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Abstract

This paper examines a bargaining theoretic approach to supply chain coordination.
We first propose a one-buyer one-supplier non-coopertive bargaining game for
supply chain contracting, where the buyer negotiates with a sourcing supplier the
order quantity and wholesale price. We show that in subgame perfect equilibrium,
the channel coordinated optimal guantity is also optimal for the players, but the
players must negotiate the surplus generated by the contract in a bargaining game.
The model allows us to predict the negotiation outcome between a pair of buyer and
supplier considering their outside options, the breakdown probability, and random
proposers. Motivated by emerging applications in electronic marketplaces, we then
propose a one-buyer multiple-supplier negotiation sequencing problem where the
buyer could determine an optimal subset of sourcing suppliers to negotiate with,
and the sequence to carry out the negotiations so as to maximize his expected gain.
We show that the one-supplier version bargaining game serves as a building block
and the negotiation sequencing problem can be solved as a network flow problem.

1. Introduction

Planning and coordination in the supply chain has attracted a great deal of attention in the
Jast two decades due to the general trend in the industry toward strategic sourcing and
alliances. This need for broader coordination can be partially attributed to the ever-
increasing integration of the supply chain and the emergence of business-to-business
electronic commerce, which not only promote quick and reliable transaction platforms
between business partners, but also bring in diverse new players into the marketplace. A
significant part of the research in supply chain coordination has been focusing on supply
contracting (c.f., Tsay et al, 1999). Much of this research focuses on multi-echelon
inventory decisions, while game theoretic models are used to analyze the incentives of the
parties (supplier, buyer, and channel coordinator) involved. A general research question is
whether the non-coordinated solutions from each party coincide with the channel
coordinated system optimal. A coordination scheme typically involves contract-imposed



transfer pricing where the players are incentimized to optimize the system's marginal
profit function.

A supply contract determines the quantity, the timing, and the flexibility that the buyer
commits to purchase, and the prices that supplier would charge. Most comimon forms of
contract encountered both in practice and literature are quantity discounts (Parlar and
Wang, 1994), quantity flexibility (Tsay, 1999), minimum commitment (Bassok and
Anupindi, 1997), and buy-back contracts. Jin and Wu (2000) consider the 1mpact of
electronic market competition to various supply contracts. A related body of research
investigates the buyer-supplier relationship from the viewpoint of their inventory
decisions. Among these are Lee and Wang, (1999), Chen, (1999) and Cachon and Zipkin
(1999). Typically, a coordination scheme would suggest a particular confract form
through which a channel coordinated system optimal solution could be achieved at
equilibriom. It is also assumed that the incentives provided is sufficient for independent
players to accept the contractual terms. But in a broader context, there is little guarantee
that the players involved in the negotiation should necessarily accept a “channel
coordinated” contract, especially when additional outside options are easily accessible.
Our research is motivated by the rapid development of electronic marketplaces, and in
particular supply chain exchanges such as Covisint (automotive), WWRE (retail), Exostar
(acrospace), Converge (electronics), Pantellos (utility), and Trade Ranger (energy), where
outside options are both plentiful and easily accessible. We believe that the dynamics of
supplier-buyer interaction changes in this environment and the basic premise of the
supply chain contract research deserves re-examination.

This paper is set out to examine the following research questions: With the presence of
outside options, why and when would the supplier and buyer in 2 negotiation accept a
coordination contract? BEven when the coordination mechanism guarantees a greater
overall gain, how does the buyer and supplier split the surpluses? How does a player
weights the deal on hand against other opportunities present on the market? Given proper
information, could the buyer (the supplier) uses the insights from the bargaining game to
form a negotiation strategy in more general settings? To analyze the theoretic
underpinnings of these questions we propose a bargaining model. We will examine these
issues using the simple form of ohe-pan linear contract, but the concepts can be
generalized to other forms of contracts as well.



Bargaining theory deals with resolving bargaining situations between two parties. In the
seminal work of Nash (1950), he defines the bargaining problem as “two individuals who
have the opportunity to collaborate for mutual benefits in more than one way. (p. 155)."
In our case, the two parties are the buyer and the sourcing supplier who are to negotiate a
contract that would distribute a surplus (e.g., profit) generated from mutual efforts. With
the presence of outside options, even with one-part linear contract there are large number
of ways where the contract could be set.

There has been two main stream of research on bargaining theory: 1) axiomatic
(cooperative game) models, and 2) strategic (non-cooperative game) models. Nash (1950
and 1953) lays down the framework for the axiomatic Nash Bargaining Solution where
he first defines the basic axioms of which any bargaining solution should "naturally"
satisfy, he then shows that the solution of the so called Nash product is a unique solation
satisfying the axioms. Kalai and Smorodinsky (1975) replace a controversial axiom from
the original Nash proposal and revise the unique solution. Binmore (1987) summarizes
the efforts over the years that either relaxes or add to the Nash axioms and gives further
analysis of the Nash's bargaining model. An important characteristic of the axiomatic
approach is that they leave out the actual process of negotiations while focusing on the
expected outcome based on pre-sepecified solution properties. Rubinstein (1982) lays out
the framework for noncooperative (strategic) bargaining models. He suggests an
alternating offer bargaining procedure where the players take turns in making offers and
counter offers to one another until an agreement is reached. The players face time-
discounted gain (a "shrinking pie") which provide them the incentive to compromise. In
each iteration, a player must decides to either (1) accept the opponent's offer (in which
case the bargaining stops), or (2} propose a counter offer. Binmore et al. (1988) propose a
third option where a player may decide to leave the current negotiation and opt for her
"outside options" (e.g., previously quoted deals). Ponsati and Sacovics (1998) also
consider outside options as part of the Rubinstein model. Muthoo (1995} considers
outside options in the form of a search in a bargaining search game. An important aspect
of the extended bargaining model is to allow the possibility for the negotiation to
breakdown. Binmore et. al (1986) study a version of the alternating offer model with
breakdown probability. In this model, there is no time pressure (time-discounted gain)
exzsts, but there is a probability that a rejected offer is the Jast offer made in the game,
meaning that the negotiation breaks down. An intuitive comparison between the
axiomatic and strategic bargaining theory can be found in Sutton (1986).



In this paper, we model supply chain contracting and coordination as a bargaining game.
The basic model allows us to predict the negotiation outcome between a pair of buyer and
supplier. We incorporate outside options, breakdown probability, and "random proposers"
into the model so as to capture the main essence of a supply contract negotiation. In an
electronic market environment, the buyer may want to consider in a systematic fashion a
set of potential sourcing suppliers before reaching a final agreement. Using the bargaining
game as a building block, we propose the negotiation sequencing problem from the
buyer's perspective, where the buyer must determine the sequence of which she would
negotiate with a set of sourcing suppliers 50 as to maximize her potential gain. The main
question here is (1) which subset of suppliers to negotiate with, and (2) in what sequence
should the negotiation take place. We will show that the negotiation sequence indeed lead
to different final gains for the buyer, and we propose a solution methodology to optimize
the buyer's decision.

2. The Bargaining Game for Supply Chain Contracting

We first consider the basic bargaining game where a buyer and a single sourcing supplier
enter the negotiation for a ome-part linear contract. The contract specifies the order
quantity and unit wholesale price for the supply of some future period. We assume that
both players are rational, self-interested, and risk neutral (expected value maximizers).
The buyer is subject to price sensitive market demand, while both parties have recallable
outside options (e.g., a previously quoted deal with another supplier/buyer) with known
net profits when they enter the negotiation. The order gquantity and the wholesale price
determine the fotal surplus for the trade, while the players must negotiate the split the
total surplus. We now summarize the notations as follows :

g : Contractual quantity to be transacted between the buyer and the supplier.

w: Unit wholesale price to be charged by the supplier.

P(g): Unit market price given quantity g, defined as a linear function as follows:

a
F s
(@)= —
¢ : Unit cost for the buyer.

s : Unit cost for the supplier.

Tz(g,w) : Profit function of the buyer

Tig(g,w) : Profit function of the supplier

Wg : Recallable outside option for the buyer in net profit.
Ws : Recallable outside option for the supplier in net profit.



The profit functions of the buyer and supplier in one-part linear contract are as follows:
(g, w) = (P(g) —w—c)g (1)
Mg, w) = (w = 8)g 2)

Based on the definition of the unit market price, P(g), a is the maximum market demand

and b is the slope of the market demand line. It is straightforward to see that in the system

optimal or "channel coordinated" solution, the contract parameters would be as follows

w =3, ¢ =3ia~-bs+c)] 3)
and the maximum system surplus from this trade is
m=[P(g") = w* — ¢} ¢" 4)
_lla—=b(s+ o)
4 b

1t should be clear that in the system optimal contract, the buyer receives all the profit and
the supplier receives no profit (setting her wholesale price at cost). Two-part confracts
have been proposed in the literature (Tsay et al. 1999), where the contract offers a lump
sum side payment to the supplier as incentives. We propose a different approach to this
problem which resembles the real-life situation where the buyer and the supplier operate
independently without a channel coordinator, and both sides expect to make profit
through contract negotiation. We model this negotiation process through a bargaining
game. Inspired by Rubinstein's alternating offer model, our bargaining game considers
three main factors which influence the bargaining process: (1) the two players are equally
likely to make the next offer, (2) the probability that the negotiation will break down after
a given offer, and (3) the effect of either player's outside options. The first factor allow us
to generalize the bargaining proceéses in that regardless of who makes the previous offer,
either player could make a new offer. This is by assuming that the two players have equal
probability of making the next offer after a given offer so long as the negotiation
continues. The second factor, breakdown probability, allows us to capture the situation
when the parties are not perfectly rational, when either player anticipates a more attractive
future deal, and other considerations that can not be measured by monetary gains (€.8.,
trust and goodwill). The third factor, or the outside options of the players is important
since the player with better outside options is in a better strategically position to
negotiate, and is more likely to receive a bigger share from the total surplus.

As common in the bargaining literature, we will assume that the total maximum surplus
from the current trade is greater than or equal to the sum of the outside options, i.e.,
7 > Wpg + Ws. This is reasonable since otherwise at least one of the players will receive



a deal worse than his outside option, and would have no incentive to enter the negotiation
in the first place. We also assume that when a player is indifferent between accepting the
current offer or waiting for future offers, he will prefer accepting the offer.

We now defined the sequence of events in our bargaining game as follows:

1. With equal probability, one of the two players proposes a contract with parameters
(g, w)-

2. The other player either (a) accepts the offer (the negotiation ends), (b) rejects the ofter
and takes his outside option, or (c) rejects the offer and waits for the next round offer.

3. With certain probability, the negotiation breaks down and the two players are forced to
take their outside options.

4. If the negotiation continues, the game restarts from step 1.

3. Subgame Perfect Equilibrium of the Bargaining Game

The subgame perfect equilibrium (SPE) strategies are the ones that constitute the Nash
equilibrium in every iteration of the game (the subgame). In a perfect equilibrium, a
player will accept a proposal if it offers at least as much as what she expect to gain in the
future, given the strategy set of the other player. In the following, we show that in SPE
the players would agree on the order quantity that maximizes the total surplus (which
achieves channel coordination), and then negotiate the split of this surplus by bargaining.
In other words in the SPE, the order quantity is the quantity given in the system optimal
solution and the bargaining can be reduced to that on the total surplus. This result has
obvious appeal from the practical point of view since the channel coordination can be
achieved while the players may negotiate for a wholesale price that matches their profit
expectations.

Proposition 1 : In SPE, the system optimal quantity is also optimal for the buyer and the
suppliers, i.e, qipp = 3la—b(s+c)] (5)

Proof : Let qp, wp be the quantity and wholesale price offers made by the buyer,
and g, op, be the least amount of share that supplier and buyer can accept in SPE
respectively. Then buyer has the following maximization problem ;

Maz Tp(gs,ws) = (Plgs) — wp — )¢5

3.t
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The constraint of the model will be binding. If we Lagrangean relax the constraint, we get
Maz L(gs, ws, A) = (P(gp) — ws — c)gs + A((ws — 8)aB — &)

The first order optimality conditions are ;

8L(gp,wg,A) ¢y , (a—aB) _
S = -3 + A wg—c—A(wg—8)=0
AL A
(Q(g:wB ):“"QB“*‘)\QBﬂO
Wpg
BL(QB:wB}’)\)

a\ w(wB_S)quaSmO

The solution that satisfies the first order conditions is ;
1 20
e bl — b M=1 g — e
G = Fla—b(s+ 0, N =1 wp=s+ s

The hessian and the second order sufficiency conditions are ;
-2 A-1
- b
H [)\ -1 0 }
2 2
If the supplier is the offering party then we have the following model and analysis ;
Maz Ms(gs, ws) = (ws — c)gs
s.t.
(P(gs) —ws —¢)gs Z o
The constraint of the model will again be binding. If we Lagrangean relax the constraint,
we get
Maz L{gs, ws, \) = (ws — ¢)gs + M (Plgs) — ws — c)gs — ap)
The first order optimality conditions are ;

8L(gs, ws, A) g, , (a—gs)
R o A A —g + A —FE L= —
Bas wg — & ( 3 b wg C)
8L{qs, wg, A
___(_QS____S ) =qs— Ags = 0

Hwg

aL(QBaw.Ba}‘) . ((l "QS) _.
£ o 7 ey — Cigg — g =0

A solution that satisfies the first order conditions is;
1 —(a— ch)? + s%0* + 4 bag
2 b{~a-+ch+ sb)

1 .
g5 = E[a—b(s+c)], A =1, wy=



The hessian and the second order sufficiency conditions are ;

— B 1
H= |0
5

-j?SOJM,u~AV§O

Since the second order sufficiency conditions are satisfied by the solution, the solution is
an optimal solution. Thus, gipp = ¢ = 4§ = La — b(s + ¢)].
i

Given the channel coordinated order quantity, the players then negotiate to split the total

1{a—b(s 2 . .
surplus, ™ = 1 la (b +0) , corresponding the system optimal profit. The proposition

shows that in subgame perfect equilibrium the channel coordinated optimal quantity is

also optimal for the players. Note that the total system profit is not a function of the
wholesale price, as the latter is merely an internal transfer between the buyer and the
supplier. Once the order quantity is determined, we can reduce the negotiation to that on
the total surplus (). We thus revise step 1 of our bargaining game as follows:

1. With equal probability, one of the two players proposes a split of the surplus =

The remainder of the game is the same. In this bargaining game, each subgame starting
with a certain player's offer has the same structure. Thus, the perfect equilibrium
strategies of the players are the same in each subgame. We will analyze our game ina
time line of offers to find the subgame perfect equilibrium, similar to the approach taken
in Saked and Suton (1984) and Suton (1986). We introduce the following additional
notation:

Mg (Ms) : The largest share buyer (supplier) can get as a subgame perfect

equilibrium in any subgame starting with buyer's (supplier's) offer.

mp{mg) : The smallest share buyer (supplier) can get as a subgame perfect

equilibrium in any subgame starting with buyer's (supplier's) offer.

p : The probability that negotiations continue to the next round.
In Figure 1 we illustrate a subgame beginning with the buyer's offer in a tree where the
buyer gets the largest subgame perfect equilibrium share. The nodes show the party
making the offer or the breakdown event, while the figures on the arcs represent the
probability that the associated event occurs. The expressions undemneath the nodes



correspond to the share the supplier gets at that node. The tree represents the /east share
the supplier would get in perfect equilibrium and the maximum share the buyer would
gain. A tree symmetrical to this from the suppliers perspective can be generated as well.

p/2

mg
p/2 p/2(w - Mp+ I-p
ms) + (1-p) Ws 7 - Mg

Brk
__.,,,.,I_’fg.__m., dow

p2 [p2(r- My 7N
ms )+ (1-p)Ws +

(7-Mg)]+ (1-p)Ws

Ws

Figure 1. A tree defining the largest share the buyer could obtain in a subgame perfect

equilibrium

To derive the SPE condition we evaluate the tree backward from the leave nodes. Since
we are analyzing the case where the buyer gets the largest possible perfect equilibrium
share, when the buyer makes the offer, he asks for the largest share possible and leaves
1 — Mg to the supplier. If the supplier is the one making the offer, he asks for the least
perfect equilibrium share he would get, which is mg. In case of breakdown the supplier
gets his outside option Ws. The offers at the level 2 follows the same reasoning. When
the buyer makes the offer, he leaves m — Mp to supplier. If the supplier makes the offer,
he asks for the least amount that he expect to get in the future, which is equal to
(1—p)Ws+ g(w~ Mg + ms)
Going back one offer to the root node, we can see that the supplier would expect to gain

in the perfect equilibrium a minimum share of



g[(l-ﬂp)WS-}« g(W—MB+mS)+7T——MB] + (1 —p)Wg
Therefore, the largest share buyer could obtain in a SPE is as follows:

s == (B[~ s + Bl = b ms) 7~ 5] + (- 9] ©

With slight modification, we can also find the least subgame perfect equilibrium share
that the buyer could get in a subgame starting with the buyer's offer. In specific, we only
need to replace Mp with mp, and mg with Mg in the above equation. Thus, the least
share the buyer would get in the subgame is as follows:

mp =T — E[(lw}?}Wg%«%(ﬂ"—mB-J-Mg)—i—vrmmB] —F(l—p)Ws} (7

Since the roles of the supplier and buyer are symmetrical in the game, we can easily write
the expressions for Mg and mg by changing the indices. We end up with four linear
equations with four unknowns. The following proposition summarizes the subgame
perfect equilibrium descriptions.

Proposition 2: The following system of equations defines the subgame perfect
equilibrium for the buyer and supplier.

MB:wmﬁg[( mp)Wg+§(7r—MB+m5)+?rmMB]—t—(l—p)WS]
mBﬁW“rg[(l* p)Ws + (W mp + Mg) +7— mB]-i- 1MP)WS}
Msmﬁwzg[(l—P)WB-l- =(7 — M3+m3)+W—IWS]+ 1~p)WB}
mgmﬁw‘g[(lwp)WB-#§(w~mS+M3)+7rwmg]+(1—p)WB}

One can solve these linear equations and finds the exact expressions for Mg, mp, Ms,
and Ms. We can now specify the subgame perfect equilibrium strategies of the buyer and

supplier as follows.

Proposition 3: The unique subgame perfect equilibrium strategies of the buyer
and the supplier are given as Sfollows;

- The buyer always asks Xp share of the surplus if he offers and accepts an offer
giving him a share of at least @ — Xs.

10



- The supplier always asks Xg share of the surplus if he offers and accepts an
offer giving him a share of at least © — Xp.

where Xp and Xg are defined as ;

pz
(2-r)
p
(@ =P m = Wi} + 5 W]

Xz = [(2 — )~ Ws) + WB]

PO} RO e

Xg =

Proof : If we solve the system of equations describing the SPE for the players

given in Proposition 1, we get that
MB::mBmXB, and Mgmmgz—”Xg

Since we showed that the largest and the least SPE share of the players are equal, these
will be the unique SPE offers that players will make when they make an offer. L]

4. Analysis of the Bargaining Game

Based on Proposition 3, the bargaining game should end in one iteration when one of the
player initiate by making the SPE offer, and the other player would accept the offer so
long as the offer is no worse than his outside options. This is true since the SPE offer
makes him indifferent between accepting the current offer or waiting for future offers.
One important issue remains is whether there exists a first mover advantage in the game.
We attend to this matter in the following proposition.

Proposition 4: There exits a first mover advantage in the game. It diminishes as
the probability of breakdown decreases, and goes to zero if the probability of breakdown
is zero. : _

Proof : If we take the difference between the SPE shares of the players we get;

(m~Wg - Ws)(2 - 9" —p)

XB—”(W-—XS)ﬂXSM(?T—XB)"—" 2"—29

11



Since 2 > p? + pand (r — W — Ws) > 0, the expression always yield a value greater
that or equal to zero. It becomes zero when p = 1, or equivalently when the probability of
breakdown is zero.[

As stated above that in SPE a player would only accept the offer when it is no less than
his outside options. This should be intuitive by considering a simple strategy for the
players as follows: always reject the offer that is less attractive than the outside option,
and ask for a share equal to the best outside option. This strategy would guarantee that the
player will get a share that is greater than or equal to his outside options. The following

proposition shows this formally.

Proposition 5: In the SPE, both the offering parly and the opponent ;ger a share
that is greater than or equal to their respective outside options.

Proof : For the player who initiate the offer, we can find the difference between
the SPE shares of the player and his outside options as follows:

(m— Wg — Ws)(p* — 2p — 4)

Xg—WI[B] = Xs—W[S] = s

The expression above is always positive, hence the player will get no less than his outside
option when making an offer in SPE. For the player who is not initiating the offer, we can
find the difference between his SPE share and his outside option as follows ;

— (= Wp — Ws)p’
2(p— 2)

7— Xg—W[Bl=n—Xg—-WI[5] =

This expression is always positive as well. Therefore, both players get at least their
outside options in SPE. [1

The relationship between the probability of breakdown and SPE share of the offering
party is described in the following propositions.

Proposition 6: The SPE share of the offering party is non-decreasing and

linearly increasing for p>0 in his outside option and linearly decreasesing in the

opponent's outside option.

12



Proof : If we take the first and second derivative of the SPE offer of the buyer
with respect to Wg, W, we can see the result given in the proposition;

2
0Xs __F g, 2
oWg 202 - P) OWg
aXS P 2 3XS
= 0 =
Wy 2 <Y FWq 0

For the supplier, one can go through the same process to show the result.

O
One interesting aspect of the game is that, the offering party obtains the maximum share
when the breakdown probability approaches 1 as described in the following proposition.

Proposition 7: The SPE share of the offering party is maximized when the -
probability of breakdown goes to I and is equal to total surplus less the outside option of

the other party.

Proof : If we take the second derivative of the SPE offer of the buyer with respect

to p
GXB w— WB — WS

=4
&*p (p—2)°

OXp . .
Here -52—@ is always less than or equal to zero since we have assumed that m — Wp — W
r

> . Hence, Xz is a convex function in p. The maximizing values of p are 0, 4. Since p
is a probability, 4 is not a feasible value. Therefore, p = 0 maximizes the SPE share of
the offering party. For the supplier, we can go through the same reasoning from

symmetry. Cl

Proposition 7 is intuitive; if the offering party knows that the negotiation is likely to
breakdown, in which case the opponent will only get his outside option; knowing that the
opponent is willing to accept any offer equivalent to the outside option, the offering party
would have no reason to offer anything more than the opponent's outside option.

5. The Negotiation Sequencing Problem

13



In the previous section, we introduce a bargaining game which describes the splitting of
the expected gains from a supply contract for a single buyer-supplier pair. We now
describe the use of this bargaining model as a building block for multiple buyer-supplier
environments such as the electronic markets. With efficient buyer-supplier matching
mechanism offered in electronic marketplaces, the buyer could face a large number of
potential sourcing suppliers at 2 particular point in time. Freemarkets, a leading
eProcurement service provider, reports that in the first quarter of year 2000 the number of
buyers participating in their procurement markets was less than 50, while the number of
suppliers more than 4,000. While current electronic markets rarely offer negotiation
services, semi-automated and off-line negotiation after the buyer-supplier matching is not
unusual. In this environment, not only does the buyer benefit from negotiating with more
than one supplier, but she could also optimize the sequence to negotiate with the
suppliers. We will show that the negotiation sequence is important.

As the buyer negotiates with a list of suppliers in sequence, there are two alternative
assumptions concerning previously negotiated deals: (1) all previously negotiated deals
(with the suppliers) are recallable, and (2) the previous deals are not recallable. In the
context of electronic marketplaces, one could assume that the negotiations occur in a
relatively short time, and it would be reasonable to assume that all deals are recallable.
This also applies to industries where the buyer has more bargaining power, and could ask
for a time period during which a negotiated deal stay valid unless the buyer decides
otherwise. Thus, in the following analysis we will assume that all previous deals are
recallable. Outside options also play an important role. The better outside options a buyer
has (from previous negotiations), the better deal he is likely to get in the current
negotiation. After the negotiation with a particular supplier ends with an deal, this deal
becomes an outside option for the buyer since all previous deals are recallable. To
streamline the analysis, in our model, we consider the outside option as a deal at hand
rather than a potential future deal. Another advantage is that when the outside option is a
deal at hand, the credibility of this threat will not be under question.

In the above setting, the buyer will be in an increasingly better bargaining position as he

continues with the negotiations so long as he gets increasingly better deals. In this regard,
it is conceivable that certain sequence of negotiations is better than others for the buyer.

14



n
Suppose the supplier base is has n players, there will be 3 P(n, j) possible negotiation
=i

sequences in total where P(n, j) is the j-permutations of a set of size n and it is given by
P(n, ) n!
n, 1) = 5"
(n —5)!
It will be in general not possible to enumerate all possible negotiation sequences.

5.1 The Negotiation Sequencing Model and Solution Methodology

Let S; denote supplier 4 and F; the expected gain of the buyer from negotiating with
supplier i. Using the results from the bargaining game, we can write F; as follows:

B = ¢ [Xs + (r - Xs)]
2%[7?+WBWWS] @)

As one can see, the expected gain of the buyer does not depend on the breakdown
probability of the negotiation. This is due to the fact that both parties have the same
probability of becoming the offering party in the game, and the effect of the breakdown
probability cancel out as we take the expected value.

We now introduce the notation necessary to define the negotiation sequencing problem.:
n : Number of suppliers in the supplier base.
mfj : 1 if the buyer negotiates with supplier ¢ in the jth position of a negotiation
sequence of length k, 0 otherwise.
W} : The outside options that the buyer has before starting the negotiation.
df} . The contribution to total gain when negotiating with supplier ¢ in the jth
position of a negotiation sequence of length &,
A, : The difference between supplier ¢'s total surplus and outside option
te., A = — W,
We define the negotiation sequencing problem as follows:
Maz{Vi, W) | k=1,2,..,n}

where
k

k& k

wo

Vi = Maxz [ 3 devmfj + b | Z:nfj =1, Em,’fj =1, xfj € {0, 1}}
=1 gl i=1 Fe=1

The second part of the objective is to take into account the contribution of the initial

outside option which will be discussed later. We can see that the model for V; is an

15



assignment problem if we can compute the weight dfj's a priori. This is addressed in the

following proposition.
Proposition 8: The dj-“j values are given by following:

B D

& = S ®

Proof : Let Wj' be the outside option of the buyer after negotiating with jth

supplier which can be expressed as;

. Ag Wi
i 2

and let () represent the index of the supplier negotiated at gth place. The total gain of the
buyer after the kth negotiation is,

A+ Wi B + Ag-1y | Wiy

Total gain = 5 = A2 /_\22 A22 o
_ =Mk (k—1) {(k=2) k=2
B kz T s T s

Ag Wy

2k—j+1 2k

Hence, the contribution of negotiating with supplier ¢ at the jth place is the one defined
in the proposition.

£l

Now one can solve the negotiation sequencing problem by plugging in dfj values and

solve the models for Vi , k = 1..n. Since each V; is an assignment problem, we may

16



represent the k-supplier problem as a minimum-cost network flow problem in Figure 2.

Suppliers

Positions

Figure 1 : Min-Cost Flow representation of k-supplier problem

The weight on the arc going from node ¢ to node j is set to — dfj +1 and -1 values

represent the surplus and demand, respectively, associated with the respective nodes.
Solution of this min-cost network flow problem finds the assignment for each of the &
suppliers to the & positions in the negotiation sequence that would maximizes the total

gain for the buyer. Due to the special structure of the weight dfj (marginal contribution to

the total gain), the optimal sequence has the following properties.
Proposition 9: In the optimal sequence, the following condition is always satisfied
Ay £ By

Proof : Consider the contributions of negotiating with supplier ¢ at jth place and
supplier [ at j -+ 1tk place in an optimal sequence. Since the sequence is optimal, it must
hold that ;

A Ay AN, A
nk—j+1  Qk—(j+1)+1 = Qk—j+l  Qk-(j+1)+1
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A+ 20 S 20, + A
ok—j+l =  9k—j+l

= A; < A or Ay < Ay in general.
[l

Thus, in the optimal sequence, the buyer would defer negotiating with the supplier who
has a larger margins between potential surplus (m;) and outside options (Wg,) (i.e.,
potentially more fruitful for the buyer). This makes intuitive sense, since this represents
the buyer's desire to get the best strategical position (strengthen his own outside options)
before negotiating on more fruitful deals (in order to get the most out of them).

From the buyer's point of view, it may not be beneficial to negotiate with all suppliers in
the market. Along with the negotiation sequencing problem is additional question of
which subset of suppliers to negotiate with. In the following proposition, we specify the
criteria for the buyer to continue negotiating with additional suppliers .

Proposition 10: In the optimal sequence of length k, the following relation always

holds true
Wb
By Z ng P okt

Proof : If we consider negotmtmg with k suppliers in the optimal sequence versus
negotiating with first k — 1 suppliers in the optimal sequence, it is easy to write the
following relation:

A(ic) Ag S Ly W
"i_ZQk 3+1 ng 1-3+1 k-1
Aac) 1 [ A(j) Wl L Ay wp
= 2 Ty 9 Z;zfc~1—j+1 + 9k—1 = 4 12k—§—j+1 + 9k—1
J: J=
k...,
G < Ay Wy
5 = 2 R o1
k..m
4 Am Wy

= Apy = ng T—j+1 - k-1

3

Intuitively, the expected gain of negotiating with an additional supplier should be at least
as good as the outside options at hand. The gain of the current deals will be degraded in
the sense that it only indirectly affects the outcome of the next negotiation if the
negotiations continue, or it goes into the final deal with half of its value, if the
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negotiations stop. Therefore, the expected gain of adding another supplier into the
negotiation should be sufficient to counter the degradation on the current deal. In the
following, we provide a numerical example for the negotiation sequencing problem.

5.2 An illustrative numerical example

Suppose there are 15 potential suppliers. We set the following parameter values for the
buyer and market demand: ¢ = 50, a = 1000, b =2 . We have produced the s; values,
supplier unit costs, from a uniform distribution between 1 and 100 and rounded the values
to nearest integer. Given the unit costs of the suppliers, we then find the system optimal
solution and the corresponding surplus, 7;, for each supplier ¢ using equation (4). Further,
we assume that the outside option of each supplier is a random portion of the associated
surplus, distributed uniformly from 1 to 100%. The problem data produced in this fashion
is given in Table 1
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Table 1 : Problem data

Supplier] s; 7 W; 4;
1 10] 940900.0{498677.01442223.0
2 69| 884540.3/778395.4|106144.8
3 88| 866761.0|615400.3|251360.7
4 26| 925444.0(629301.9|296142.1
5 201 931225.0(679794.3{251430.8
6 70| 883600.0|229736.0/653864.0
7 56| 896809.01538085.4| 358723.6
8 39| 912980.3]766903.4| 146076.8
9 8] 942841.0{782558.0! 160283.0
10 471905352.3| 18107.0|887245.2
11 11 949650.3|911664.2] 37986.0
12 82| 872356.01235536.1/636819.9
13 321 919681.0{634579.9/285101.1
14 62! 891136.0/828756.5 62379.5
15 511 901550.3/820410.7] 81139.5

The number of potential solutions for this small example is

15 151

e = 3.55463x10%
275! i

We set the outside option of the supplier to 10,000 and construct and solve the k-supplier
problems as we described in the previous section. The solution of the k-supplier problems
for k = 1..15 is given in Table 2. From the table we can see that after negotiating with 5
suppliers, continuing with more negotiations would degrades the total gain that the buyer
could obtain at the end of the negotiations. Thus the buyer should only negotiate with 5
out of 15 suppliers. The sequence of suppliers that corresponds to the solution of the 5-
supplier is {4, 1, 12, 6, 10} '

20



Table 2 : Solutions of k-supplier problems when &=1,..,15

k Solution Value
1 481123
2 644589
3 714816
4 733080
5 735303
6 735070
7 7341058
8 733329
9 732617
10 732174
11 731896
12 731732
13 731639
14 731587
15 731544

6. Conclusions

In this paper, we propose a bargaining theoretic approach to supply chain contracting and
coordination. We analyzed the supply contracting with the focus of distributing the
surplus in a non-cooperative fashion under a bargaining game. We have included the
some real aspects of the process, such as the outside option effect, probability of
breakdown of the negotiations, random proposer. Using the subgame perfect equilibrium
results of the bargaining game we define the negotiation sequencing problem and show
that the problem can be solved as a network flow problem.
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