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Abstract
Semiconductor capacity planning is a cross-functional decision that requires coordination
between the marketing and manufacturing divisions. We examine main issues of a decentralized
coordination scheme in a setting observed at a major US semiconductor manufacturer: marketing
managers reserve capacity from manufacturing based on product demands, while attempting to
maximize profit; manufacturing managers allocate capacity to competing marketing managers so
as to minimize operating costs while ensuring efficient resource utilization. This cross-functional
planning problem has two important characteristics: (1) both demands and capacity are subject to
uncertainty, and (2) all decision entities own private information while being self-interested. To
study the issues of coordination we first formulate the local marketing and the manufacturing
decision problem as separate stochastic programs. We then formulate a centralized stochastic
programming model (JCA), which maximizes the firm’s overall profit. JCA establishes a
theoretical benchmark for performance, but is only achievable when all planning information is
public. If local decision entities are to keep their planning information private, we submit that the
best achievable coordination corresponds to an alternative stochastic model (DCA). We analyze
the relationship and the theoretical gap between JCA and DCA, thereby establishing the price of
decentralization. Next, we examine two mechanisms that coordinate the marketing and
manufacturing decisions to achieve DCA using different degrees of information exchange. Using
insights from the Auxiliary Problem Principle (APP), we show that under both coordination
mechanisms the divisional proposals converge to the global optimal solution of DCA. We

illustrate the theoretic insights using numerical examples as well as a real-world case.



1. Introduction

Production capacity is the most significant portion of capital investment in semiconductor wafer
manufacturing. Effective utilization and management of production capacity have significant
implications to the profitability of the operation. Capacity planning in the industry typically
entails strategic, and operational planning organized in a hierarchical manner. Strategic planning
decisions specify which microelectronics technology at what capacity level within what
timeframe is in need to meet expected future demands, and which fabrication (fab) facilities
should be equipped and certified to product with which technologies (Karabuk and Wu, 1999).
Given the strategic fab configuration, operational planning specifies, in a short-term and
dynamic basis, the actual number of “wafer starts” of particular technologies at each facility. In
this paper, we will focus our attention on the operations planning aspects of capacity
management, which is known in the industry as the capacity allocation problem. Capacity
allocation typically involves multiple fab facilities of the firm, each with different manufacturing
capabilities, as well as yields, costs, lead-times, and quality expectations. Typical planning

period is one week, while the overall planning horizon covers several weeks.

Manufacturing of microelectronics products consists of silicon wafer production (known as the
“front-end” operations), followed by assembly, testing and packaging (the “back-end”
operations). Front-end operations consist of the most crucial part of the process as it has a long
manufacturing cycle time, and it represents the most significant portion of the capital
investments. The overall manufacturing cycle time is typically in the range of 20-40 days, about
15-35 of which is spent in the wafer fab. Back-end operations such as packaging, assembly and
test, are typically carried out in geographically separated facilities (many are overseas), whose
operations are typically not the bottleneck in the production cycle. This research is based on
decision problems within a global capacity planning group at a major US semiconductor
manufacturer, Qur focus will be on the allocation of front-end manufacturing capacity across
multiple wafer fabs around the globe. Although there are a great variety of end products {(over
2,000), they are categorized by aggregated technology families distinguished by the underlying
manufacturing processes, and the equipment requirements. All capacity allocation decisions are

based on aggregate technologies rather than end products.



One important characteristic of semiconductor capacity planning is the uncertainty in both
demands and capacity. Demand uncertainty is due to the volatile nature of high-tech industries
such as telecommunication, computers, and electronics. A microelectronics chip which faces
high demand today may be quickly outdated in a few months with the introduction of a next-
generation chip that requires upgraded technology. Uncertainty is even more pronounced in the
short-term. Customers may change their orders frequently and significantly; for some the
fluctuation of order quantity (of a certain future week) could average as much as 100% over the
history of the order. Worse, customers may only communicate their demand profile over a short
period into the future. Due to the long production lead-time, manufacturers must expand their
“order view” by forecasting demand beyond what their customers would provide. On the other
hand, capacity uncertainty is a fact of life in the industry due to the needs to continually upgrade
fab facilities. New manufacturing processes introduce high variability in production yields and
consequently cause uncertainty on manufacturing throughput. On the other hand, in order to
achieve economies of scale, large production batches are commonplace. This means that extreme
outcomes in a particular demand and capacity realization can lead to long-lasting business
consequences difficult to recover from. It is imperative for planners to consider uncertainties

explicitly and strategically so as to hedge operational decisions against extreme outcomes.

Another industry reality of the capacity allocation problem is that demands and capacities are
typically managed by different decision entities in the semiconductor firm. It is common
practice in the industry to delegate these capital-intensive decisions to different divisions in order
to establish proper check and balance, and to maintain accountability. This could also ease the
complexity of information gathering, processing, and decision-making. In our case, product
managers (PMs) in different SBU’s (strategic business units) manage demands, serving
marketing and customer relation functions, while manufacturing managers (MMs) at each fab
facility manage capacity, ensuring its efficient utilization. Thus, not only are demand and
capacity both exogenous sources of uncertainty, they are also endogenous factors within the firm
due to different perspectives in the management structure. Product managers represent the
marketing perspective where customer satisfaction and revenue maximization are the main goals.

Manufacturing managers represent the perspective where the efficient utilization of resources,



and the reduction in operating cost are the main goals. Besides the reward structure, also
important is where reside the insights and the information required for reliable decisions, Product
managers have the expertise and often the information concerning the behaviors of their
customers, who might be able to anticipate possible changes in demand. PMs also have up-to-
date information about market trends, and they could sometimes predict a softening or
strengthening market for some products. Similarly, manufacturing managers could make use of
their experience about the equipment, the yields, and the loading status of production to adjust
capacity allocation. Nonetheless, the marketing and manufacturing perspectives are often in
conflict, which need to be reconciled and coordinated in order to maximize the overall efficiency
of capacity usage. However, centralized planning process in modern ERP systems has difficulty
incorporating local information, let along accommodating local perspectives. A main reason is
that much valuable local information is privately held by managers motivated to leverage which
for local benefits. In this paper, we will explore insights required for a decentralized coordination
mechanism, which allow PMs and MMs to reconcile their local interests with global efficiency.

In the following, we first summarize main literature and previous work related to the research.

Related Literature

We will characterize uncertainty and coordination in the above decision environment using
structural insights from stochastic programming model with recourse. In the broader literature of
stochastic programming for capacity and production planning problems we point to a few
representative and relevant studies in the following. Bienstock and Shapiro (1988) model
resource acquisition decisions as a stochastic program with recourse. They apply the model at an
electric utility to make fuel contracting and plant construction decisions under demand
uncertainty. In a frequently cited study, Eppen et al. (1989) model the capacity-planning problem
of a major automobile manufacturer. Their model makes facilities configuration decisions for the
production of different automotive models, and at the same time making shut-down decisions for
some of the product lines. Demand over the medium term planning period is treated as random.
Berman et. al. (1994) propose a stochastic programming model for the capacity expansion
problem in service industry with uncertain demand. Their model decides the size, location, and
timing of the expansions so as to maximize the total expected profit. Escudero et al. (1993)

summarize different stochastic programming models for the production and capacity planning



problem. The decisions considered are production volume, product inventory, and resource
acquisition decisions under uncertain demand. Power generation planning is another problem
that has been modeled by various stochastic programming models (c.f,, Takriti et. al. (1996)). In

all these applications, demand is the major source of uncertainty.

Porteus and Whang (1991) and Kouvelis and Lariviere (2000) also examine internal market
mechanisms for manufacturing capacity where incentive schemes are developed to induce
system-optimal actions from marketing and manufacturing. However, their coordination is
assumed at a more aggregate level where the decision maker’s decision could be described by
strictly convex, functional optimization problems. The coordination scheme is developed based
on transfer payments derived a priori from the closed-form sclution of the decision problem. Our
analysis considers more detailed coordination under various demand and capacity scenarios in a

mathematical programming sefting.

Coordinating divisions in a multi-divisional firm by means of mathematical decomposition has
been a subject for earlier OR research (Dantzig and Wolfe (1961), Kate (1972), Christensen and
Obel (1978), Burton and Obel (1980), Luna (1984)). The most commonly used approach is to
apply either Dantzig-Wolfe decomposition or Lagrangean relaxation to facilitate coordination.
The problem is solved iteratively by alternatively solving for the relaxed problem (i.e.
subproblems) and adjusting the prices (solve master problem as in Dantzig-Wolfe or subgradient
search as in lagrangean relaxation) until the optimal price vector is found hence the original
problem solved. The economical interpretation of this solution process is that, a coordinator
assigns prices on the common resources and decision makers solve their local problem with the
given prices and submit proposals. After the prices are adjusted to bring demand and supply
closer, the same decision making process continues in an iterative manner. However, there is a
serious shortcoming of this approach in that competitive equilibrium can not be reached at the
end of the iterations. That is, after the prices are finalized and the solution is found, the
participants have incentives to trade in an after market and actually implement a different
solution than the one found by coordination. There are a few studies that address this limitation.
Jennergren (1972) proposed a modification to Dantzig-Wolfe decomposition, which perturbs the

objective functions of the subproblems by a quadratic term. Jose et. al. (1997) provide an in-



depth analysis of the issue and generalize Jennergren’s work in the context of auctions. Ertogral
and Wu (1999) study a similar coordination mechanism in the context of production planning in
the supply chain. They design an auction-theoretic mechanism for multiple production facilities
using insights from Lagrangian decomposition. Kutanoglu and Wu (1999a) show that
Lagrangian relaxation, as a means of price coordination is a version of Walrasian auction
taitonnement that lead to non-zero duality gap for non-convex optimization problems. To
eliminate the duality gap Walrasian titonnement could be generalized to augmented tatonnement

using non-linear pricing.

2. The Semiconductor Capacity Allocation Problem

The semiconductor capacity allocation problem is a combination of marketing and
manufacturing problems. The product managers (PMs) and manufacturing managers (MMs) are
key decision entities representing interests of the marketing and the manufacturing divisions,
respectively. PMs are each responsible for a subset of product demands typically defined by
customers from a specific market sector (e.g., telecommunications, multimedia devices, disk
drives). Each PM must sétisfy his/her customers on one hand while competing for (scarce)
production capacity on the other. Their performance evaluation is mainly based on the total
sales achieved; hence, they aim to meet all the anticipated demand throughout the planning
period. MMs are each responsible for a subset of production capacity typically defined by fab
facilities with a specific generation of production technology (defined by line-width, wafer size,
etc.). Each MM must accommodate the requests from the PMs while ensuring the efficient
utilization of his/her facility. Performance evaluation of the MMs is mainly based on operational
costs, which drives their capacity allocaiton decisions. While the PMs and MMs typically have
their own decision problems clearly defined, the collection of these decisions could be far from
maximizing overall corporate profits. It is imperative to establish coordinated marketing-
manufacturing solutions while preserving the decentralized organizational and information
structure defined by the PMs and MMs. To explore such coordination scheme, in the following,
we will further detail the decision problems faced by the PMs and MMs and develop two
stochastic decision models from their points of view. We will then introduce the notion of
coordination in this context and suggest methods that reconcile the two perspectives using

insights from Augmented Lagrangian.



2.1. The Marketing Problem

Let x denote the amount of wafer supply that the PMs require for technology i (ie M) from
facility j (je F) during planning period ¢ (te T). Although we do not explicitly include lead-times
in the formulation, we interpret the planning periods as (¢ + lead-time). Define g(.) as the profit
function (as perceived by the PM) associated with allocation x. Without the lose of generality,
we assume the demands for a technology is Gaussian and can be captured in the form of demand
scenarios represented by set S;. Let p, be the probability associated with se§;. Each scenario
se Sy corresponds to a demand vector de={ds, Vie M, te T} that covers all technologies over all
periods. Under a particular demand scenario s, it may be the case where the allocated production
capacity is not sufficient to cover the realized demand. In this case, there are two recourse
actions that could take place: make use of inventory I carried from an earlier period, or
outsource capacity Oy, from a contracted outside foundry with additional cost. In the cases where
outsourcing is not possible, the outsourcing costs can be interpreted as the costs of lost demands.
Backordering is usually not an option in this environment due to high demand volatility and
short product lifecycle. The basic decision problem for the PM can be stated as a two-stage
stochastic program as follows, where x;;, is the first stage decision variable while ;; and Oy are
the second stage recourse variables. The demand uncertainty known to PM is characterized by

scenario set 8.

The Marketing Problem (PM)

Minimize
! 0
Zpwr = Z Z Z_g(xij!)+ ZPSZZ(C},LM +¢; Oy ) 1
ieM {J{i.)eN} teT SES teT ieM

8.1
Zxrj! +I|’!-—§s —I:’rs +0, =d
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VieM,teT,s e, (2)

its
JjeF

The first stage objective is to maximize the PM’s utility. With i, % denoting the unit costs
associated with the variable in the superscript, the second stage problem is to minimize the

expected inventory and outsourcing costs over the planning perieds. Constraints (2) state that



demands must be satisfied by either first-stage capacity allocation, or by recourse actions via

inventory positioning, or outsourcing.

2.2. The Manufacturing Problem

An MM allocates capacity at the wafer fab by determining the quantity of wafers to be released
into the system to meet demands at the end of the manufacturing period. Thus, capacity
allocation is measured in terms of wafer starts. Released wafer lots typically experience cycle
time variability throughout the manufacturing period, every lot yields an uncertain amount of
microelectronic chips at the end of the process. Thus, the namber of wafer starts is determined
based on the planned number of wafers at the end of the process; the actual quantity can be lower
or higher than the planned wafer output. For modeling purposes, we express this as capacity
uncertainty characterized by normally distributed random variables. The variance of the

distribution is expressed as a fraction of the expected yield and is known to the MM.

Let yy; denote the quantity of wafer starts for technology i (i€ M) at facility j (e F) during
planning period ¢ (te 7). We represent capacity uncertainty by scenarios set S;. Each scenario
seS; corresponds to a yield vector y&={kyyy, VieM, VjeF, teT} that covers all facilities,
technologies and periods. Parameter ky is the yield coefficient associated with technology i at
facility j in scenario s. Thus, the term kv, corresponds to the realized production for technology
Jj under scenario s given the planned quantity y;. Note that we use the term “yield” in a broad
sense referring to the actual production quantity at the end of the manufacturing cycle. From the
viewpoint of the MMs, the PMs are customers who specify their capacity requests (in wafer
starts) as x;. The MMs make their wafer start decisions based on this request and are liable for
the consequences should there be deviations between the actual and the requested amount.
Denote &, & the recourse variables that measure for the yield deviations from the PM requests
with an underage and overage costs, ¢y and ¢, respectively. We now state a two-stage
stochastic program for the MM’s decision problem as follows, where the capacity uncertainty

known to MM is characterized by scenario set S,.

The Manufacturing Preblem (MM)



Minimize
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The first-stage objective is to minimize the MM’s operating costs as defined by the variable
production cost, ¢y, and the capacity under-utilization cost cUﬁ. Let a; be the capacity
consumption rate for technology i at facility j, and e; be the total capacity at facility j during
period ¢, the second term in the objective defines a quadratic penaly for violation of the capacity
utilization target. Equipment constitutes the most significant capital investment in semiconductor
manufacturing. Utilization of existing capacity either beyond or below a manufacturing target
level U is both undesirable. When facilities operate beyond a certain utilization level, throughput
may drop significantly due to increased equipment failures and congestion in the system. When
the converse is true, it would be hard to justify the return on investment. It is common in the
industry to set the target at as high as 90%. For further discussion of the utilization target, see
(Karabuk and Wu, 1999). The second stage objective is defined by the underage or overage
adjustments from the PM request under each senario seS§;. Constraints (3) measure the
deviations of actual production quantities from the planned quantities (by &, &) under each
yield scenario. The total capacity constraints for each facility in each period are stated in (4). To
ensure operational stability, facility / may set forth restrictions that limit the maximal proportion
of capécity (gy) that could be allocated to a particular technology i. This is expressed by

constrains (5).

3. Coordinating Marketing and Manufacturing Decisions
With the marketing and manufacturing local problems defined, we will now explore the issue of

coordination. First, it should be clear that without coordination the PM and MM local decisions



are unlikely to achieve agreement (i.e., the capacity allocation x;;=yy, for some i,j,¢), and second,
these local decisions may be far from optimizing overall corporate profits. In the following, we

first establish a theoretical target for coordination.

3.1 The Theoretical Target of Coordination

To establish a goal for the coordination of marketing and manufacturing decisions, we envision a
joint optimization model of the PM-MM local problems with the following requirements: (1) the
demand and capacity scenarios considered by PM and MM respectively must be evaluated
jointly, (2) the objective function must be a convex function of the local problems, and (3) local
decisions from both sides must agree with each other. Note that, while formulating such a joint
model may not be meaningful with respect to the organizational and information structure of the
real problem, it is useful to consider this conceptual model as a step toward strategizing a
coordination scheme between the PMs and MMs. Consider a joint PM-MM optimization

problem as a two-stage stochastic program as follows.

Joint Capacity Allocation Problem (JCA)

Minimize
Zca = Z Z(ZC;‘J’&? —8(xy )+ chﬁ (Zat}'yéﬂ - Ueﬂ)z
ieM jeF tel JeF tel ieM
SN DIPNCA AL AVREDY B IPIPRCLIRL "
seSnS,  tel ieM saSy  ieM jeF teT

ZaijymSeﬂ VieF,teT (4)
Z:yngfmeﬂ VieM,jeF,teT (5)

X = Vi VieM,jeF,teT (6)
> kg + Lins = Ly + Oy = VieM,teT,se S, x5, (2)"
jeF
ks Vi O — O =0 VieM,jeF,teT,se8§, (3)

The joint capacity allocation problem can be viewed as a centrally coordinated marketing and
manufacturing decision problem that combines PM’s and MM’s original problems in a stochastic

programming model with recourse. However, the recourse in this problem (defined by (1)", and

10



(2)", (3)) uses joint demand-capacity scenarios S§;xS; as opposed to the decomposed scenario
structure S; and S; in the local problems. Constraints (6) ensure that the marketing and
manufacturing decisions agree with each other.

To define a coordination mechanism that could be implemented in realistic marketing and
manufacturing interfaces, we require that the mechanism should not require decision makers to
reveal private information. More specifically, we require the coordination mechanism to solve
the capacity allocation problem in a decentralized manner using the PM and MM subproblems,
which requires decentralized decision authority and local scenario information. Within the (JCA)
model, the manufacturing subproblem can be viewed as a two stage stochastic programming

model with recourse, where x are stage 1 decisions subject to stage 1 constraints (4} and (35), and

5,8%,1,0,y are recourse variables subject to recourse constraints (27), (3) and (6). The

marketing subproblem can be described in a similar fashion. Nevertheless, this decomposition of
the marketing and manufacturing problems requires the sharing of private information: the
manufacturing problem must have access to true demand scenarios, and similarly the marketing
problem must have access to true yield scenarios. Therefore, (JCA) does not satisfy the basic
requirements for a coordination mechanism, further, it may not be computationally feasible to
deal with scenario set §;xS; To design a coordination mechanism that operates within a
decentralized marketing and manufacturing structure while achieving results approximate that of
(JCA), we define a Decentralized Capacity Allocation (DCA) problem as a straightforward
combination of the marketing and manufacturing local problems as follows:

MinimizeZ ey =Zpne +Zpps

5.1.(2)-(6)

The main difference between (JCA) and (DCA) comes from the assumption on information

(DCA)

availability: the former assumes that a centralized decision entity have full information on both
demand and yield scenarios, and is in the position to evaluate all possible combinations of these
scenarios (i.e., S;xS;). The later assumes that full information is not available to any one entity,
and the local scenario sets S; and S; must be evaluated separately and independently. This is
reflected by the difference between constraint sets (2) and (2"). In fact, the recourse represented
by (2) fix the yield scenario for all demand scenarios considered, ie., set k=1

VieM,jeF,seS xS5,. The gap between the solutions of the (DCA) and (JCA), as
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characterized by Propositions 1 to 4 in the following section, should be considered the price for

decentralization in decision-making.

3.2 The Relationship between DCA and JCA
JCA establishes the theoretical goal for coordination while DCA represents an achievable goal

when information privacy is required. In the following, we establish main analytical relationships
between (JCA) and (DCA).

Proposition 1: Let QJCA(X, k,, dy), Q‘D CAex, ke=1, dy) represent the recourse for the (JCA) and
(DCA) problems, respectively. Then the following relation holds.

OP%(x, k=1, d) < O™(x, ks, dy) v x
Proof:

For any given capacity allocation vector x and demand scenario ds the function Q”(x k,, d, )is

convex and piecewise linear. The linear function 9Q°%(x,k, =1,d, ) bounds the other from below.
When the k1 takes the expected value for the yield scenarios, then the proposition follows

from the properties of the Jensen's lower bound (Kall and Wallace 1994).0]

Proposition 1 states that the recourse in model (DCA) approximates the recourse of the (JCA)
from below. Consequently, the capacity allocation solution of the (DCA) model constitutes an
upper bound for the (JCA) model. In the following, we will provide some insights on the gap
between the recourse functions 0°() and O'“*() by characterizing dual prices of the recourse

constraints, and by the problem structure specific to capacity allocation.

Proposition 2: Define G(x) to be the gap between QP ) and Q') for any given capacity
allocation vector x. Then, G(x) can be expressed as follows:

2 (2
G()C) - Z Z Z (ﬁ:(rs:vz ﬂ'tisl)(sz hge=t) )(dr'tslsl - Z kijslsz xijt )ps,51

5 8,E5, %5, ieM &l JjeF
where m corresponds to the dual prices associated with the constraint set indicated by the
superscript.

Proof: For any given capacity allocation solution X, the recourse of the (JCA) model can be

expressed in terms of dual prices as follows (by duality theorem):

QJCA (E’ ks ? Z Z Z 7{‘(’3112 (d'-‘sl 52 Z kys,sz Xijt )psis? + Z Z Z Z ﬂ'éfs kfjs Xt Py (a)

55,65, x5, feM tel s€5, ieM jeF teT
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Similarly, the recourse of the (DCA) model can be expressed as follows:

QDQE (;s ks =1, ds ) = Z Z Z jrl'(fi}(Ssz”sﬁl}(dffSlsl - Zkijs,sz ;‘ﬁ )ps + Z Z Z Z ﬁy(‘:v}kijs ;ff‘ps (b)

518,685,158, ieM teT JeF s&8, ieM jeF teT
This expression comes from the observation that the particular lower bound that the 0”4
implements is obtained by using the joint scenario set but with a single dual basis for the yield

scenario set. Since G(x)= (a) — (b) the proposition follows. [J

Proposition 3: Let Ad,, =d,, mZk x,, be the demand-supply gap associated with the joint

ijs ™" it
jeF

scenario s. Consider period t for any technology i, and scenario s: if Ad , is nonnegative then

= O If Ad,_is negative, then mys depends on Ad, (t > t') values of succeeding periods.

its

p
Suppose t” is the first period after t* at which Ad . is positive, then m, =(cq. =Y ci).
1=t

Proof. This proposition follows from the basic properties of dual prices. When Adis
nonnegative, there is a capacity shortage. Thus, increasing Ad,, by 1 unit would increase the

right hand side of constraints (2)” by 1 unit, which in turn increases the shortage Oy, by 1 unit,

Tyss =L + O =dig = Y ks VieM,teT,s€8, x5, 2)
jeF

This increases the objective function value z;cq by coit, ie., mes= Similarly when Ad,,is
negative, there is excess inventory and decreasing the right hand side by 1 unit causes 1 unit of
extra inventory Iy to be carried until it is used to compensate for 1 unit of shortage at a future
period. If ¢” is the first period after ¢ at which Ad . is positive, this incurs an inventory cost of
p r p
(Z ch), thus we have r,. = w(z el —co)y=(cih —Zcé).[]
puyr e por:
Proposition 2 relates the gap between recourses OP“(y and Q"(.) to the dual prices and show
that the size of the gap depends on the differences between the dual price vectors for constraint
sets (2) and (2)", and the supply-demand gap. Proposition 3 further shows that the dual prices
are determined by the capacity shortages or overages under each joint scenario s &5;x5;. In the

following, we state a sufficient condition where the gap can be completely closed.
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Proposition 4: For a given stage 1 solution X, Q% by, d)=0P“(x, ke=1, d;) if the following
holds. Let Ad,, ., =d, . — Zkij%xm .Forall s,€8,, ie M, and all periods t

{t3)55 itsysy

ieF
I Ady, gty Z 0 then Ad, . 20 foralls,eS,, and
If Adyg oy ey <0, then Ay, <0 forall s, €8,

Proof: By Proposition 2 the gap between (DCA) and (JCA) depends on the difference in dual
prices associated with the solution of Q’“()) and Q°“(.). By Proposition 3, if the sign of

Ad, . _ and Ad o Therefore, if the conditions

SiSp=2 °

-2 AT the same for all / and ¢,, then 7

ifs)85y itsys: sisp=l

stated in the proposition holds, then the recourse computed by (JCA) and (DCA) at point x will
be equal. [

An important implication of Proposition 4 is that at “extreme” capacity allocation solutions X,

defined as the cases where Ad,  represents a high level of capacity shorfage or excess

its) 5y

inventory for technology i in period # such that the sign of the gap Ad,  is the same for all

ftsys
s, € S, , the (DCA) model will correctly represent the (JCA4) model. On the other hand, since the

yield scenarios are summed for each technology in each period, extreme posiiive and negative
yield realizations may cancel each other out even if the sign of the gap does not completely agree
with each other. This later situation will also strengthen the approximation of the QP“().
Another observation is that, as the unif mventory holding and outsourcing costs increase, the
differences in dual prices increases, thus the gap G(.) also increases. Similarly, as the variability
of demand scenarios and the yield scenarios increase, the magnitude of dual price differences

across yield scenarios will increase, therefore the gap G(.) will increase.

From the propositions, one could conclude that in the situations where demand and capacity
scenarios are independent, when the cost of demand-capacity mis-matching is low, or when the
variation on demand and capacity is low, the approximation gap is expected to be small. With
this established, we now describe coordination mechanisms designed to achieve the optimal
solution defined by (DCA) while satisfying the information privacy requirements. As stated
previously, the gap between JCA and DCA should be viewed as the price of coordination. From
the above propositions, one could conclude that the size of the gap is determined by the

dependency between demand and capacity scenarios, the marginal costs of demand-capacity mis-
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matching, and the variation on demand and capacity scenarios. In the following, we will describe

coordination mechanisms designed to achieve the optimal solution defined by (DCA).

3.3. Coordination Mechanism for the Marketing and Manufacturing Problems

The coordination problem between manufacturing and marketing divisions can be interpreted as
finding a set of transfer pricing between the buyers (PMs) and the sellers (MMs) in an internal
market where manufacturing capacity is the economical commodity. In the decision making
framework we propose, the headquarter (i.e. central authority) sets generic rules regarding the
rights and obligations of the participants and endows the divisions with complete control over
how much to trade at what quantities. The negotiations (iterations) terminate when the division
managers mutually agree on a fixed price quantity transaction. This is a commonly used
approach in the accounting and applied economics literature to facilitate coordination between
divisons of a firm such as fnarketing and manufacturing. The transfer prices that will coordinate
the capacity allocation problem should have the property that both PMs and MMs solve their
local problems and come up with the same solution which also solves the capacity allocation
problem (DCA) optimally. Otherwise, the solution will not be supported by the local decision
makers and will likely to be altered during execution. In the following we present two
coordination mechanisms using the notion of tramfer pricing as a means to achieving
coordination that corresponds to the system optimal. Both mechanisms are motivated by

mathematical decomposition via dugmented Lagrangian.

Recall that x;; denote the amount of wafer supply that the PMs require and y;; the wafer supply
quantity offered by the MMs. We say that the coordination is consistent when wafer supply
proposals from PMs (x;,) and MMs (yy) agree, that is xy, =y, for all technology ¢, facility j and
planning period ¢. We say that the coordination achieves proactive equilibrium when the wafer
supply proposal is consistent and the proposal corresponds to an optimal solution to the
decentralized optimization problem (DCA). Since neither (PM) nor (MM) have closed form
solutions, we will not be able to establish the transfer pricing a priori. Instead, we propose a
coordination mechanism between (PM) and (MM) that would iteratively determine the transfer
pricing using earlier information communicated by the other side. The procedure stops when the

PM and MM solutions converge and become consistent with one another. Importantly, when a
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proper transfer pricing is found at convergence, the coordinated solution will correspond to the
optimal of (DCA).

Finding a proper form of transfer pricing is a nontrivial task. Jennergren (1972) proposes a
quadratic perturbation scheme for the subproblem objectives, which can be viewed as a
randomized search of the optimal transfer pricing. A more systematic approach that could be
applied to our problem at hand is known as the dugmented Lagrangian Theory (c.f., Cohen and
Zhu 1984). Augmented Lagrangian can be viewed as an enhencement of the “ordinary”
Lagrangian using non-linear penalty methods. For nonconvex problems, it is possible to
completely close the duality gap that ordinary Lagrangian suffers. For convex but not strongly
convex problems, ordinary Lagrangean method may suffer from poor convergence due to non-
unique subproblem optimal solutions. Augmented Lagrangian improves convergence by
essentially making the problem strongly convex. The augmented Lagrangian can be solved by
generic multiplier updating methods, which has better reported numerical stability than dual
ascent approaches. Despite of these advantages there has been little work using augmented
Lagrangian in mathematical decomposition algorithms. A main reason is that the augmented
Lagrangian introduces coupling through the cost function, destroying its separability. Therefore,
special consideration is necessary when using augmented Lagrangian for decomposition. There
are several methods in the literature each of which depend on building a linear approximation of
the augmented lagrangean function at each iteration. Ruszczynski (1989) combines the method
with ideas from Dantzig-Wolfe decomposition and develops a decomposition algorithm with
strong convergence properties. Mulvey and Ruszczynski (1995) develop a decomposition
algorithm called Diagonal Quadratic Approximation (DQA) for solving large-scale stochastic
programming problems making use of the augmented Lagrangian theory. Ruszczynski (1995)
further explores analytical properties for the DQA method.

The Auxiliary Problem Principle (APP) (c.f., Cohen (1978), Cohen and Zhu (1984), Culioli and
Cohen (1990), Zhu and Marcotte, (1995)) offers an elegant solution to the above problem. In the
APP framework, an auxiliary function is introduced to the objective function while the coupling
term is linearized. It has been shown that the problem formed with this auxiliary function can be

solved by the multipliers method and the solution converges to the optimal of the original
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(nonseparable) problem. Carpentier et. al. (1996) applied this result to solve the stochastic unit
commitment problem using an augmented Lagrangian approach. By the introduction of an
auxiliary functional the APP provides an opportunity to tailor problem specific decomposition

algorithms.

The Coordination Mechanisms
We now define a coordination scheme taking advantage of desirable properties of APP using the
following construct:

1. Consider the Marketing decision problem ( PM =min{zpy, (x){xe X} ), the Manufacturing
decision problem (MM =min{z,, (y)|ye¥}), and the coordination problem
(DCA=min{z,,(z)|ze X WY UY¥}) where ¥ is the set of constraints defined by

scenarios set (S, +,). It is the goal of the coordination mechanism to define modified
problems (PMyand (MM ")such that their corresponding decisions are consistent, i.e.,

x=y, and optimal, i.e., 25, (X) = 2,5, (1) = Zpe, (X = ¥)

Iterate:

2. Define an auxiliary function K(.) that measure the difference between the K" proposal by
(PM) and the (k-1 )™ proposal by (MM), and vice versa.

3. Based on the auxiliary function, incorporates an qugmented Lagrangian function for the
¥" iteration of problem (PM) and (MM) that would solve the augmented Lagrangian for
the joint problem (DCA).

(Note: We will show in Proposition 5 that properly defined auxiliary function and augmented
Lagrangian term for the (PM), (MM) problems lead to convergence toward the optimum of
DCA)

Using the above construct, we will define two coordination mechanisms assuming two
different levels of information requirement. Define demand gap as the difference between
demand and supply at iteration k of the communication between marketing and manufacturing,

k

o> Vijt. A positive demand gap indicates shortage, whereas a negative demand

ok
: k
ie, O =x;,—y

k k
Y tx

S —k -
gap measures the surplus at iteration k. Define xy,, = % to be the average of the PM and

MM, and q;‘., a system imposed price at the beginning of iteration £ to facilitate coordination.

Let & pand ¢ be scale constants. We now outline Coordination Mechanism I as follows:
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(Coordination Mechanism I)
Iteration k+1

Step 1: The PMs and MMs solve their corresponding decision problem using their own
objective function along with the system-imposed transfer pricing:

The Marketing Problem (PMs solve)

Minimize
—k —k
Zop () + 0 D > (g =) 126+ ) D > (qfy + ey )y,
ieM jeF teT ieM jeF el (7)
subject to
xeX
The Manufacturing Problem (MMs solve)
Minimize
—k —k
g () + D, > =) 128= D D" D (g +¢85)yy
iehf JeF taT ik jeF (€T &)
subject to
yeYt

Step 2: Update the transfer prices as follows:

ktl — k]

a5 =45+ P VieM,jeF,teT

If the proposals from PM and MM are consistant (x=y)than terminate, otherwise & « k+1.

Mechanism [ is designed based on the principle of a price based decomposition algorithm. The
interconnecting decision variables between PM and MM are relaxed while the manufacturing
and marketing subproblems are coordinated via non-linear prices which account for
disagreement in their earlier quantity proposals. The total cost of the transfer (prices times
quantities) at any iteration is added as a cost term to the marketing problem and as a revenue
term to the manufacturing problem. What differentiates this algorithm from a classical dual
decomposition is the additional quadratic terms which penalize the deviation of common
decision variables from their average in the previous iteration and the linear penalty term which
penalizes the demand gap. Both terms can be interpreted as the bargaining power of one party
over to the other for decreasing the demand gap in their favor. The quadratic term in Mechanism
I reflects the assumption that the bargaining power of both sides are equal. The term could be
modified to reflect an inbalanced bargaining power of the participants and the algorithm retains

the same analytical properties. For example consider the following quadratic penalty terms.
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ZZZ[%H%—;&J /26 ZZZ(J@—W] Jog

ieM feF tel ieM jeF T

The above terms would reflect a more influencial manufacturing division that can induce the
other side to make more sacrifice from their proposals to come to an agreement. The
coordination mechanism allows managers of either sides to estimate the decisions of the other
side using the information revealed in the previous iteration. This information can be a fixed
(historic) value throughout the iterations, rather than a dynamic value that changes at every
iteration and the analytical properties of the algorithm will be the same. This type of application
would be more applicable when decision makers have accurate and detailed historic information
about each other before the negotiation starts. Note that the price update in Step 2 requires
globally available information (i.e., the previous price set and the quantity proposals), which
need to be tracked at a designated central location in a transparent way. Also note that the
mechanism may terminate with some of the prices being negative, indicating that the capacity
seller (MM) has to pay for them to the capacity buyer (PM). This is due to the fact that the MMs
has a utilization target below which a penalty incurs in their local problem. Occasionally, it may
be less costly for MM to produce more than the PMs’ demands rather than operating at low

capacity utilization.

Proposition 5 Mechanism I solves an Augmented Lagrangian function of model DCA. The
sequence of (proposals, transfer prices) vectors is bounded and it converges to a saddle point of

the associated augmented lagrangian function with the appropriate choice of scale parameters.

Proof. We first define Mechanism I using the following notation and show that the mechanisms
indeed achieve the optimum of DCA at convergence. The decision vectors X, y represent the
decision variables associated with the marketing and the manufacturing problems, respectively.

X and Y represent the feasible sets for x and y. Further, define

u=xuvy the complete decision vector associated with DCA
U=XuY the feasible set for vector u
()= the objective function of DCA, zpcy
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O)= the consistency measure (i.e., x; — vy, Vi, j,t )

k= the iteration index

For problem (DCA), define an augmented Lagrangian function as follows:

L, (u,q) = J(w) +{q, Ow) +(c/2) || ®u) |/

nel/
where the operator { ,) denotes inner product, and q is the price vector.
Using the following auxiliary function, Mechanism I allows the PM (the MM) problem to
measure the difference between its current proposal and the &* proposal by MM (the PM):

K=Y 33, -7 12+ D33 (24?12

ieM jeF fel ieM JeF t&T
Thus, we may reduce the Coordination Mechanism I to the following APP algorithm for (DCA):
Algorithm APP

min K@) +eJ(u) + (- K (w*),u) + (g%, B(w)) + ec(@(u*), B(u))

uel/

solve = u*'

update ¢**' = ¢* + p@(u*) ke k+1

Where K() is the derivative of K(.). Since the specific auxiliary function K(.) is separable by
the MM and PM problems, Algorithm APP and Mechanism I are in fact equivalent. This could
be easily verified by substituting functions ®(un), K(u) and J(u) as defined. As proved in (Cohen
and Zhu (1984)), algorithm APP converges to a saddle point (u,q) of L.(u,q) with the
appropriate choice of scale parameters. Thus, Mechanism I finds the optimum of DCA at
convergence [

Proposition 5 shows that Mechanism [ is in essence a decentralized implementation of APP
where PM and MM independently solve their portion of the objective function J(u) and auxiliary
function K(u), while communicating their differences via the consistency measure ©(u).
Importantly, the decentralized implementation does not require either side to reveal their local
problem explicitly. Nonetheless, Mechanism I does require the two sides exchange detailed
information on their solutions. This could be problematic since this level of information
exchange may not be practical, especially when the dimension of the solution vector (defined by
technologies, facilities, and periods) is high. To address this issue, we propose an alternative

coordination mechanism that requires communication at more aggregate level. Specifically, we
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define Coordination Mechanism II as follows which communicates the aggregated demand and

capacity information with each other.

(Coordination Mechanism II)

Iteration &+1
Step 1. The PMs and MMs solve their corresponding decision problem as follows using
their own objective function along with the system-imposed transfer pricing:

The Marketing Problem (PMs solve)

Minimize
2o O+ D DY (e ~bi) 1264 Y D (D xy —ef)? /26
leM jeF (el JeF tel ieM
—k
+Z Z z (Q;;: +ed g )xg‘r
ieM jeF teT
subject to
xeX
where
k k k i k k
€y zzyzjt and b(_’,u‘.f = (e} ~ ny'!)+xgt
ieM meaM
The Manufacturing Problem (MMs solve)
Minimize
2
T D+ D D > (= ph) 12643 D (O vy —df) 126
ieM jel tel ieM (el jeF
—k
=X D gk ey
e JeF (eT
subject to
yel
where
k k k k k k
d, =thjl and Pip =(d; ”Z_Vg:)"'yg:
JeF feF

Step 2: Update prices as below.
kel “ak+l

Gyt mq;t+p5;ﬂ VieM,jeF,teT

If proposals agree than terminate else & < &+1

The quadratic terms in Mechanism II penalize the common decisions as they deviate from the

aggregate supply and aggregate demand proposed in the previous iteration. We will refer to the
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terms ef., and (ej‘, - Zx;) as the aggregated supply and aggregated supply gap, respectively.

maM

Similarly, we name d) and (d} - Z yf;,) as aggregated demand and aggregated demand gap,

feF
respectively. First consider the marketing problem (PM): the first quadratic term penalizes the
decisions as they deviate from their previously proposed values plus the aggregated supply gap.
In the case where the aggregated supply gap is positive, meaning that the manufacturing
problem (MM) suggests a higher level of supply than the PMs’ demands, similarly, when the gap
is negative the proposed supply level would be less than the demand. In either case, the
“decisions in the subsequent iteration will be altered by the size of the gap. However, if it were
not for the second quadratic term which penalizes the deviation of total of demand decisions
from the amount in the previous iteration, the first term would push g/l capacity allocation to
lower (or higher) values than what they were in the previous iteration. Hence, the first term
effects the decisions at a detailed level, and the second term regularizes the first term at an
aggregate level. A similar observation can be made for the manufacturing problem, which

utilizes aggregated demand and aggregated demand gap information in the same fashion.

Consider the special case where the total expected demand is close to the capacity. In this case
we would expect that the total demand and supply be close to each other in every iteration.
Hence, the first quadratic term for the marketing and manufacturing problems can be reduced to

the following, respectively.

ZZZ(}CW——x;’)z/Qg ] ZZZ(J)&"—_-}};’)Z/ZE

ieM jeF 1T {eM j<F teT

Similarly, the second term will approach zero. In this case, Mechanism II is similar to the
algorithm used by Carpentier et al. (1996) for the stochastic unit commitment problem. Also, the
same quadratic term is used by Ruszczynski’s regularized decomposition algorithm (Kall and
Wallace, 1996), which is a resource based decomposition algorithm for solving stochastic

programming problems.
Proposition 6 Mechanism II solves an augmented Lagrangian function of model DCA. The
sequence of (proposals, transfer prices) vectors is bounded and it converges to a saddle point of

the associated augmented lagrangian function with the appropriate choice of scale parameters.
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The proof for Proposition 6 is similar to that of Proposition 5 where we can view the mechanism
as a special implementation of the Auxiliary Problem Principle by choosing the appropriate
auxiliary functional. Similar to Mechanism I, a constant aggregate demand and supply
estimation can be used throughout Mechanism II iterations. In contrast to Mechanism I, the
aggregated demand and capacity information is more likely to be available from historical data.

In general, the information requirements for Mechanism II is lower than that of Mechanism 1.

4. Computational Study

We divide the computational study into two parts. First, we construct a numerical example to
illustrate the coordination mechanism and fo gain some insights on their convergence behavior.
Next, we construct and solve a real-world capacity allocation problem using actual data obtained

from a major US semiconductor manufacturer.

4.1. Numerical example

We consider a 4-technology, 2-facility and 2-period example, where 4x2x2=16 common
decision variables need to be coordinated between PM and MM. We consider 6 demand
scenarios and 6 yield scenarios, and all scenarios have equal probability of occurrence. The
resulting (DCA) model has 348 variables and 192 constraints. We identify two cases where in
(Case 1) the total capacity meets the expected demands, and in (Case 2) the capacity is
significantly below that of the expected demands. More specially, for Case 1 (Case 2) the total
expected demand over all technologies is set to 100% (130%) of the total capacity over all
facilities. Both cases are common in the semiconductor industry: Case 1 represents a more stable |
operating environment typical for more mature products, whereas Case 2 represents the demand
surge during a ramp-up period typical for new products. In the former case, coordination is
relatively easier since there are ample capacity, while in the later case both PMs and MMs need
to make sacrifices from their locally optimized solutions and share the burden from excess
demand. The complete numerical data is given in the Appendix. The data set is generated

following the same methodology used in Karabuk and Wu (1999).
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In implementing both of the mechanisms, we set the augmented Lagrangian penalty parameter ¢
to zero so as to simplify the comparison. The ¢ parameter is designed for nonconvex objectives
(Cohen Zhu 1984). Since our example problem is linear quadratic, exclusion of the ¢ parameter

should not make significant difference. Pilot runs confirm this to be the case.

4.1.1. (Case 1): Mature Products- When the Capacity Meets the Total Expected Demand

We perform pilot runs on sample data to find the appropriate ¢ and p values. Parameter p
influence the rate at which the transfer prices are updated in each iteration, and parameter ¢
determines the weight of the quadratic penalty terms, which regulates the effects of the price
updates and enhances convergence. For the numerical example at hand it furned out that p € (0,
1.0] coupled with £equal to 1/p ensures convergence. Any combination of (&, p) values obtained

this way could be a good starting point for further experimentation in a general setting.

As a result of the pilot study, we use (&=10, p=0.1) and (&=12, p=0.1) for Mechanisms I and II
respectively. Note the increase in ¢ for Mechanism II essentially decreases the influence of the
quadratic penalty term in the mechanism. This is because in Mechanism II the information
communicated between the subproblems is set at a more aggregate level, which reduces the
overall inconsistency between the subproblem solutions, and the needs to regulate the price
updates. The mechanism stops when the Euclidian distance between the x=(x;;) and y=(y;)
vectors is below a threshold value of 16 (the number of common decision variables). To generate
feasible solutions for comparison, at the termination of each mechanism we compute the mean of
the x and y vectors as input to the model (DCA). These decisions are fixed and the (DCA) model
is solved (by adjusting the inventory I and outsourcing O levels) to compute the objective values
of the two mechanisms. Table 1 summarizes the parameter settings and performance of the two
algorithms. The last column indicates the percent deviation of the algorithm’s solution from the
global optimum, which is obtained by solving DCA directly.

Table 1. Summary of algorithm settings and performance for Case 1.

Method £ o Heration# | Soln. % deviation
Mechanism I 10 0.1 66 : 302,754 0.14%
Mechanism II 12 0.1 38 302,816 0.16%
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The results show that both mechanisms converge to within 0.2% of the optimal solution. The
deviation from optimum is likely to be the result of round off errors. In terms of performance, it
takes Mechanism II a smaller number of iterations to converge compared to Mechanism 1. This is
somewhat surprising because Mechanism II uses information in an aggregated level compared to
Mechanism I. However, recall from the discussion in Section 3.3 that in the special case where
the total expected demand is close to the capacity, the aggregated demand and supply
information used in Mechanism II will be close to each other early on in the iterations. The
example under Case 1 demonstrated this situation. Figure 1 shows the convergence plot of the
two mechanisms. One important observation from the Figure is that the gap between subproblem
solutions reduces to a low level quite early (around 22 for Mechanism 1I, and 31 for Mechanism
I) and improves very slowly after that. This suggests that a good heuristic solution could be

obtained by terminating the iterations early.

Convergence Plot Case (i)
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Figure 1. Convergence plot for Case 1

4.1.2. (Case 2): New Products- When the Capacity is Below the Total Expected Demand
Table 2 summarizes the parameter settings and performance of the algorithms for Case 2. Similar
to Case 1 both algorithms converges to the optimum. However, this time Mechanism I converge

faster than Mechanism II. In Case 2 the degree of conflict between the subproblems is higher due
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to the excess demand and Mechanism I solves the problem effectively by using more aggressive
parameter settings. Nevertheless, the performance of Mechanism II is quite close to that of

Mechanism I and is certainly acceptable.

Table 2. Summary of algorithm settings and performance: Case 2

Method g p Iteration # | Soln. % deviation
Mechanism I 4 0.25 |43 384,600 0.01%
Mechanism II 12 0.10 | 56 384,806 0.07%

Figure 2 shows the distance between the subproblem solutions throughout the iterations. The
magnitude of distance is higher in nearly every iteration as compared to Case 1. This is due to

the increased degree of conflict in Case 2..
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Figure 2. Tail of the Convergence Plot for Case 2

4.2. Case Study of a Real-World Semiconductor Capacity Allocation Problem
We now apply the coordination mechanisms to a disguised real world data set obtained from a
Jeading U.S. semiconductor manufacturer. The data set consists of anticipated demand and

capacity data that covers a period of several months, of which we test the coordination
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mechanism over a period of 4 weeks. The data set contains completed demand and capacity
scenarios over the planning horizon, as well as cost data such as the underage and overage
penalty for production deviations, and the underutilization penalty. Due to a confidentiality
agreement we are not able to present the actual data set, but we will discuss the characteristics of
the data set as follows. 55 aggregate technologies are considered for capacity planning. The firm
has five semiconductor fabs located worldwide. Each time bucket for capacity allocation is one
week over a planning horizon of one month. The expected total demand for the planning horizon
is 10% above the total available capacity. The unit production cost for a technology can be
different at different facilities due to managerial and physical factors such as the age of the
facility. The demand for products using mature technologies is relatively steady and the
manufacturing process has relatively little variability. On the other hand, products requiring new
technologies are typically in the process of ramping up, which have highly volatile demand and
highly variable yields (capacity). Included in the dataset are 20 demand scenarios and 20
capacity scenarios. Besides demand and capacity, the inventory carrying and outsourcing (or
Jost sales) costs also depend on particular products and technologies. Products that are more
commodity-like has relatively lower inventory carrying costs since excess production is more
likely to sell in future periods. On the other hand, custom products made for specific customers
are more sensitive to specification changes and excess production is likely to be scrapped. This
result in a higher inventory carrying costs. Further, for custom products the firm maybe the only
supplier for the customer and outsourcing may not be possible. Capacity shortage in these cases
would result in loss of sales. On the other hand, there are products which demands are managed
via consignment where the supplier owns and keeps track of the inventory at the customer’s site.
In such arrangements, there is usually a safety stock against possible shortages and shortage
during a single period does not have immediate effect on the customer’s production. Outsourcing

cost in the later case would be relatively insignificant.

We apply Mechanism I and Mechanism II to the above data set which would produce a solution
corresponding to DCA. However, due to the size of the problem, it is computationally infeasible
to solve the theoretical benchmark, the JCA model. For both of the mechanisms, we set the
augmented Lagrangean penalty parameter ¢ to zero for the same reasons we stated in the

previous section, The appropriate & and o values turned out to be (£=0.5, p=0.5) and
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(e=1, p=0.01) with Mechanism I and Mechanism II respectively. In comparison with the small
example of the previous subsection, the £ has been reduced, thus increasing the magnitude of the
quadratic penalty term. This adjustment led to a higher p value in Mechanism I and a smaller p
for Mechanism II. This difference is because subproblems in Mechanism I are regulated better
and more aggressive price adjustments are possible. However, Mechanism II, using aggregate
information in the regularizing terms of the subproblems requires small adjustments in the prices

to converge. This causes Mechanism II to converge slower.
The mechanisms are stopped when the Euclidean distance between the x=(x;) and y=(yj)
vectors is below a threshold value of 1100 (the number of common decision variables). Table 3

summarizes the parameter settings and performance of the two algorithms.

Table 3. Summary of mechanism settings and performance

Method £ yo, Iteration #
Mechanism I 0.5 0.5 75
Mechanism II 1 0.01 | 423

Figure 3 shows the convergence plots of the two mechanisms. As one would expect, Mechanism
I converges faster than Mechanism II due to more detailed information it utilizes throughout the
iterations. Mechanism II on the other hand requires only aggregated information to pass between
the problems. In decision-making environments where both parties agree to supply the detailed
information that is needed by Mechanism I to each other, it should be the natural choice to
facilitate coordination. On the other hand, in an environment where the decision-makers consider
their detailed proposals private information and react only to prices announced by a mutually
agreed mediator, Mechanism II may be the only applicable choice. In our example of the
semiconductor manufacturer, it is most likely that both PMs and MMs would be more
comfortable only with passing aggregate information during the iterations. In that case, it will not
be possible to identify a single manager who performs poorly. However, this case study shows
the potential improvements in the negotiation process if such detailed information is made

available to the decision-makers.
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Figure 3. Convergence plot for the mechanisms applied to actual data.

5. Conclusion

In this paper, we study the issues of decentralizing capacity planning decision in the
semiconductor industry. Using the general framework of stochastic programming, we model the
decision problem using the viewpoints from the marketing managers, the manufacturing
managers, and the firm. We first show that decentralization requires the additional restriction of
maintaining private information, which creates unavoidable degradation on overall performance.
Under the private information assumption, we show that coordination is achievable between
marketing and manufacturing using an information exchange scheme. We propose two
coordination mechanisms using this scheme and proof that the mechanism will converge to the
global solution as defined by model DCA. From a mathematical standpoint, we modeled the
information exchange as a nonlinear component added to the local objective function of
competing decision-makers. This component reflects the amount of information that one
decision-maker has about the other side and regulates the local decisions to match to the other
side more closely. We proved the convergence of this information exchange scheme using the
Auxiliary Problem Principle (APP). The APP theory provides a flexible analytical framework to

develop coordination mechanisms. The two mechanisms we developed in this study are only
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examples among a wide variety of possibilities. Finally, we demonstrate the working of the

proposed mechanisms using generated numerical data and a real world data set.
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Appendix A. Data used in the Numerical Example

Capacity QOutsourcing cost
Period I Period 2 Periodl Period2
FABI1 773 773 TECH1 190 129
FAB2 881 881 TECH2 170 150
TECH3 106 101
Production cost TECH4 193 148
FAB1 FAB2
TECHI1 67 61 Preference cost Periodl Period2
TECH2 85 82 FABI1, TECH3 129 123
TECH3 53 48
TECH4 72 66 Preference ratio  TECH3
FAB1 0.69
Inventory cost
Periodl Period2 Utilization deviation penalty 50
TECH1 188 106
TECH2 140 142
TECH3 164 148
TECH4 146 105
Yield Scenario ki s=1 5= §=3 s=4 §=5
TECH1, FAB! 1.05 0.95 0.95 0.85 1.05
TECHI, FAB2 0.85 1.25 1.05 1.05 0.95
TECH2, FABI 0.85 0.95 0.85 0.75 0.95
TECH2, FAB2 1.15 0.95 0.85 1.15 1.25
TECH3, FABI 1.25 1.05 .15 0.95 0.95
TECH3, FAB2 1.05 0.75 0.85 0.95 1.05
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TECH4, FAB! 1.25 1.05 1.15 115 1.05

TECH4, FAB2 0.85 1.15 1.05 0.75 1.15
Demand Scenario g=1 §=2 =3 s=4 §=5 5=6
dits

TECH1, PERIODI 567.00 513.00 621.00 621.00 621.00 513.00
TECHI1, PERIOD2 498.10 61530 673.90 498.10 615.30 615.30
TECH2, PERIOD1 53550 637.50 433.50 382.50 484.50 586.50
TECH2, PERIOD2 57570 757.50 696.90 636.30 57570  696.90
TECH3, PERIOD1 35250 446.50 446.50 446,50 446.50 493.50
TECH3, PERIOD2  541.65 353.25 400.35 541.65 49455 494.55
TECH4, PERIOD1 680.80 503.20 562.40 503.20 680.80 503.20
TECH4, PERIOD2  640.55 584.85 417.75 529.15 640.55 529.15

This data represents case 2. Case 1 data is obtained by dividing all demand values by 1.3.
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