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ABSTRACT
Motivated by the operational environment in high-tech industries, this paper examines the
coordination between marketing and operations when time to market and capacity
utilization are both main factors. In contrast to earlier joint lot;sizing literature which
focuses on price-quantity coordination, our model captures the inter-relationship between
order quantity, capacity level, and lead-time. Besides the setup and inventory holding
costs considered in EOQ-type models, our model incorporates additional cost
components for capacity consumption, WIP inventory, and lead-time (as related to the
customer's safety stock cost). We first analyze the centralized system-optimum solution
and a decentralized Stackelberg game solution for the model, then compare their
asymptotic performance as different cost components vary. We examine three
coordination schemes for marketing and operations. We show that the well-known
quantity discount scheme does not coordinate the system in this setting. We propose a
lead-time reduction scheme where operations offers a more favorable lead-time provided
that marketing convinces the customer to place a larger order. We show that lead-time
and order-size alone do not guarantee to coordination the system. It is essential to add a
price-adjustment scheme in the form of a discount or extra-payment in order for the

system to be perfectly coordinated.



1. INTRODUCTION

Capacity is the most significant planning element in high-tech industries such as
semiconductor and optoelectronics. Effective management of production capacity have
significant cost and lead-time implications, and oftentimes drives the competitiveness of
the firm. In this paper, we consider a general setting where a certain manufacturing
capacity is allocated to a product type as a customer order atrive. The amount of allocated
capacity drives the lead-time for the customer order, while at the same time has an impact
on system utilization and inventory. A typical industry practice is to delegate the handling
of customer orders and the management of capacity allocation to different decision
entities in marketing and operations divisions, respectively. This is setup to establish
proper check and balance, and to maintain accountability (Karabuk and Wu, 2001).
However, since marketing and operations are typically rewarded based on different
performance metrics (e.g., sales revenue vs. operational efficiency), coordinating their
activities for the greater benefits of the firm is a managerial challenge. Motivated by the
operation of a major U.S. semiconductor firm, we consider an internal market mechanism
between marketing and operations, where marketing interacts with outside customers
concerning price and order quantity, while operations negotiates with marketing to set the
capacity level (thus the Jead-time) for the orders. The marketing and operations entities
are rewarded according to their respective performance measures, while an intemal
transfer between the two entities is used by the firm to facilitate coordination and a higher
overall efficiency.

A well-established framework for production coordination is joint lot-size determination
in a tightly coupled system with lot-for-lot production over a long-term. The main
decision is to jointly choose a lot-size for two or more parties with conflicting objectives.
Typically, EOQ-type models based on setup and inventory costs are used to characterize
different decision problems for the supplier, the buyer, and the channel coordinator. The

different perspectives of the decision makers stem from the fact that the supplier's setup



cost and the buyer's inventory costs, respectively, are higher than their counter part's.
Consequently, the buyer prefers a smaller lot-size than that desired by the supplier, and
the system-optimum. Starting with Goyal (1976), Monahan (1984), and Lee and
Rosenblatt (1986), the joint economic lot-sizing literature has examined various
mechanisms where the supplier induces the buyer to choose a larger lot-size than she
would of her own accord. Quantity discounts is among the most commonly used
coordination schemes proposed in this context. Goyal and Gupta (1989) reviewed the line
of literature that use gquantity discounts as a means to achieving coordination in joint lot-
sizing models with deterministic demands. More recently, Abad (1994) and Weng (1995)
examined the case where customer demand is a price-sensitive function: the former
introduces a cooperative game allowing the production lot-size and the order size to be
different, the latter shows that quantity discounts is not sufficient to achieve channel
coordination when demand is price-sensitive. Corbett (1999) considers the asymmetric
information case where the players do not have full information about their opponent's
costs. He shows that mechanisms achieving coordination under complete information

may fail to do so under asymmetric information.

In contrast to the inventory coordination and joint lot-sizing literature, we propose to
examine the inter-relationship between order quantity, capacity level, and lead-time, a
much overlooked subject. What is essential in our analysis is to replace the EOQ-based
decision model with a lead-time based model for the decision makers involved. While
the same analytical approach could be applied to general supplier-retailer coordination,
the level of information sharing required in our analysis is more likely to occur in closely
coupled internal systems. We consider an internal market where marketing and
operations are viewed as independent, self-interested market participants rather than
unconditionally cooperating parties in a monolithic system. This provides a more

accurate representation of the dynamics we have observed in the semiconductor industry.



The introduction of lead-time and related costs such as WIP inventory and safety stock
allow us to address some practical operational concerns that have not been examined in

the EOQ-based coordination literature.

The work by Zipkin (1986) and Karmarkar (1993) offer much insights on lead-time
estimation using basic elements of congestion in the production environment. The setup
cost in classical EOQ models is typically excluded from the lead-time model since it is
not part of the basic trade-off. Thus, the cost structure we considered in our analysis
deviates from both the inventory coordination and the lead-time literature. Another main
difference of our analysis is the inclusion of capacity levels as the operations' decision
problem. With a few exceptions (c.f., Porteus 1985,1986), most existing models in supply
chain coordination consider only order-size decisions. Our model considers both order
size and capacity allocation decisions which allow us to bring the lead-time based lot-

sizing results to the supply chain coordination setting.

Several researchers also consider lead-time in the context of coordination. However, in
most cases, lead-time is modeled as fixed parameter or as a realization of a random
variable (c.f., Grout and Christy (1993)), in either case it is not affected by the player's
decisions. We propose a model where the actual order lead-time depends on the order-
size set by marketing, and the capacity allocation given by operations. A few researchers
do consider lead-time as influenced by the decision variables, but focusing on quite
different aspects of the problem (c.f., Haussman 1994, Barnes-Schuster 1997, and Iyer
and Bergen 1997, Moinzadech and Ingene, 1993). Most relevant to this paper is the work
by Caldentey and Wein (1999) where the supplier determines her capacity levels thereby
effecting the lead-time, while the buyer adjusts the base-stock levels using the (s-1,s)
policy. They analyze both centralized and decentralized cases in this environment, and

propose coordination mechanisms for the latter case. This differs from our work in that



they assume a base-stock policy for the buyer, and hence there is no customer satisfaction
considerations. We consider the case where the order-size is a marketing (buyer) decision
justified by the lead-time cost (as a measure of customer satisfaction), and other system
costs such as setup and inventory.
2. THE MODEL
We consider the setting where marketing negotiates orders with customers in the

market, and operations controls the manufacturing capacity necessary to producing the
item. We consider a single product where the market demand is stochastic but stationary
with rate D. Ttems are produced in a lot-for-lot basis where the lot-size (@) is set identical
to the order-size placed by marketing. We characterize the congestion in the
manufacturing process as a M/M/1 queue with FIFO discipline. The arrival rate to the
manufacturing facility is defined as D/Q). Actual production capacity to be allocated for
the item is determined by operations, and we define capacity in terms of lot processing-
rate, u. Following the analysis in (Zipkin, 1986) we assume that u is independent of lot-
size. Given these assumptions, the expected manufacturing lead-time (L) for an order
with size () is given by:

L= (1)
We consider two major cost components for operations: holding cost for work-in-process
(WIP) inventory, and the capacity consumption cost. The WIP holding cost (Clp) is
defined as follows:

Cuip = huip DL (2)
where A, is the unit holding cost. The capacity consumption cost (Ceep) is defined
with a unit cost m as follows.

Crap = mu (3)
Thus, we define the operations’' profit function as follows:



We assume that marketing's handling cost is similar to that of a typical
retailer/wholesaler. Thus, we consider the setup and finished goods inventory costs as in
a EOQ-type model. Further, to characterize customer satisfaction we consider the lead-
time cost Cy, given per unit cost ky, as follows :

Cr =kpI? where 0.5 <b<1 (5)
To streamline the analysis, we will set b = 1 throughout the paper. Further, to draw
contrast with the operations’ first cost component we define a new parameter Ay = %,
such that Cp, = hyp DL. Since D is a parameter, this would have no effect on the analysis.
Based on these considerations, the marketing's profit function is as follows:
F - (6)

— i .. BD
Am = hL.Da_—_g O

Based on their corresponding profit functions, marketing determines the order size (Q)),

while operations sets the manufacturing capacity (u) for the item.

2.1 The Centralized Solution

We now define the centralized solution from the firm's perspective so as to establish a
reference point for decentralized coordination between marketing and operations.
Following the convention in the supply chain coordination literature, we construct the
centralized solution assuming a monolithic system bptimizer would determine the
manufacturing capacity (u) and order size (Q) so as to maximize the firm's profit (i.e., to
achieve marketing-operations coordination). The steady-state expected profit for the
system optimizer is defined as follows:

T =T+ Tm

= = hyip D25 —mu — A D1y — wK@Q - ﬁzg
u-‘“'é' u——-@
= - (hwip + hL)D-J_l_—%— — mu — %Q o %O““ (7)

In the following, we characterize the solution of this centralized optimization problem.



Proposition 1: There is a unique solution to the centralized profit-maximizing problem

\/ Z{I?-I:m} + MWW (8)
Q* — / ngmD (9)

The corresponding profits are as follows:

and is given by:

Operation's profit:
% 2R fm 'Dh
o= — - +ff:; 2 K+ (10)
Marketing's profit:

- h 2K+'m.
= = T V'mD = Jargti VD (1)
Firm's total profit :
mt = — D /mD — SE2/D
= — 2¢/D(\/(ht ¥ Bugigym — /2(K + m)I) (12)

Proof: w is a concave function with two variables. Using the first-order condition w.r.t

to capacity u, i.e., a = 0, we have the following solution:
w(Q) = B 4 f LenthalD (13)

All expressions in the proposition are direct consequences of (13). 1

Interestingly, the optimal order-size ()* is similar to the solution one would derrve
from an EOQ-type decision model by substituting the capacity cost parameter m with the
setup cost in typical EOQ models. However, there is a significant difference between this
model and EOQ-type models in that Q* is optimal only when the manufacturing capacity
is set to the optimal level u*, i.e., both decisions must be made at the same time to
achieve optimality. As we will show, this distinction yields quite different results and
conclusions in the decentralized setting. Furthermore, the model assumes linear capacity
adjustment cost as well as a batch-size independent processing rate. The similarity to
EOQ model diminishes when capacity can not be adjusted, adjustment cost is non-linear,

or the processing rate is batch-size dependent.



Consider the intuition behind equation (13): if the order-size is ¢}, we know that

feasibility can be maintained at a capacity level of (% ), but an additional amount of

capacity 1/ (—hﬂ%%)ﬂ must be added to achieve optimality. Note that this latter term is

proportional to sum of the WIP holding (hy:p) cost and the lead-time cost (), while
inversely proportional to the capacity cost m. This is also intuitive, as the lead-time
related costs huip and Ay increase, operations should add more capacity, while the unit

capacity cost m obviously has an adverse effect.

2.2 The Decentralized Stackelberg Solution

To examine the coordination between marketing and operations, we now consider
the case where the two decision entities are decentralized and making their decisions in a
sequential fashion as in the following Stackelberg game:
1. Based on direct interactions with the customer, marketing determines the order size (Q)
for the product.
2. Given the order quantity Q, operations determines the capacity level (u) to be allocated
to the product.
3. The production takes place and the order is fulfilled.
We assume that the players (marketing and operations) have complete information of the
opponent's costs and profit function. In the following, we characterize the decentralized
solution from the Stackelberg game.

Proposition 2: The equilibrium solution for the Stackelberg game is given by
| Dh | Popip D
’LLO - 5 e > (14)
Q=5 (15)

The corresponding profits are as follows:
Operations' profit:

= - %\/mD - v%\/Dh



Marketing's profit:

70 = - \/%Z—;\/mD— %\/Dh (16)
Firm's total profit:

B+ 2Ry
R0 = - b foh_ dom /DR (17)

Proof: Based on the complete information assumption, marketing is able to compute
operations' best response for a given order size, O, i.e., by maximizing the operations'
profit function, w, with respect to u for a given Q). Thus, we solve(%%) = 0 and the

corvesponding best response finction of the operations, up.s:(Q)) is given by:

ubest(Q) = g" + h_'thTp_Q (18)
Based on the best response function, the marketing maximizes her profit by maximizing
_ 1 KD _ hQ
Tm = mhLDg+ Reib_p @ 2 (19)
Q m

Solving this maximization problem yields the order size:

@ =[5z (20)

When marketing orders Q°, operations will adjust the capacity to u° which is given by:
W0 = Uy (QF) = /B 4 /"2 (21)

All other expressions are the direct consequences of substituting u® and Q% in the

corresponding functions.[]

Note that @° is always less than or equal to (* which confirms that the
decentralized (non-coordinated) solution always yields a smaller order-size than what is
optimal, However, such simple relationship does not exist between the capacity levels u?
and u*, which is based on parameters D,h, K,m,hr, and hy;. One interesting
observation is that as the lead-time cost hj, increases, the optimal capacity level u* also
increases while u? stays the same, and at some point u* exceeds u” (that is, if originally
u® > u*). In fact, hz does not affect the decentralized solution at all; turn out this
insensitivity to the lead-time cost is one reason that the decentralized solution is

inefficiency. We will analyze this effect in greater detail in the following section.



2.3 Comparing the Centralized and the Decentralized Solutions

As shown in the previous section, when marketing and operations make their local
decisions in sequence as the Stackelberg leader and follower, a set of decentralized
solutions results. We use the Stackelberg game results to characterize the situation when
marketing and operations do not coordinate, and we are interested in the efficiency gap
caused by this lack of coordination. In Table 1, we first summarize the centralized

(system optimal) and the decentralized (Stackelberg) solutions.

Table 1. Summary of Results from the Centralized and Decentralized Solutions

Centralized Solution Decentralized Solution
Order size Q= \/Eﬂfihﬂ,’@ Q= fg_f(h_g_
Capacity = "‘2(.??»?:01) Ao \/Lh.:zw_gfé)_? o= 'IED?’Z + ,/h.‘:::D
Lead-time *= \/ o iys JL gy

Operations' profit | 7 = — %\/ mD — s/ Dh 78 e %‘ﬁ:xlmD - FwvDh
Marketing's profit | a5, = — m\/mp - %\/Dh al = 7%\/7?’31) - :}g!ﬁ\/m
Firm's profit o= — 7“(""’"“%;:,,:111\/@ - 7-1—-2;2’ Ki'fn) VDR | %= - —71-—2"‘”;::‘ \/mD— 27—-«";;\/5%

The following proposition further characterizes the firm's total profit under the
centralized and decentralized settings.

Proposition 3: The decentralized solution is inefficient in that w° < 7%, the equality
7% = 7* holds only when the lead-time and capacity costs, hy, and m, are both 0.

Proof: First we show that zh“"*’_’“%‘& mbD < Zhuipiha [0 D It is sufficient to compare
;,: hwtp+hL ;; h'uu’;p p

Yhuipi2hy  p huiphr e ,
Tt with e since m, D are positive terms. Therefore, we need to examine the
Jollowing:

Zhyipe 2Ry 9 _2__@?+hL

Thathe ST ks (22)

or equivalently,
2 2
2hupine 2y 2hur.u' +hL
(Free) < oMt (23)

or

10



+ dhy < 2 dhyip + 4hy + ke (24)

4h

wip

Since hy, hyip are non-negative, (24) holds. Note that the equality only holds when

hy = 0. Similarly, it can be shown that \/2—25(—};% Dh < %%{”1\/ Dh (25)

together with (24), we have n° < w*. []

To further characterize the degree of inefficiency in the decentralized solution, we define
three efficiency-loss ratios (ELR) as follows:

ELR =T, ELR, = %;ELR, = %=

These ratios turn out to be rather complicated functions, however, it is possible to analyze

the asymptotic behavior of the functions with respect to the change in each parameter.

We summarize these resulis in Table 2.
Table 2: Asymptotic behavior of ELR, ELR,,, and ELR,,

FIR FIE, FIE.
hwip — 0 1 1 1
. e Vr
hmp — 0 o0 VW [e7e]
hp— oo |00 00 \/ flﬁfpﬁé

2Rt S5 /1 2/ Frusgt = +/ D 2
2y Ryt /2K Am)h z\/faw;pm-rvﬁmﬁ T
o

;,; hwx'p

K—co |1 =

hy -0

[y

K0 o0 o0
Ruuth
m—oo | oo \/ *""ffj:TL
L
o
m— 0 1 ST 1
hw!-p-i-hL
20
2K m ",7'
h — 00 2R -m. 5
SSE(K ) Jm %”‘;

hwip‘i"hL

Fheat
husthy E_
h - 0 2 hwi (hwi 'k' L) P +;L h‘w"P
; PR Vhipthy,

Based on the asymptotic results, we can discuss more thoroughly the efficiency
loss in decentralized coordination and analyze the effects of different model parameters.
Note that the worst case for the firm's efficiency-loss corresponds to the increase of lead-

time cost oy and unit capacity cost m, or the decrease of WIP holding cost /1, or setup

11



cost K. Recall that in the centralized solution capacity is adjusted based on both the
marketing's lead-time cost h; and operations' WIP costs hyp, whereas in the
decentralized case, the capacity depends solely on A, (see Table 1). In the decentralized
case, when the marketing's lead-time cost hy, increases, the capacity level will not be
properly adjusted (i.e., operations is insensitive to the customer's needs). Similarly, as
operations' capacity consumption cost m increase, marketing does not adjust the order
size as in the centralized solution (i.e., marketing is insensitive to the manufacturing's
burden). A similar observation could be made for the WIP inventory cost /., and setup
cost K.Thus, the difference between the centralized solution and the decentralized
solution increases essentially due to the different scope of cost consideration incorporated
in the decisions.

Another observation is that the effects of parameter changes can be quite different
for the marketing's and the operations' perspectives. For example as hy — oo or
m — oo, ELR, — oo, but, ELR,, — E‘i;j-m*i?&

The following proposition states the basic relationship between the centralized and
decentralized solutions.

Proposition 4: There are three cases that describe the relationship between centralized
and decentralized profit functions:

a) 10 <, wd <k byl < ¥, w0, > c) w0 >k, wl, < wh

Proof. If 10 > wiand % > 7%, or 70 > wtand mo, > ), then )+ 70, > k4,

which is not possible. Cases a), b) and ¢) cover all remaining cases. L]

Case a) in the proposition represents the case where

Wiphy ) mh ___yfmh 2K +m _ hrm  hrm

Ty 2V Putp = it~ iy b - VIRR < R ﬁ =
Case b) represents the case :

Dhygprhry : mk ___/mh K 41, _ hpym  hp/m
Jrity, 2V o = B — Al VR - VKR 2 L N 29)
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Case ¢) represents the case :
WMoips o7, @ h 2K +m ./ hr/m . hy/m
7hm-p+hz Fip 2 5k J2AR4Am)? f2EK+m) h 2Kh < ;7'}:",‘-,, Tt bz (0)

Note that, in the above expressions we have simplified and rearranged the inequalities

such that both sides of the inequalities are always positive, while the left-hand-side of the
inequalities have the parameters, Ztyp, hr, m and right-hand-side of the inequalities have
the parameters K, h, and m. We will illustrate the insights provided by these cases using
the following numerical example:

Suppose p=4, w=3, ¢=2, d=100, hyy,=1, K=3, m=3, h=2

forhp =1, 7, = 51.01; 7l = 48.03; 7}, = 51.01; 70 = 48.03 (Case a)

for hy = 0.25, 7 = 52.01; 7 = 48.03; 7%, = 59.38; 7Y, = 61.03(Case b)

forhp =4, 7w = 44.45; 70 = 48.03; 7}, = 37.27; 7%, = 13.39 (Case c)

Start with Case (a), which holds with the parameter values in the example. As hy

decreases from 1 to .25, the term (% — 2~/ huip ) also decreases and the first

inequality stays the same. However, the R.H.S. (% };:; apfh;,) in the second

inequality reaches a point where it is larger than the L.H.S. (73—*%?% h \/ﬂ—{.ﬁ),
which means it moves from Case (a) to Case (b). As hj, increases the reverse happens: the
first inequality changes direction, whereas, the second inequality stays the same, i.e., it
changes from Case (a) to (c). Similar analysis can be done for other parameters.

In Case (a), both marketing and operations have incentives to implement the
centralized solution. In Case (b), marketing would suffer under the centralized solution
while operations benefits. Thus, some internal transfer d from operations to marketing
would be necessary to compensate for marketing's loss. Similarly, in Case (c) the internal
transfer should be made from marketing to operations in order to implement the system

optimal solution. The following proposition states that in Case (b) (Case (c)) operations

13



(marketing) would make enough extra profits in a system optimal solution to compensate
for the loss of marketing (operations).
Proposition 5: 7% — 10 > 70 — 7%, for Case (b) and }, — 7%, > 73— for Case
(c).
Proof: Since 1% + %, > 7% + o, both inequalities hold automatically. U]
With the basic understanding of why the decentralized solution is inefficient, in the
following section, we examine three coordination schemes that provide incentives for
marketing and operations to coordinate, i.e., to implement the system-optimal solution.
3. COORDINATION SCHEMES BETWEEN MARKETING AND OPERATIONS
In this section, we propose three different coordination schemes between
marketing and operations based on (1) quantity, price discount offers (Q, d), (2) quantity,
lead-time veduction offers (Q, L), and (3) quantity, lead-time, and price adjustment
offers (Q, L, d). We will use the decentralized solution to define the individual rationality
constraint for each player, i.e., the coordination scheme should yield the level of profit
that are no worse than the players' corresponding decentralized solutions.
3.1 Coordination Scheme 1: Quantity Discount
This coordination scheme is motivated by work in the supply chain contracting
literature where quantity-discount schemes are popular for buyer-supplier coordination
(Lariviere,1999). It has been shown that it's the supplier's best strategy to offer a (Q*, d*)
pair, where Q* is the system-optimum order-size for the supply chain (which is always
larger than the buyer's own optimal order-size), and d* is the corresponding discount offer
that compensates the buyer for ordering a larger amount. In the following, we first
summarize the previous results where EOQ-based decision models are assumed for the
players.

The buyer's (typically a retailer) cost function is given as:

KD Q

AR which corresponds to the setup and holding costs, in order.

14



The Supplier's cost function is similar but with different cost coefficients:

K, D . hQ
5ty

Suppose @ is the buyer's optimal order quantity considering only her own cost function,
and @), is the supplier's optimal lot-size, and ()* the joint optimal quantity for the supply

chain, then

. 2ELD _ 2K . dD % . 2fK3—i-Kb?D
Q= /T Qs = /557 @ B i)

Since it is generally assumed that setup cost is higher for the supplier while the
inventory holding cost is higher for the buyer, the relationship ¢, < Q* < @, holds. The
buyer will order , unless additional incentives are offered to increase her order size.
Thus, to achieve coordination, the suppher may offer a quantity discount dD) to the buyer
to motivate a larger order size, subject to the constraint that the buyer's original profit is

protected. This problem can be stated as follows:

Minga — %g+% —dD (31)
st dD + %WQ%EQ - %,,Q'WTQ" (32)

This is the same as the optimization problem below:
Mingg) S+ + B+l — 12 — b (33

Let QQ° is the solution of this problem. Last two terms in the function are constants
therefore, QQ° = ) and the joint optimal (centralized) solution is obtained. The
corresponding d* can be easily calculated by (4).

In our internal market model, the notion of quantity discount can be interpreted as an
internal transfer offered by operations to stimulate larger order sizes from marketing
(thus the outside customers). However, our model (as defined in Section 2) has a
significant difference from the EOQ-type models in that operations (the supplier) must
make capacity allocation decisions, and both marketing and operations’ profit functions
have a lead-time component. We summarize the sequence of events for this coordination

scheme as follows:

15



1. Operations announces a quantity discount scheme (Q,d) where d is a discount payment
to marketing if an order of quantity Q is placed
2. Marketing accepts the (Q,d) offer from operations if it satisfies her individual
rationality constraint, i.e., the profit generated win is the same or better than her
decentralized solution 7, > 7,

In the following proposition, we show that the quantity-discount scheme common in
supply chain coordination is not sufficient to coordinate marketing and operations in our
internal market setting.

Proposition 6: Quantity discount (Q ,d) alone is not sufficient to coordinate marketing
and operations (i.e., to yield the centralized solution).

Proof: Under the guantity discount scheme, marketing and operations communicate in
terms of Q and d, and there is no explicit exchange concerning capacity adjustment and
lead-time. As a result, marketing must make assumptions on operations' capacity
allocation using her best response function as follows:

rea(Q) = § + /22 (39
Thus, marketing's profit function with price discount, d is as follows.

1
T(mZdD—hLDm—"-Ké—DM%Q (35)

_ h Y | K
=dD — —=y/mD + 5 + £ (36)
Marketing would only accept the (Q, d) offer from operations that satisfies the following

individual rationality constraint:

w;:dD—hLDé—%’@mﬁg-szr; (37)

h RQ KD _ h 2K
= Thﬁva—l— 5+ 5 dng%;\/mD+ iz V Dh (38)
= 44X _4D<\2KDh (39)

Knowing the marketing's individual rationality constraint, operations must maximize
her profit function subject to (39) and her own individual rationality comstraint as

follows:

16



- a0 — hwippm - mubest(@) z sz (40)

which can be rewritten as,

Zee/mD + %P +dD < Ziz/mD + 722/ Dh (41)
= Z2idpc< ﬁ\/b—h (42)
Therefore, the operations’ decision problem is as follows :

Maxqa — \/hmp\/— (43)

ST (39) and (42)

(39)is binding in the optimal solution and therefore the operations’ problem can be

rewritten as follow,s"

h /
ST (42)
\/2(K+m}

Optimal solution to this problem is Q* = Q* =

Operations will adjust the capacity as u? = upest (@) = 1/ 3 ( I?j}m) + 4/ hwep (44)

Asul # u* the (Q, d) scheme fails to yield the centralized solution. L]

Note that although Scheme I changes the order size from Q° to @, it fails to change the
capacity level 4°. The total profit under the scheme is as follows:
o Zhupihs Sy 2K42
7"("1 e m_h\/'a:TL mD — \/—E—%—% Dh (45)
We can easily calculate the efficiency gains (EG') and the difference withthe system

optimal solution {F!) as follows:

EG' = 7t — °
— 2K+ _ 2K+
= =2/ Dh 7‘2'3??%”; Dh (46)

Fl =7l‘*—7t‘1

gk Qi 2h
= Bepls \/mD — Zeek \/mD (47)

Pgip

Note that, the magnitude of F* depends on parameters Ayp bz, m, and D. D and mare

only scaling parameters and they will be eliminated if we express the difference as a ratio.
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Thus, the critical parameters are the holding costs Ay, and hz. As kg increases or fyp
decreases, the quantity discount scheme will start to generate poor results. This is due to
the fact that Scheme 1 focuses on order-size adjustment but fails to generate proper
capacity adjustment. This results is interesting as it suggests that when lead-time and
capacity are considered in the cost structure, the quantity discount scheme is not sufficient

to coordination the system.

3.2 Coordination Scheme 2: Lead-Time Reduction

As discussed earlier, marketing will not order more than her EOQ from
manufacturing unless some incentives are provided (e.g., quantity discount). In this
section, we introduce another coordination scheme commonly seen in the industry, where
the operations offers a reduced lead-time to marketing in exchange for a larger order size.
Here, the sequence of events is as follows:
1. Operations announces a lead-time reduction scheme (Q,L) where L is the lead-time
offered to marketing if an order of quantity O is placed
2. Marketing accepts the (Q,L) offer from operations if it satisfies her individual
rationality constraint, i.e., the profit generated 7. is the same or better than her
decentralized solution 7, > 7,
Similar to the previous case, we are interested to know if a particular (Q,L) combination
agreed upon by marketing and operations would coordinate the system. Note that lead-
time is not under complete control of operations (lead-time is a function of both capacity
u and order quantity (). Nonetheless, operations may propose an offer (9,1}, in order to
get the desired lead-time L, marketing must agree to order the specified quantity Q . For a
given Q, operations can then adjust the capacity level, u to yield the desired L.

The (Q,L) scheme is more relevant in internal market coordination then the
commonly seen quantity-price schemes, since lead-time, not price, is often the center of

negotiation in this setting. Thus, lead-time reduction provides a focus for marketing-
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operation coordination. Moreover, lead-time reduction yields other qualitative benefits for
the firm such as customer satisfaction and market responsiveness, which is compatible
with the reward structure for marketing. Further, even for markets where price is the
focus of negotiation, lead-time coordination could yield better overall solutions in a
certain parameter range, as we will show in this section.

As before, we impose a individual rationality constraint assuming that marketing
and operations would only accept offers no worse then their respective decentralized
solutions. The individual rationality constraint for marketing is as follows:

—h DRy - P -2, (48)
Therefore, the operations must determine the best (Q,w) (thus the (@, L)) pair that
would maximize her profit:

Maxguy — huwip Da%»g -~ T

ST (48)

— hmpD;—i—g —mu > T, (49)

Proposition T: There is always a feasible solution to the operation’s decision problem
defined above.

The proposition is easy to prove as the non-coordinated decentralized solution (Q°, u°) is
a feasible solution for the problem. Thus, the proposition implies that Scheme 2 will
always yield a solution that is equal to or better than the player's decentralized solution. It
follows that the individual rationality constraint (49) for operations will always be
satisfied in the optimal solution to the problem therefore (49) is redundant.

Since (48) is a binding constraint, we can write u in terms of ¢}

R (50)

The problem can be thus restated as follows:

Ming f(Q=" ~ 52lny + 5F + ] - #2%  (51)
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Unfortunately, there is no closed-form solution for the optimization problem
defined by (51). As such, it is not possible to determine a priori the efficiency gain of the
coordination scheme. Nonetheless, we are able to provide some characterization of the
optimal solution results from the coordination scheme. We will detail our analysis in the
rest of the section, beginning with the relationship between the coordinated and the
centralized solutions.

Proposition 8: If the marketing's profit function is the same under the centralized and
the decentralized settings,(i.e., nl, = 7)) then coordinationscheme 2 yields the
centralized solution.

The proposition is trivial to prove since the centralized solution satisfies the marketing's
individual rationality constraint {(n%, = 7%), and the solution (Q*, L*) is the best offer for
the operations since it minimizes 7, + m,. While the result from this proposition is not
particularly useful as is, we can use this results to analyze the effects of marketing's

holding cost, h. We know that if 79, = =}, the following relationship would hold:
h h _ ( 2K4m . ./
\/’?’I.’L( Vhap ;;hwipm;ﬁz) - ( N 2K+T;m zfi) \/z (52)
A h
o [ (59

we may express h = ( i \/ﬁ)

Clearly, equation (52) holds if h=h. Also observe that if & > h, 7% > 7%, if
h < i{\b, 79 < wy. Further, when h > h (h < ?L), as h increases (decreases), the value
|70 — n%| increases monotonically. Thus, the difference i — ifv\,| provides an useful
indicator for the quality of the coordination Scheme 2. In contrast to this result, the quality
of coordination Scheme [ is neither affected by the holding cost, b nor the setup cost, K.
We have the following observation that will lead us to some closed-form bounds for
efficiency gain w.r.t. the optimal solution.
Proposition 9: Comparing to the non-coordinated decentralized scheme (the Stackelberg

game) coordination scheme 2 always yield the same or smaller on i.e., L° > L.
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1 D hr D

Proof : Lead-time L is equal fo

since in Scheme 2, u= — %D and
u—% Q R
“{Wgt*%”’“%ﬂ) ; s o o m
L=—3p—". The latter term is maximized when Q@ = Q° and L°= /05 .
wip

Therefore, for any Q7 that minimizes f{Q), we have L° > L?.0]
Proposition 10: The optimal solution to function f{Q) in (51), Q?, always satisfies the

Jollowing inequality: @ < Q? < Q provided that (r%,)? — 2K Dh > 0, where
- —ﬂfn—\/(w;)z—zxph o5 el A/ (nS E—2 R Dh,
Q - H Q . k.

are the roots of the equation

0 4 KD KD + hQ —
—(ng, AR ELY , ,
Proof: Since L = —X5, in Scheme 2, L= hL—DQ. Since on is non-negative (L > 0),
)

we have — (75, + hQ + ED *g) = 0. Finding the roots of the equation

(ng -+ EQQ + %D-) e 0, we have

—%, - {wﬁl)z—EKDh <0< —7, -/ (8, 2—2KDh'

h

-8, — gi TR DR
n (ﬂ and

Since f(Q) is convex and continuous between the points Q=

D = tacty/(RT2KDE

, the optimal solution can not be at the boundary points unless
(722 — 2K Dh = 0. This proves that 0 < @ < Q.00

Note that the condition (n9,)? — 2K Dh = ( is not meaningful, since in that case
the on is 0 which can be obtained only with infinite capacity.
Given the above characterization, we will examine a crude but potentially useful
approximation for (7 define Q= Q+Q "‘ = ﬁ\/_‘— + 4/ 22, This is the mid-
point between Q, () and the approximation would work quite well if the function f(Q),
for instance, is bathtub shaped and near-symmetrical in the interval [Q,Q)]. While it
would be difficult to quantify the accuracy of this simple approximation in closed-form,
we did conduct numerical studies and observed that @ and @7, and their corresponding
values f(Q?)and f (@) are very close for most of the cases we have tested. More
importantly, @ is useful to establish the efficiency gain of coordination Scheme 2 when
compared with the decentralized solution. Similar to Scheme I, we define the efficiency

2

gain as follows: EG? = 7% — 7% = — f(Q?) — 72 since we know that 72, is the same for
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the decentralized and Scheme 2 solutions. In the following, we summarize the efficiency
results.
Proposition 11: Comparing to the non-coordinated decentralized solution, the efficiency

gains for coordination Scheme 2 (EG*) is no less than

2
o hoipBg, — 2K Dishoyy+2mDhy, ithrmD
(= 7o+ ==, + sk on) (54)

moreover, the difference from the system-optimum solution (F?) is no more than

2
. S T —2K Dhkypt2mDhy — 2mhymd ©
(ﬂ— T 2R TTE, et 2K Dh ) (55)

Proof : Note that f(Q?) is the operations' cost under scheme 2. Since [(O*) < f @ \
f

-~ 92»..., .
EG® > — 1% — f(Q), it follows that EG® > — 73+ b2l b TinDly | ZphmD

Likewise F? < m* — 72 + f(@)’

v
9 5 0 heipTly —2K Dhhyyip+2mDhy, 2ghymd ©
therefore F* < (m* — 73, — “eln Thpo, T WEoK DR )-

3.3 Coordination Scheme 3: Lead-time Reduction and Pricing Discount

The third coordination scheme is a combination of Schemes I and 2 in that the
operations could offer both lead-time reduction and price adjustment in exchange for a
larger order-size from marketing. However, the price adjustment could go in either
directions. In the case of a price discount, marketing could transfer the saving to the
customer in the form of quantity discount. In the case of an extra payment, marketing will
need to transfer the cost to the customer. However, in both cases, marketing will be able
to offer a more favorable delivery date. This is an important feature in some industries.
The sequence of events for this coordination scheme is as follows:
1. Operations announces a scheme (Q,L,d} where L is the ' offered to marketing if an
order of quantity Q is placed. In addition, a discount (an extra payment) d is offered to (is
collected from) marketing.
2. Marketing accepts the (Q,L,d) offer from operations if it satisfies her individual
rationality constraint, i.e., the profit generated w:n is the same or better than her

. . 3 3
decentralized solution 7, > 7,
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We will show that this somewhat more complex coordination scheme achieves
marketing-operation coordination, i.e., yields the system-optimum centralized solution. In
order to achieve coordination the price adjustment d offered by operations to marketing
(step 2) could be negative (d < 0). In this case marketing pays a premium for on
reduction in tumns of an extra payment and a larger order quantity. Note that d is non-
negative under Scheme 1. For d > 0, Scheme 3 correspond to an offer from operations as
follows: "if you (marketing) order QQ®, we (operations) will give you a discount d on the
price, and will reduce the on to L¥' On the other hand, for d < 0, the offer becomes "if

"

you order Q° and increase the price by d, I will reduce on to L3." The following
proposition states the optimality of coordination scheme 3:

Proposition 12: Coordination Scheme 3 achieves marketing-operations coordination.
Proof: The operations’ problem (what to offer) with the individual rationality constraints

can be formulated as follows:

Maxgyq) — dD — hw@ppg%g — Y

ST .
dthLDu—jg—%Q-—ﬂgz . (56)

We first relax constraint (57) and solve the above problem. In this case, it can be shown
that (56) is a binding constraint. From the equation, d can be expressed in terms of u,
and Q. If we substitute this d in the objective function, the function can be rewritten as
Sfollows:

Maxguy — (huwip + hL)Dﬁ — mu — % - %
It is easy to verify that the solution (Q°,u>)to this problem (1) matches the system-

optimuwm solution (Q*,u"), and (2} the individual rationality constraint for operations

(57) is already satisfied for (0%, v*). [J
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Essentially, operations implements the system-optimum order quantity and lead-
time pair ((Q*, L"), while using the side payment J to either compensate for the
marketing's loss, or sharing the profit with marketing. In the latter case (when d is
negative) may arise when marketing's lead-time cost, f; ishigh, such that lead-time
reduction (as compared to the decentralized case ((Q)°, L°)) would improve marketing's

profits significantly.

4. CONCLUSION

In this paper, we model and analyze a lead-time based coordination scheme
between the marketing and operations entities of a firm. Motivated by the joint lot-sizing
literature and the work in supply chain contracting, we characterize the coordination
problem by first defining the centralized system-optimum solution, the decentralized
Stackelberg solution, and their asymptotic performance ratio as the cost parameters
change. Unique to our model is the explicit consideration of /ead-time and its
relationship to manufacturing capacity. Specifically, operations' decision to allocate
manufacturing capacity has a direct impact to the lead-time performance that marketing
relies on for customer satisfaction. The essence of marketing-operations coordination is
that operations would offer a more favorable lead-time provided that marketing
convinces the customer to place a larger order. Unfortunately, we found that lead-time
and order-size alone are not sufficient to coordinate the system. A price adjustment in the
form of a price-discount or extra~-payment will be necessary for the system to be perfectly
coordinated (i.e., for the marketing and the operations entities to voluntarily implement
the system-optimum solution).
Our model includes a few important cost components: in addition to the setup and
inventory holding costs common in EOQ-based models, we also consider the unit
capacity cost, WIP holding cost, and lead-time cost (which is typically related to the

customer's safety stock cost). These cost components play important roles in defining the
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incentive for, thus the behavior of, the decision makers involved. For example, the
relative significance of the lead-time cost to marketing's profit will help determining if
additional incentive is needed for her to order the system-optimal order size. We
sumimarize the sensitivity of these cost components in Table 2.

We propose three coordination schemes for marketing and operations. We show
that the Quantity Discount Scheme (Scheme 1) popular in the joint lot-sizing literature
does not coordinate the system since the operations must also make capacity allocation
decisions in our setting. We then propose a straightforward ard reduction scheme
(Scheme 2) and analyzed and compared the efficiency gains. Although there is no close-
form expression that would allow us to verify that the scheme achieve perfect
coordination, we are able specify its basic characteristics. The scheme shows good
potential for use in practical settings due to its simplicity, and the fact that ics. (rather
than price-quantity) negotiation is more relevant for marketing-operations coordination.
Finally, we propose a combined ics. and price-adjustment scheme (Scheme 3) which we
show to perfectly coordinate the system.

Note that all our analysis are based on single-point offers. The analysis can be
easily extended to cases allowing a memu of offers (e.g., multiple ics. quantity
combinations), or an offering function as introduced in the literature. So Jong as there is a
single or homogenous marketing entity in the system, with full information, the analysis
does not change significantly. Another possible extension is on the ics. function.
In our analysis, we use a ics. function where the processing rate is independent of the
order size. A generalized ics. expressions are also possible (c.f., Karmarkar, 1993) but the
analysis will be considerably more complex and closed-form expressions are unlikely to
be available for the design of perfect coordination.

Another interesting direction for extension is to model the bargaining power of the two
decision parties. In our analysis we assume that operations makes offers, while

marketing accepts any offer that yields a solution no worse than her decentralized
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solution. This can be géneraﬁze to a bargaining situation (c.f., Ertogral and Wu, 2001)
where marketing and operations initiate a bargaining process to split the surplus
generated from the 'systeiﬁvoptimal solution.

Finally, asymmetﬁc information cases can be also examined (Corbett, 1999) where the
players do not have full information about each other's cost data. In this case, the offer
type should be carefully modeled and analyzed. For example, instead of proposing (Q,L)
offers in Scheme 2, operations may announce a ics. function L(Q). In this case,
operations needs to use L(() as an inducing mechanism that provide marketing the right

incentive to place the optimal order size.
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