
the age N — 1 group of trucks sre shifted to age N — 2 group, while maintaining flow balance constraints {10)
and (11). This is done by tracing the path of a used truck purchase and removing the entire path. After
examining all the subproblems PS{(k, N — 1), solve the subproblems PS{k, N — 2) for k£ = 1,2,..K to obtain
the updated demand allocation for age group N — 2. The above procedure is repeated for the truck group
of age N — 2, until reaching the age 0 (new) group which it is allowed to purchase additional capacity.

As a truck may follow a number of paths from a node, the algorithm uses the following priority structure
when removing the path associated with excess capacity purchases. This ordering was determined to achieve
the fastest convergence in our problem testing. At any time-space node (I3, t), there are four types of possible
actions for a truck, including salvage at (I3,t), being held inventory to (4,f + 1), empty movement to (lg,
t + wi, 1,), and loaded movement to (Iz, ¢ + A) with the probability of 8 ,,(A), A = 1,2,... Anax. To avoid
purchasing extra used trucks at (I3,t), the first priority is to avoid selling used ones at ({;,1}, as purchase
price is generally greater than salvage value. The next is to decrease the held inventory since idle trucks
are not allocated to meet demand at this node. Empty trucks are moved only to meet potential demand,
therefore can be reduced if necessary. Lastly, loaded trucks are re-allocated so as to shift excess demand.
This priority structure allows for the minimum amount of allocated demand to be shifted while achieving
feasibility. In summary, to eliminate B{cl’“(t) at node {I,t) efficiently, outgoing arcs are examined in the
above order. This is shown algorithmically in the following steps.

Define adj_SP°(t), adi_IS™(¢), adi_XFE(t), and adj_dy 1"
held inventory at node (/,t), empty movement and loaded movement from ({1, %) to (l2,t), respectively. Also,

define NB(l;,t) as the new balance at node ({1t).

(t) as the reduction in flows of salvage,

Specifically, the algorithm is as follows in the RFS application:

0. Initialization: Set NB(l,t) == 0, for all ({1,t). Start from t =2, {; = 1.

1. Check used truck purchase Bfl’“(t). If Bﬁ’“(t} = (), go to 6; Else, let NB(l1,t) = NB(l1,t) + Bﬁ’“(t).

2. If S;“l t) = 0, go to 3; If Sﬁ’“(t) > NB(l,t), all the used truck purchase can be eliminated. Let
adji_S{(t) = NB(ls,t), SP°(t) = S7°(t) — NB(ly,t), and NB(ly,t) = 0; Else, update NB(l1,t) =

12
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Figure 3: llustration of Truck Flows in the Time-Space (H = b, I = 3) Network

NB(l,t) — Sﬁ’“(t), let adijﬁ’“(t) = Sﬁ’“(t), and S{i’“(t) = 0. If updated NB(l;,$) > 0, go to 3; Else go to
6.

3. I I;z"’{t) = (), go to 4; If I!“l’“(t) > NB(l3,1), all the used truck purchase can be eliminated. Let
adi_IP*(t) = NB(ly,t), I'°(t) = IP™(t) — NB(l,t), and NB(l3,t) = 0; Else, update NB(I;,t) =
NB(l,t) — I;:""(t), let adj_If:'“(t) = I:“l’a(t), and If:'“(t} = 0. If updated NB(l;,%) > 0, go to 4; Else
go to 6.

4. For each location Iy = 1, ..., L (; #£ Ip), if Xﬁ’g (t} = 0, let Iy = la + 1 and go to 4; Else, if X’“’“ (t)
NB(l,t), all the used truck purchase can be eliminated. Let adj X zl?zz (t) = NB(l,¢), X, fi () =X f 7 (t)
— NB(ls,t), and NB(l1,t) = 0 ; Else, update NB(l1,t) = NB(l1,t) ~ X2 (£), let adi _ X0 (t) = X[2(8),
and Xﬁ'f; () = 0. If updated NB(l;,t) > Oand iz+1 < I, let Iy = [ +1 and go to 4. If updated NB(l;,t) > 0
and Iy + 1 = L, go to 5; Else go to 6.

5. For each location Iy = 1,. 1fdic I:’ “(t) =0, let Iy = I +1 and go to 5; Else, if dhlz “(t) > NB(ls, 1),
all the used truck purchase can be eliminated. Let adj dﬁtf “(t) = NB(,1), dﬁlf a( t) = d;cl jm( t) -
=k’ k,a ’ka wale’ Koo

NB(ll, ) and NB(l;,t) = 0; Else, update NB(l,t) = NB(l,t) —d; ;,” (t), let adf__ d,, s
and dz ,, *(t) = 0. If updated NB(l;,t) > 0and Iy +1 < L, let lp = Iy + 1 and go to 5.
6. et h=0L+1. U1 <L, gotol.

7. Let t = ¢+ 1. ¢t > H, stop; otherwise, for each location Iy, re-calculate NB(l;,t) = NB(l;,t)+

o
adj Ity + o adi _ X208 —wig)+ Ty Ay Bu, (N Thmy du, (E— A). Go to 1.

(t) =dp,, (@)
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Thus, the algorithm terminates after each node is visited and balanced. 'We show in the following that

at most one call of demand-shifting subroutine can produce a feasible solution.

Theorem 3 The demand-shifting subroutine produces o feasible solution to any subproblem PS(k,a), o > (,

for any demand allocation aﬁ,’k'a(t}.

Praof. It must be noted, and as shown in Figure 3, that all flow moves from left to right (from one time
period to a later time period) in the time-space network. Thus, flow cannot move between two nodes in the
same time period. The algorithm sequentially examines each node in each successive time period. If a used
asset is purchased, representing an infeasibility, the inflow on the purchase arc is removed and a corresponding
outflow is removed to achieve node balance (NB). This removal of an outflow causes an imbalance at another
node in a later time period. This imbalance is noted by labeling the node (NB>0}. When moving from
node to node in successive time periods, the imbalances crested in earlier periods are removed. Thus, when
all nodes in a given period have been examined, there are no imbalances. Moreover, no further imbalances
in that given period can be created as all flow is from left to right. As the algorithm terminates in the
last period, there cannot be a node with an imbalance and there are no used asset purchases. Thus, the
subproblem cannot be infeasible. m

The above is a single-step procedure in that the path of the excess demand allocation is determined oniy
by the prespecified order of action at the current node. We can also look ahead more than one period when
excess demand allocation has more than one path to reach the next time-space node. This requires a change
in Step 5 of the above algorithm, as not only the current node but also all the next-period destination nodes
are examined. Referred to as a two-step scheme, each of the possible destination nodes is first ranked by the

prespecified order of actions. Choose i if it has the highest rank. Same as in Step 5, if Ez’jf’“(t) > NB{l,t),

all the used truck purchase can be eliminated. Let ac{j_aﬁjf “(t) = NB(ly,t), Efljf ) = aﬁ{f’a(t) —

NB(l1,1), and NB(l1,t) = 0; Else, update NB(ly, t) = NB(l,£) — dy.1-"(t), let adj_dh1 () = d. " (6)

and Ef:jf ’a(t) = 0. If updated NB(l4,t) > 0, reduce the rank by one, choose another I, with the second
highest rank and repeat the same procedure.

For example, refer to Figure 3, BS®(3) > 0. There are three loaded movement arcs ((2,3),(1,4)),
((2,3), (2,4)) and ((2,3), (3,4)). As §5%(4) > 0, IF*(4) > 0, and & ;"*(4) > 0 for Iy = 1,2,3, the ranking

is I = 1 highest, I = 3 second highest, and I = 1 at last. Flow is removed according to this ranking.

Theorem 4 The worst-case complezity of the (single or two-step) demand-shifting subroutine is O(L?*H) in

one subproblem tteration of the RFS problem.

Proof. (1) Singe-step schemer
The single-step scheme examines each node in the network at most once. As there are L+ (H — 1) nodes
in the network, it takes O(LH) steps for each subproblem PS(k,a). At each node, two examinations occur:

(1) if a used asset has been purchased; and (2) if the removal of a used asset purchase in a previous period
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leads to a node imbalance. Thus, when examining a node, the node balance must be examined and the
incoming “used asset purchase arc” are examined. If the node is imbalanced and/or a used asset purchase
arc is positive, an existing arc must be eliminated to achieve balance. This occurs in the order specified
earlier. In the worst case, all exiting arcs are examined, totaling 2+ 21 arcs, or O(L). Thus, the complexity
of the single step scheme is O(L?H).

{2) Two-step scheme:

The only difference in the two-step scheme is that more exiting arcs are examined at each node. Specif-
ically, 2 + 9L arcs are examined. Thus, the resulting complexity is the same (O(L?H)). =

Of course, the algorithm may be further generalized such that paths are traced to the end of the time

horizon at each instance. The trade-off to be examined is the solution accuracy versus solution time.

4 Computational Results

The Benders procedure with the demand-shifting feasibility algorithm is coded in Visual C/C++ with the
CPLEX callable library [ILOG, 1999] on a PC with 300 Mhz Pentium II processor with 64 MB RAM. The
network structure of the subproblems is exploited through use of the network simplex method. The master
problem was solved with the dual simplex method to take advantage of the basis from the previous iteration.

The two presented algorithmic schemes are compared to the classical feasibility cut approach. Results
are summarized for a fleet consisting of trucks which K=3 {type) and N=2 (maximum age) in Tables 1 and
2, where ratio gap = (UB-LB)/UB. In the larger problems, the solutions produced average fleet sizes near
11,000 trucks. As shown in the tables, the demand-shifting algorithm leads to better solution gaps much
more quickly than the traditional method. (It should be noted that the negative objective function values
achieved in Table 1 are due to a large initial fleet for relatively low demand over a short time horizon, leading
to the sale of excess trucks at a profit.)

For H=>5% and L.=3, as shown in Table 1, the average CPU time for the single-step and two-step algorithms
is 10.38 and 11.19 seconds, respectively. The average CPU time for the traditional feasibility cut method is
about 316 seconds. Similarly, for H=30 and L=10, as shown in Table 2, the average CPU time for single-step
and two-step schemes is 552.7 and 545.9 seconds, respectively, while the average CPU time for the traditional
feasibility cut method is about 2,112 seconds.

For another frame of reference, we solved the H=30 and L==10 problems using the approach that excess
(infeasible) capacity could be acquired at an arbitrarily high price (100*new asset purchase price}. For 5
instances, it took on average over one hour to complete eight iterations with an average ratio gap of 7.03.
Note that no feasibility cuts were added in this procedure.

We expected that the two-step demand-shifting scheme would perform better than the single-step. How-
ever, the overall testing performance shows that single-step is more efficient regarding solution quality and
CPU time. We justify this by the facts that: {1) very few used truck purchases are required with the addi-
tion of the valid inequalities (12) and (13); and (2) the two-step demand-shifting scheme is only applicable
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for the situation when multipie loaded trucks at a given location move towards different destination nodes.
Thus, it may prove better in larger problerns with more locations. Nevertheless, both schemes significantly
outperform the traditional method.

Table i: Computational Comparison for H=5 and L=3

Instance Scheme UB LB Ratio Gap Iterations CPU (sec.)

1 Single-Step 1067316 1067216  0.000094 32 8.52
Two-Step 1067228 1067208  0.000019 36 7.58

Feasibility Cut 1067271 10667036  0.00022 200 ~330

2 Single-Step  -140003  -140003 0 39 8.79
Two-Step -140003  -140003 0 47 .5

Feasibility Cut -139280 -139998  -0.0051 200 ~320

3 Single-Step 72348 72348 0 49 10.99

Two-Step 72350 72347 0.000042 49 10.98

Feastbility Cut 75057 71984 0.0409 200 ~330

4 Single-Step 68227 68220  0.0001 55 12.79

Two-Step 68222 68221 0.000015 60 15.43

Feasibility Cut 505848 63714 0.874 200 ~300

5 Single-Step -238815 -238838  -0.000096 56 10.82

Two-Step -238818  -238829  -0.000046 61 12.46

Feasibility Cut  -B3578  -242323 -3.523 200 300
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Table 2: Computational Comparison for H=30 and L=10

Instance Scheme UB LB Ratio Gap Iterations CPU (sec.)

1 Single-Step 236516753 243619438  0.05027 10 508.55
Two-Step 253716614 243493563  0.04028 10 404.69
Feasibility Cut 280696963 24353091045 0.1322 20 ~2760

2 Single-Step 249513384 237681515  0.04742 10 467.64
Two-Step 251021672 237715689  0.05301 10 627.36
Feasibility Cut 274426670 235568562 0.1416 20 1620

3 Single-Step 250591342 238392725 0.04868 10 590.78
Two-Step 250144989 238342657 0.04718 10 541.9
Feasibility Cut 277381207 237503074 (.1438 20 2400

4 Single-Step 258285801 246751859  (0.04466 10 457.53
Two-Step 250161228 246770508  0.04781 10 571.56
Feasibility Cut 284532730 246727764 0.1329 20 ~1800

5 Single-Step 250516852 239234283  0.04504 10 738.91
Two-Step 251409288 239160919  0.04906 10 583.97
Feasibility Cut 276369832 237127017 0.1420 20 ~1980

5 Conclusions and Future Research

We present a demand-shifting feasibility algorithm to quickly find feasible solutions to infeasible subproblems
in the context of a Benders decomposition procedure. Development of the algorithm was motivated by work
on a rental fleet sizing problem which was decomposed by truck type and age. As a policy did not allow
for the acquisition of used trucks, the subproblem capacities were bound, thus leading {o the possibility of
infeasibilities in the subproblems. When compared to a traditional feasibility cut scheme, the benefits of
demand-shifting feasibility algorithm are numerous in that: (1) each subproblem is solved only once in each
Benders iteration as feasibility is assured with the demand-shifting algorithm; (2) no feasibility cuts are
added into the master problem; (3) the master problem need not be reformulated and solved repeatedly to
find feasible solutions of the subproblems.

Computational experience shows that demand-shifting algorithm leads to efficient solutions within a tra-
ditional Benders decomposition framework. This is illustrated through a computational study on a dynamic
fleet sizing model with static considerations, such as asset purchases and disposals. It is believed that the
algorithm would be applicable to any problem in which the subproblems have limited capacity and assuring
feasible master problem allocations is not trivial. In the fleet sizing model, the allocation is complicated due
to the dynamics of moving assets through space and time. Furthermore, this algorithm can also be applied
as a primal heuristic to find a feasible upper bound solution for the Lagrangean relaxation approach.

As we pointed out earlier, the algorithm may be generalized to more than two-step, such that paths

17



would be traced to the end of the time horizon at each instance. Further computational results on multi-step

schemes are to be tested, especially for larger problems.
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