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Abstract

The semiconductor capacity-planning problem involves product managers (PM) who privately
observe a demand distribution for their product portfolio and the headquarters (HQ) that decides
on capacity allocation based on the demand information submitted by the PMs. When the total
anticipated demand exceeds available capacity, PMs compete for the scarce resources and thus
use their private information as a leverage to maximize their divisional performance at the
expense of company profits. We show that without a properly designed allocation game, the HQ
cannot implement the optimal capacity decisions. In this paper, we design a capacity allocation
mechanism that extracts privately observed demand information from the product managers
while implementing the optimal solution that maximizes system wide total expected profits. This
mechanism is supported by an incentive scheme that requires side payments and participation
charges to the players. We find the conditions under which the surplus created by coordmatlon
exceeds the bonus payments; hence, the mechanism achieves budget balance and voluntary
participation simultaneously. The results provide important insight on how to deal with
misaligned incentives in the context of the capacity allocation problem in semiconductor

industry.

I. Introduction

During the recent years of the economical boom in the United States, the high tech industry
experienced a substantial demand increase for its products. In particular, the telecommunications
sector expanded at a high rate with the demand coming from Internet companies and wireless

communications products. This situation leads to a capacity shortage for the semiconductor



manufacturers. Our study is based on our observations at a major microelectronics manufacturer

specialized in telecommunications sector.

In semiconductor industry, the manufacturing process is made of two consecutive stages: wafer
manufacturing and assembly and testing. In the first part of the process, the electronic circuit of
the chip is printed on a silicon wafer, and this process has a lead-time of 6-12 weeks. Then the
wafers are sent o the assembly and testing facilities to be put on printed circuit boards and
become end-products during a lead time of 2-4 days. The wafer manufacturing facilities are
fairly expensive to build (2-4 billion dollars) and it takes about a year to complete. The demand
in high tech industry is known to be cyclic and particularly sensitive to the fluctuations in
economy. Therefore, it is clear that managing the existing wafer manufactaring capacity rather
than opening additional costly wafer fabs is crucial to be profitable for a high tech company.
Even during the times of economic downturn, companies close down access capacity and

capacity rationing becomes even more important to become or stay profitable.

In big companies with multiple administrative divisions, demand management authority is
delegated to product managers (PMs) from various business units, whose performance is usually
evaluated by the total divisional profits they make. These managers have the most accurate
estimate on the demand as they directly interact with customers. A PM who is closely working
with customers may anticipate a high demand from a certain customer but may not accurately
know when that demand will take off. Since the manufacturing lead-time is very long, (6-12
weeks) it is often not possible to catch up with demand if not planned beforehand. When the total
anticipated demand exceeds available capacity, PMs use their private information regarding

demand to leverage it to their benefit at the expense of total company profits.

A PM performs poorly when anticipated demand is not materialized; consequently, the capacity
allocations are adjusted. However, this causes lost opportunities until the adjustment is
implemented due to long manufacturing lead-time. Moreover, this capacity adjustment is based
on recent historical data rather than the private demand information that the PM has. For
instance, right after a reduction in the capacity share of a PM due to poor past performance,

demand for her business unit may increase substantially which in turn causing more lost



opportunities. Hence, the allocation adjustment may not yield the optimal results without acting

based on the private information from the participating PMs.

At the semiconductor manufacturer we worked with, the PMs start with an initial capacity
assignment made at the start of a financial period. This is essential for the business units fo
negotiate contracts with customers. The PMs consider the initial allocation as a guaranteed
capacity available to them throughout the period and try to fill it as much as possible. The
managers at the Headquarters (HQ), who are responsible for interacting with the PMs and
coordinating production planning, describe the current allocation method and its shortcoming as

it relates to their business as follows.

“ . The traditional capacity allocation method is to assign a certain number of wafer
starts to each business by technology group based on some reference demand view,
typically a demand view that is linked to a specific financial commitment. This type of
allocation creates a sense of wafer-starts ownership, and has a tendency to cause
business segments to hold on to their share of wafers uniil the last moment when they
don't really need to make the starts, or they tend to build inventory. From a global asset
utilization point of view, these allocations drive underutilization by trapping pocket of
capacity to segments with a low-swing of demand, where at the same time there are
segments short of supply because of a high-swing of demand. Because it is necessary to
have some finite lead-time on the high-swings of demand, wafers that are relinquished at
the point of execution are sometimes (00 late to capture the upswing”. - Director of
Integrated Circuit Business Planning & Rationalization.

The HQ describes their problem as finding a method to reshuffle the capacity allocations as the

demand information changes relative to the initial capacity allocation. The policy of taking away

initial shares to prevent the ownership problem and its consequences is also under consideration.

In order to accomplish an optimal allocation of capacity, it is imperative to extract the privately
known demand information from the PMs. In this study, we analyze game theoretical aspects of
the capacity allocation problem and develop a capacity allocation mechanism that collects
private information from the PMs and implements the optimal capacity shuffling that maximizes
company wide profits. The capacity allocation mechanism, while improving system wide profits,
compared to the traditional system, rewards the PMs using the existing bonus system based on
the divisional profits and side payments. We also analyze the impact of the way the initial shares

are set, on the incentives of the PMs.



1.1. Related Literature

The coordination of marketing and manufacturing functions of a large corporation is a well-
known problem in the operations management literature. This is essentially a resource allocation
problem with two important features: misaligned incentives and the private information of the
participating decision makers who are thus motivated to gain personal benefits at the expense of

company profits.

The problem has attracted different approaches in the literature. Celikbas et al (1999) devise
penalty schemes to coordinate forecasting and production planning. Mallik and Harker (1998)
develop a bonus function to extract private information from marketing and mamufacturing
divisions. Portheus and Wang (1991) develop a transfer pricing scheme to coordinate the
capacity planning and allocation. Kouvelis and Lariviere (2000) generalize the approach of
Portheus and Wang to a certain class of coordination problems. Groves and Loeb (1979) dispute
the effectiveness of price mechanism for coordinating divisional managers and design
performance evaluation measures based on divisional profits less the impact of bundling
decisions on the profits of other divisions to facilitate coordination. On the other hand, Harris
and Kriebel (1982) design optimal transfer pricing schemes for allocating resources in a certain
setting. The capacity allocation problem has also been analyzed in the context of supply chan

management where there is no central coordinator (Cachon Lariviere (1999)-1-2).

The major difference in our case is that an initial capacity allocation is assigned before
production planning takes place at which point optimal allocation may change with respect to the
initial allocation. This requirement actually distorts the incentives of the participants even more

and makes it harder to facilitate coordination.

Another relevant line of research is the mechanism design with private information. The focus of
this research is how to coordinate a trade between independent decision makers to maximize
value created by the trade with the desirable properties of: voluntary participation and no

external funding to support the transaction.



The results are mostly about impossibility of achieving this objective. Myerson and Satterthwaite
(1983) prove that it is not possible to coordinate a buyer and a seller who owns an indivisible
object if the support of probability distribution, that represent the beliefs, overlap. However,
there are few possibility results too. Cramton et al. (1987) develop a bidding mechanism that
assigns a jointly owned asset to the partner who values it most. The mechanism works only if the
ownership distribution satisfies certain conditions. McAfee (1991) study conditions under which
participants who have privately known amounts of a good transfer it among themselves in such a
way that the final solution maximizes the total of valuations. Makowski and Mezzetti (1993)
analyze a trading problem for an indivisible object with two buyers and one seller and
characterize the conditions under which there is an implementable solution. Makowski and
Mezzetti (1994) and Williams(1999) generalize the theory and characterize the conditions under

which a mechanism with the desirable properties exist.

In the next section, we model the local problems of the PMs and describe the coordination
problem. In section 3, we develop an optimal capacity allocation mechanism that satisties the
desirable properties we identify. Section 4 analyzes the mechanism and draws conclusions for its
characteristics under certain conditions. A case study follows the analysis in Section 5, which is

followed by conclusion in Section 6.

2. The Capacity Allocation Problem

2.1. The Product Managers’ Local Problem

There are multiple planning points throughout a financial period that the business units make
demand planning and prepare a priority ordered list that consists of actual customer orders and
forecasts. The ordering represents the relative importance of entries in the list, which is assigned
based on certainty or profitability an order. At this point, PMs take into account their capacity
share and may add or delete entries in the list to match their initial share. This list is then
communicated to the wafer fab to be scheduled for production. The scheduler at the fab level
releases wafers to satisfy the orders in the list starting from the most important entries until the

capacity share of the PM is filled. Capacity allocation has a decreasing marginal profit for a



business unit, because each additional unit of capacity will be used to fill in a relatively less
important order in the order list. The demand is highly volatile and even the actual customer
orders placed at the time of planning are subject to significant changes throughout the
manufacturing lead-time. We consider an aggregation of the order list that each PM submits and

describe their model based on aggregate demand.

The demand analysis at the HQ level consists of historical data and input from the PMs. The
analysis consists of identifying a nominal demand that is constant over the planning period. The
variance on top of the nominal is very high and it can be accurately identified by historical data.
However, the nominal demand is not easy to predict and the PMs has this information more
accurately as they interact with the customers frequently and they can anticipate a shift in the

nominal demand.

We describe PMs’ local problem by a newsvendor model. Let &, represent the realized demand
for PM s products and F;(£,8,)represent the demand distribution with parameter 6,. We
assume that @, is the mean of the distribution, which represents the nominal demand for business

unit 4, and that only 2 PM knows it with certainty. The concavity of the newsvendor model with
respect to capacity allocation accurately describes the effect of scheduling wafer releases with

respect to the ordered demand list.

We express the capacity as the number of wafers that can be manufactured per period. Let r; be
the average profit from one wafer allocated to PM i. We normalize the unit production cost to
zero without any loss of generality. In the highly volatile high tech industry, carrying inventory
is highly undesirable. For custom-made products, a customer may stop purchasing a particular
version of a chip without any contractual liability. Some other products may face a decline in
demand or they may even be phased out during the manufacturing lead-time causing the
inventory to be worthless to the manufacturer. In a recent example, CISCO Systems wrote off
$2.25 billion inventory due to economic slowdown. Their customers suddenly cancelled their
orders and the company does not see any possibility of selling that inventory in the next 12

months.



“  On Tuesday, Chief Financial Officer said the company [CISCO] plans to scrap and
destroy the majority of the inventory because most of it can't be sold because it was
custom-built ...
Cnet.com news report May 9, 2001
Therefore, we assume that the expected resale value of inventory at the end of the period is less
than the production cost. Let v; represent the potential loss from one unit of leftover wafer at the
end of the period (production cost minus salvage value) in PM 7's newsvendor model. We can

describe total profit function for PM i’s business unit, under a demand realization of& and a
capacity allocation of y;, as follows.
7,(y &) = min(y,, &) - v, max(y, — £,0)

The PMs are rewarded by a bonus based on the profits they realize after sales are finalized. Let
g(,) denote the bonus function that is implemented by the corporate. We assume that g() is a
strictly increasing function of realized profits tallied at the end of the accounting period. We
assume that all decision makers are risk neutral and maximize their expected utility. Under this
assumption, the PMs’ Jocal problem reduces to maximizing the total expected profits of their

respective business units expressed by the following function.
Yi

By &) = TL,(y,0) = ry, — (1 +v) [F(£,60)d8,
0

The local problem of a PM is described as maximizing the total expected profits subject to total

capacity constraint of y, <b, where b is the total capacity. The optimal solution to this problem

is the newsvendor solution as follows.

y,(6,) = min{F,-“‘ {——’f—— 1 9[.} b}
FAv

2.2. The Coordination Problem

We restrict our analysis to a corporate environment where two PMs compete for scarce capacity
and the HQ, acting as a central coordinator, wants to maximize the total expected profits for the
corporation. We assume the net profits less bonuses paid to PMs is always increasing in total

profits. Therefore, the HQ’s problem is equivalent to deciding on the capacity allocation that



maximizes total expected profits across the two business units. We formally define the

coordination problem as follows.

Problem CA
Max z(fl;ﬁz)=Hi(y,,91)+1’12(y2,92)
- s.t.
y+y, <b

For notational convenience we use —i to indicate the PMs other than PM i. Let y:(8,,0.,) bethe
optimal capacity allocation that solves problem CA. Notice that problem CA is concave with

respect to the allocation decisions due to the newsvendor structure and therefore y; is unique

and defined by the first order conditions., We also define: z°(8,,6.,) =T1,(y;,6,) + 1, (¥, 0.,).
We need the following assumptions to facilitate further analysis.

Al.  The private information 6, are independent.
A2. For every possible realization of &, all of the available capacity is allocated at the

optimal solution.

2

ZJ’:(@,@;):Z’ v,6.
=l

A3. The demand distribution function always decreases with respect to an increase in demand

mean.

AGHII Vi
EY)

This assumption has important implications that we use through the analysis. In the newsvendor
model, this implies that the marginal profit contribution for a constant allocation increases as

6. increases. Consider the optimality condition for problem CA: the marginal contribution at the
optimal capacity allocation is equal across the PMs. However, an increase in 6, causes the

marginal profit at y,to increase, therefore invalidating the optimality of the solution. The



optimal solution is then readjusted by increasing y; until the marginal profits are equal across the
allocation of PMs. Consequently,

ayi (91'99-1') > 0’ and ayt (giﬁg—i) < 0
08, 06,

i

Moreover, with A3 we have,

oz (9,, )
o0,

That is, an increase in any one of the 6, increases the optimal total expected profits. This is

inferred with the same argument above regarding the change in optimal solution with respect to

an increase in 6, . However, this does not necessarily mean that z () is concave with respect to

2

I

The optimal allocation relies on private information from the respective PMs. Without acquiring
the mean of the demand distribution information from the PMs, the HQ cannot implement the
optimal capacity allocation. On the other hand, the PMs are clearly motivated to exaggerate the
demand mean because their allocation increases with the demand mean they report to the HQ (by
A3). Therefore, it is not possible to implement the optimal allocation without any additional
incentive structure. In the next section, we set up a capacity allocation game, which applies a

necessary incentive structure to implement the optimal capacity allocation.

3. The Capacity Allocation Game

Our objective is to design a capacity allocation game that will enable the HQ to implement the
optimal capacity allocation with the participation of the PMs within the existing bonus system in
the company. We will rely on mechanism design literature from microeconomics in our analysis
(e.g. see Fudenberg and Tirole 1996). The general set-up for a mechanism consists of specifying
two functions <s,z>: the first being the selection rule that maps the messages communicated by
the participating players to social outcomes and the second being the transfer scheme that

determines the incentive payment to the participants. The players simultaneously announce their



messages that maximize their utility with respect to the announced mechanism <s,#> and the

resulting social outcome is implemented.

For the capacity allocation problem under consideration, the HQ announces the capacity
allocation rule (or function) and the bonus payments schedule as a function of reported &,. The
players in the capacity allocation game are the PMs who simultaneously announce a &, value that
maximize their total bonus payments. The range of &, values that a PM can announce (message

space) is restricted by the prior beliefs of the other PMs and the HQ, which we assume to be
shared by every participant. The prior belief function represents the information that participants
have about each others’ private information and it is described by a distribution function. We

will refer to the private information of the PMs as their type. Let @ ,(d,) be the distribution
function that represents the prior beliefs of participants about the type of PM i with support
b e [Z‘;, £.]. Furthermore, let 6’,.* and 6?‘.' denote the actual type of PM { as it is privately known to

her and the announced type by PM i respectively. We restrict our attention to direct revelation
mechanisms where the announced type is taken as the actual type of PM i without any loss of
generality since any mechanism that interprets the announced types differently can be converted

to a payment equivalent direct mechanism (refs here ...).

3.1 The surrogate profit function for PMs.

In order to relate the side payments to the existing bonus system we define a surrogate profit
function. Let ;r“i( Jbe the surrogate profit function for PM i, to which the bonus function g(.) is

applied to determine the total bonuses to be paid. Let #(,) be the function that represents side
payment to PM i. Then we have:

7 0,0..6) = 136,600,500 +1,(6,6.) for i=1.2.

The local problem of PM i is to maximize expected surrogate profit function for any given

@', and it is stated as follows.

10



Problem PM
Max 11(6,,6..6) ) = E.(7,( 6,,6..5)

The surrogate profit function pays the PMs the profits from their own business units and an
additional side payment. This motivates the PMs to consider not only a coordinated solution,
which is induced by the side payment, but also to keep the profits of their business units high.
Therefore, the incentive structure should serve as a means of coordinating the PMs in such a way
that the bonuses paid are increased (together with the expected profits) and this increase is shared

by the PMs appropriately.

3.2. Properties of a desirable mechanism

We are inferested in mechanisms that implement the optimal solution to problem CA. Therefore
we define the function s by . (8,,6,). The side payment function ¢ should support the optimal

allocation rule and should have the following properties.

Truth telling is Bayesian Nash equilibrium policy for the PMs. That is, for each participating
PM, announcing her true type maximizes her surrogate profit function in expectation with
regards to others’ types. More formally, the mechanism <s,/> is required to be Bayesian

incentive compatible hence to satisfy the following condition:
E_[TL(6;.6.,.6) 1= E_[11:(6,,6.,.6, )] Vi Ve Ve
where, E, isthe expectation operator with respect to prior belief function @ _,().

We require that the incentive payment is at most based on the total realized profits including the
side payments. We call this a budget-balanced scheme with respect to the existing bonus system.

It is also needed to satisfy the assumption we made while describing problem CA. The total
expected profit after bonus payments to the PMs is maximized with y;(8,,6,)if the side

payments constitute a budget-balanced scheme. Otherwise, depending on the bonus system,

additional profits may be offset by the additional bonuses to be paid to the PMs. The

11



coordination should ideally allocate the capacity optimally and the increase in total profits should
increase the bonuses that the PMs expect to receive. This corresponds to the following budget

balance constraint on the side payment function.

2
>1(6,6,)<0 v,,6
=l

~i

Notice that the budget constraint implies that the total side payments may amount to a negative
value, which indicates that the total bonus payments may be based on a value that is less than
total profits. This can be justified by the PMs by a significant increase in total profits by

coordination that would otherwise not be possible.

In order to ensure voluntary participation of the PMs, the mechanism should pay off at least as
much as a PM would get if she chooses not to participate. We consider this constraint in
expectation with regard to the belief function of the participants. This is called the interim

individual rationality constraint, which is ensured if the following relation holds:

E_[TL(8,6.,.6; )| 2 11,(bx,.6, ) Vo,

i

where, E; is the expectation operator with respect to prior belief function @ _() and x; is the

initial capacity share of PM i as a percentage of total capacity. The right hand side of the
equation is the expected profit that PM i could have made if she did not participate in the

capacity allocation game and chose to stick with her initial capacity share.

Violation of individual rationality in our context implies that by participating in the coordination
a PM have to sacrifice from personal benefits, in terms of bonus payments, for the good of
others. Even in an intra company environment, this is highly undesirable as a disadvantaged PMs
may show less effort to increase divisional profits, which then leads to decreased system wide
profits. In extreme cases, she can even seek employment elsewhere as this effectively reduces

her total financial compensation.

12



3.3. Coordination Mechanism for Capacity Allocation

At the start of a financial period, an initial capacity share of x;, expressed as a percentage of the

total capacity, is assigned to the PMs. We assume that all available capacity is assigned initially.
The basis of this assignment is the financial commitment targets of the PMs at the start of the
period. However, due to demand volatility throughout the period, the demand patterns may
invalidate the rationale behind the initial allocation. As the PMs observe their demand mean
change, this information has to be used to update the allocation at the planning points during the
financial period. The capacity allocation mechanism proposed below motivates the PMs to give
up their initial share and facilitate a redistribution of capacity so as to maximize system wide

expected profits. We assume that all the parameters used in the mechanism are publicly known

except for the private information &, .

Mechanism CA
Define:
ga‘ gv«i
B = [ 2°(6,,0.)d®(6,)d(6.,)
g,
B.i
B(8)) = [2'(6,,0.)d®(0.)
g
C, = r%in{B,.(Gi) ~T1(x,,6,)}
_C+(C,-B
? T

Step 1: PMs announce their private information 8,,6.,, at the planning point, before demand IS

realized.
Step 2: PMs receive their share defined by the optimal capacity allocation that maximizes
problem CA.:

¥;(8,,6.),y.(0,,6.,)

13



Step 3: Wafer starts are released with respect to the reshuffled capacity allocation. After the

manufacturing lead-time, demand is observed for both business units: &£, and

divisional profits are realized and added to the surrogate profit function.
Step 4: Side payment to the surrogate profit function is made according to the following
expression. The PMs get their bonuses on the final value of their suwrrogate profit

function.

£(0,,0.) = 7 (v(6,,6.),6.)—C,
+%{B +B.(6) B (0.) - [y, (6,,6.),6) + m(y.,(8,,6.,),& )]+ min{0, ¢}

Theorem 1.
Mechanism CA:
(a) implements the optimal capacity allocation,
(b) is Bayesian Incentive Compatible,
(c) supports a budget-balanced bonus structure for problem CA and satisfies interim

individual rationality if and only if ¢ 2 0.

Proof: (See Appendix).

The mechanism essentially pays the realized total profits to each PM and charges a lump sum
participation fee of C;. The payment of the system wide total profits aligns the incentives of the
PMs with that of the corporate, hence induces truth telling as equilibrium strategy. The charges
preserve this incentive structure because they are in lump sum. The C; is the maximum that can
be charged without knowing the type of PM i and still preserving voluntary participation.
According to the definition of C;, PM i expects to make at least that much over all the possible
realizations of her type in expectation with respect to the types of other PMs. Any charge above

the C; value may violate the individual rationality for PM { for certain values of her type.

14



The expression g measures the difference between total expected payments and the lump sum
charges to the PMs. If ¢ is positive then, the charges offset the payments, budget balance is
achieved and individual rationality is ensured. However, if ¢ is negative, then either budget
balance is violated or individual rationality is jeopardized at the expense of achieving budget
balance. In the former case, g represents the cost of private information in terms of additional

bonuses to be paid to the PMs.

Mechanism CA is based on the existing bonus structure that is defined by the bonus function:
g(). With the proposed mechanism the PMs are still paid based on their divisional profits,
consequently they are motivated to put effort to close more sales deals and to increase the mean

of their divisional demand.
4. Analysis of the Capacity Allocation Game

We want to know if we can identify cases, in which we can be ensured about the possibility of
achieving budget: balance and individual rationality simultaneously. In this section, we
characterize the C; values as a function of initial capacity shares and the characteristics of private

information about the PMs’ types and draw some insights into their interaction.

Lemma 1.
Let O™ = {6, €[6:,0,] | min{B,(8,)~11,(x,,0,)}. There exists 6/, €[0-1,6_] such that the
following results hold for every PM i. The value of &, depends on the belief function and the

expected profit function for PM —i.

Case | Condition g = C=

(a) (D
x>0 y'(0.6,)>x V6,e[0:,0,]

S

Bi(_g_f)"“nf(x;sgi)
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@)

y(6.6°,)<x, V6, €(60.,0,1| 0 B.(6:)~T1,(x,,6)
(3) -, o
. I1_(y (0™ ,6.),0.)dd(b.,
else {91 ! y:“ (9“94) = x‘. } Q{ (y ( ) ) ( )
)
x =0 8, B.(8,)

Table 1. Characterization of participation charges from the PMs.

First, we focus on the no-initial-share policy, case (b) in lemma 1. We have the following strong

conclusion stated by the next theorem.

Theorem 2.

Individual rationality and budget balance always holds with zero initial share: x, =0 Vi.

Moreover, g >z (8,,6_,).

Proof (See Appendix).

This result proves that discontinuing the initial capacity assignment policy overcomes the
inefficiency that may be caused by private information under any business environment that can
be described by the model. This is an important conclusion in that it provides a trade off between
disadvantaging the PMs by putting them in uncertainty during their dealings with the customers
and implementing an incentive compatible, individually rational optimal capacity allocation.

Depending on the business environment this may be a viable policy.

Unfortunately, the positive-initial-share case is more complicated. The three regions for the
initial capacity share, as shown in Table 1, have important practical implications. If x; satisfies
(a.1), then this implies that PM 7 will always have, in expectation with regards to the types of the

other PM, more capacity after the capacity allocation game is played. That is, she expects to be a

16




capacity buyer from the other PM, because we assume that initial shares sum up to the total
capacity. Similarly, if x; satisfies (a.2), then this implies that PM { will be a capacity seller in
expectation. Any initial capacity allocation that leads to leaving one of the PMs to be an
expected buyer or an expected seller is undesirable at the corporate level because of the delicate
politics among the PMs which we cannot capture with our game theoretical model. Therefore,
we will focus on the initial capacity allocations that fall into case (a.3) for all PMs. The next

proposition restricts the feasible solution space for the initial alfocation even more.

Lemma 2.

Assume case (a.3) in Table 1.
(a) Tf for PM i 6 =6, then 07" <6 Vi,

) 2
(b)Y If for PM i 8™ =@, then 87" =@ _, Vi, ifand only if ij <b.

=]

The possibility of achieving both individual rationality and budget balance is not conclusive with
the positive initial share case. It depends on the belief functions and the cost structure of the local
newsvendor problem as well as how the initial shares are distributed. However, if we relax the
requirement to distribute the total capacity as initial shares, then we find a compromise that

ensures all the desirable properties.

Theorem 3.

Individual rationality and budget balance always hold if the initial shares are set as:
xizy:(éi’gii) Vi,

where, €., is defined as in Lemma 1.

Proof (See Appendix).
The theorem states that if the initial shares are set in such a way that all the PMs are going to end

up with the same capacity share, in expectation with regards to the other PMs’ type, at their

lowest type, then individual rationality and budget balance holds simultaneously. However, by

17



lemma 2, we know that this can be achieved if and only if the initial shares are less than total
capacity. The initial shares described by theorem 3 represent the least acceptable quantity from
PMSs perspective as initial capacity assignment. The unassigned capacity will be in the ownership
of the HQ and it will be totally distributed with the mechanism CA. Therefore, this policy does
not interfere with the politics between the PMs, Deferring the assignment of part of the capacity

can be viewed as a bargaining too! for the HQ against the private information of the PMs.

5. Case Study

In this section, we describe a case we have observed at the company and apply the theory we

have developed in the previous sections.

We consider two PMs from different business units competing for the total capacity. We assume
that the PMs have identical newsvendor models and that their local problem differs only in the
demand mean. This implies that the unit profit from one wafer and the cost for one unsold wafer
are the same for both PMs, and that the demand distribution has the same variance at the same
mean value. We observed that this assumption seemed to hold at the company. The wafer
manufacturing costs are very similar because they are manufactured at same fabs and the only
difference is the setup made for different circuits that are printed on the wafer. The company
tries to aftain a constant average profit rate for all technologies; therefore, on the average the
business units have similar profit margins. At the end-product level the profit rate may be
different but at the wafer level the average is quiet similar. We also observed that individual
orders can accurately be represented by a normal distribution. With the help of the central limit

theorem, we further assume that the total demand is also normally distributed.

A significant portion of the demand comes from big customers in the form of custom-made chips
for their products. Once a production run is completed for a customer, that particular batch of
wafers cannot be used to satisfy demand for another customer. We model this case by a normally

distributed demand with constant coefficient of variation (y). Therefore, the demand distribution

takes the following form, where 8,is the mean and (y) is the coefficient of variation of the

demand distribution: F.(&, 16,,78,). As the expected volume of orders increases, s does the

18



variance of the distribution. We assume that mean is the private information and the coefficient

of variation is publicly known in the corporate.

The demand distribution defined this way also satisfies Assumption 3 in section 2.2. Under these
assumptions optimal allocation can be represented by a simple proportional allocation rule
(Cachon and Lariviere, 1999-2 ) as defined by:

* — G.
(6.) =mi {8, b . =1,2

for any coefficient of variation (y). When the PMs get allocations in proportion to their expected

demand, the corporate wide total expected profits are achieved.

We represent the belief functions by beta distribution, which is well suited to describe a random
process in the absence of relevant data (Law and Kelton, 1991). The nominal demand, which is
the private information observed by the PMs, is not readily extractable from historical data that is
available to all the PMs and the HQ. The short product cycle-time and the dynamic market for
the output of the industry limit the use of past performance data for planning purposes. However,
historical or market research data can be used to determine the support of the belief function
distribution. An important characteristic of demand in the industry is that the nominal demand
can frequently ramp up or ramp down depending market conditions and the life cycle of the
product. There are even odd cases when demand is expected to ramp up shortly before ramping
down and eventually resulting in phasing out of the product. We assume that a ramp up (down)

can be represented by an average constant nominal demand through the planning period.

If very little is known about the demand behavior, which is often the case for newly introduced
products, a uniform distribution can accurately describe the beliefs. A probability density that is
skewed right assigns higher probability to higher nominal demand values within its range;
therefore, such a distribution indicates an anticipation of a ramping up of nominal demand.
Similarly, a left skewed probability density represents anticipation for ramp down in nominal

demand. The two parameters of the beta distribution can be set to obtain a variety of shapes for
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the probability density including the uniform distribution. Therefore, it provides a uniform

framework to describe the beliefs of the participants in the capacity allocation game.

The data values used in this example is listed in table 2 below.

Data Value Data Value

¥ 50 ) [1000,2000]

v 25 A [1500,2500]

b 2550 6,(6,),4,(8,) | Beta(1,1) : uniform — no information

Beta(1,3) : skewed right — ramp up expected
Beta(3,1) : skewed left — ramp down expected

¥ 0.05

Table 2. Data used in the example.

The data we used captures the relationship between data items as we have observed at the

company. We have set the total capacity such that at their lowest types both PMs get the optimal

allocation that solves their local problem (i.e. y; = y,, Vi).

In this experiment, we compute the C;, C; and B values under a variety of initial capacity
allocations and belief functions. The results are reported in Tables 3-5. In the company, every
PM gets at least 25% of the capacity as initial share, therefore we covered initial allocations from
25% to 75% for both PMs. We used Maple version 6.0 to carry out the computations. In order to
reduce computational requirements to match to our hardware capabilities, we discretized the beta
distribution for the belief functions. We divided the support of the probability distribution to 10
equal intervals and took the middle point of the interval as the value of the random variable and
the probability density of the interval as thé probability. We conducted pilot runs to find the
number of intervals so that the accuracy loss resulting from discretization is negligible. The C;

values are found by total enumeration over the discretized values of ;.
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First, we look at the uniformly distributed belief function case. As seen from Table 3 below,
there are no initial allocation settings where ¢ is nonnegative except the (0.75, 0.25) case.
However, initial shares from (0.6, 0.4) through (0.75, 0.25) essentially falls into case (a.2) and
(a.1) for PM 1 and 2 respectively and are therefore unacceptable. Particularly, at the initial share

configuration of (0.75, 0.25) PM 1 is allocated a capacity that is more than her optimal
newsvendor solution (y,(8,)) for most of her possible types. Such initial configurations actually

defeat the purpose of assigning an initial allocation,

Another point Table 3 shows is that ¢ is very small compared to B. Therefore, budget shortage
actually leads to a negligible amount of extra bonuses to be paid to the PMs. Alternatively, the
violation of individual rationality can be acceptably low. This situation can be explained by
looking at the effect of increasing @, on the optimal total expected profit function z(). As

@, increases so does z'(). However, the rate of increase drops at a high rate at high values of g, as

described by the derivative below ( and Lariviere, (1999-2) and by the envelop theorem):

0'(6,6.)
08, = ) (6’ g, -

This implies that z () shows little sensitivity to &,and therefore the value of information in this

environment is relatively low.

X1,%2 RN Cn G CtC g

0.25,0.75 | 10507, 2450" | 95308, 31875 127183 -274
0.30,0.70 | 1050°,2450" | 88933, 38250 127183 -274
0.35,0.65 | 10507, 2150 82559, 44624 127184 -273
0.40,0.60 | 1150, 1750 76430, 50993 127424 -33
0.45,0.55 | 1350, 15507 70123, 57122 127245 -212
0.50,0.50 | 1650, 1550° 63749, 63433 127183 -274
0.55,0.45 | 19507, 1550 | 57375, 69808 127183 -274
0.60,0.40 | 19507, 1550 | 51000, 76183 127183 274
0.65,0.35 | 19507, 1550 | 44627, 82558 127186 -271
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0.70,0.30 | 19507, 1550 | 38386, 88933 127319 -138

0.75,0.25 | 19507, 1550 | 33599, 95308 128907 1450

Table 3.Computational results for uniformly distributed belief fn. (B=127457).
(" " indicates the upper and lower support for the parameter respectively).

Next, we look at the effects of different belief functions as shown in Table 4 below. It is clear
that coordination becomes easier as higher level of demand mean is anticipated. A higher
demand means an increase in the total system profits, which leads to an increase in the surrogate
profit function for the PMs. Thus, they become more willing to participate to get the befits from
increasing total profits. Especially with the ramp-up case the ¢ value, although negative, is
negligibly small. Another observation is that the initial allocation value of (0.4, 0.6) induced the

highest ¢ under all the belief functions. This happens to be very close to the optimal allocation
that is based on the expected value of belief functions: y, (E[,], E[0_]). The expected value
based optimal allocations are (0.41, 0.59), (0.42, 0.58) and (0.43, 0.57) for ramp-down, uniform

and ramp up respectively. It seems that, a good rule of thump is to set initial shares based on

expected value of beliefs.

X1,X2 g (Ramp-down) | ¢ (Uniform) | ¢ (Ramp-up)
0.25,0.75 -437 274 -2
0.30,0.70 -437 -274 -2
0.35,0.65 -436 -273 -1
0.40,0.60 -17 -33 -1
0.45,0.55 -377 =212 -1
0.50,0.50 -437 -274 -2
0.55,0.45 -437 -274 -2
0.60,0.40 -437 -274 -2
0.65,0.35 -434 271 1
0.70,0.30 -301 -138 134
0.75,0.25 1287 1450 1722

Table 4. Comparison for different belief functions.
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We also look at the initial shares that ensure individual rationality and budget balance as
characterized by theorem 3. As shown in Table 5, the total allocation varies between 80- 90% of
the total capacity. Similar to what we have observed before, as high demand levels are

anticipated, the total that needs to be allocated decreases with an increase in the g value, hence

the budget surplus.

Belief X7.X3 Total allocated q
Ramp down | 0.35,0.55 0.90 11803
Uniform 0.35,0.55 0.90 12224
Ramp up 0.30, 0.50 0.80 25486

Table 5. The initial capacity allocation that satisfies conditions of theorem 3.

6. Conclusion

In this study, we have analyzed a capacity allocation problem at a major US semiconductor
manufacturer in a game theoretical setting. We showed that the incentives of the PMs who are
competing for scarce capacity are not properly aligned with the company wide interests under the
current bonus structure. This is due to the private information that the PMs have regarding the
demand mean for their business units. Another factor that contributed to the problem is the initial

capacity share that is assigned to PMs before the planning period.

We have developed a capacity allocation mechanism in the form of side payments as a function
of the reports of PMs about their private information. Under the proposed allocation mechanism,
the PMs are induced to announce their true private information knowing that they will forego
their initial share and that system wide optimal allocation is going to be implemented by the HQ.
The bonuses are then paid after the profits in all business units are realized and observed. We
investigate the situations when we can attain voluntary participation of the PMs and budget

balanced bonus payments by the HQ. Our results characterize the conditions under which these
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properties can be attained. Our main conclusion is that the inefficiency generated by the PMs
having private information can be counteracted by reducing the total of initial assignment and
keeping a fraction of the capacity for competition at the time of production planning. The
example in our case study indicated that the initial assignment that supports a desirable

coordination could be as high as 90% of the total capacity.

We considered two competing PMs in our analysis. Our next step is to generalize the results to
any number of PMs. In our analysis, we assume that the belief functions are common knowledge
among the PMs and the HQ. Consequently, we also require that incentive compatibility and
individual rationality hold in expectation. However, our assumptions may not hold true in some
cases. For example, PMs who are operating in different markets may not posses a belief function
regarding the demand of the others. In order to relax the common knowledge assumption we
have to impose tighter restrictions on the incentive compatibility and individual rationality.
Specifically, these conditions have to hold without regard to the type of the participating PMs.
Then the analysis will differ in that the participation charges to the PMs will have to be less in
order to accommodate the relaxed assumptions. Resolving this issue is reserved for future

research.
APPENDIX

Proof: Theorem 1.
(T1.a) By definition of y; (#,,0.,)in section 2.2,

(T1.b) Consider the payments to the surrogate profit function under the mechanmism <y*, £>.
(i) Each PM receives the total realized profits.
(i) We define the total participation charge in expectation with regards to demand for a PM as

follows.
h(6,0.) = C, ~ <[5 + B(6))~ B (6.)=2'(6.0.)] - min{0,q}
The expected participation charge with respect to the type of the other PMs 1s:

E, [h(6,0.)]=C, - %{B +B,(6) - B-B,(0))]- min{0,q} = H, v,
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It is clear that the participation charge is /ump sum in expectation with regards to the type of the
other PMs.

From (i) and (i), <y*, £> is a Groves mechanism in expectation and by the equivalence theorem,

<y* > is Bayesian incentive compatible (Makowski and Mezzetti 1994).

(T1.c) The mechanism pays the realized profits to the respective business units plus the extra
payments defined by . We show that the total extra payments sum up to be less than or equal to

ZCYO.
2 * ]
> 1,(6,,6.)=B~[C, +C ]+ min{0, [C, +C_]~ B}
i=1

Consider the right hand side of the equation above. If total expected pay, B, is larger than the
total expected charge, (C;+C;), then the third term on the right hand side deducts the difference
from the total payments to the surrogate function and makes the equation evaluate to zero. On
the other hand, if there is a surplus in the expected payments, then total payments evaluate to a
negative value without any adjustment and the surplus is captured by the designer in terms of

less bonus payment.

(T1.d) By participating in the capacity allocation game, PM i is paid B,(f,) in expectation with
regards to the type of the other PM. On the other hand, she gives up what her initial share would
pay her, which is II(x,,6,). The PMs are expected utility maximizers, therefore the payments

are considered as expected values with regards to demand. Consequently, without knowing PM

i‘s type, the HQ can at most charge a participation fee of C;. The PM i expects to make at least C;

or more compared to not participating, at any realization of her type #,. Consider the lump sum
participation charge H; defined in proof of (1.b). H; equals C; if and only if ¢ 20, otherwise

H, > C,and the interim individual rationality of PM i is violated.
Proof: Lemma 1.
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(L.1.a) Consider x, > 0.

(i) By the envelop theorem we have,

8c(6) O oF (£,6,) (OF, (5,,9)
T =8j ~(r+v,) Oj —ar &, + (+v)j dg, [dO(0,) =A.

L

i

By assumption 3, it is clear that A increases as &, increases.

(i) By the first mean value theorem for integrals, there exists &, e[@.,6.,] such that

B,(8)=2(6,,8.) (e.g. see Trench 1978). Therefore, we can rewrite A as,

XN %
" BF (£, 6, BF(&,,6,
A=“'(ri+v.:) J —“(éé:é—’ld‘ff+(ﬁ+vs)Jm§é”“““ld§i
G i fi] i

According to the mean value theorem & may change value with respect to &,. However, we
know from (i) that Ais an increasing function of &,. Therefore, A increases regardless of the
value of @,. The term A is negative as long as y,(8,,6., ) <x,, hence C; is decreasing up to the
8, value until y,(6,,6.,) = x, where it evaluates to zero. Beyond that point, as ,is increased and

i ( Qz.,éf,. ) > x, satisfied. Consequently, A always takes a positive value and C; increases.

Derivation of C; values for cases (a.1) and (a.2) is straightforward. For case (a.3): by the mean

value theorem for integrals we have,
C, =T,(y} (8™, 8,6 + TL_ (¥, (6"",0.),0%) - T1,(x,,6™).

Since y; (6™,6.,) = x,, it follows that

C, =T1, (¥ (0",0),0°) = [TL (¥ (6m™,0.),0.)dD(E.,).

(L1.b) Consider x, = 0.
This is a special case of the previous case where the optimal allocation is always greater than

initial share, which is zero. Therefore 8™" = @, and the second term in C; evaluates to zero.
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Proof: Lemma 2

(a) The if part implies that y:(gs,é?f,.) = x,. From assumption 2, y_, (6:,0") = b—x,. Suppose
PM -i has 67" =@, then y (6 ,0-)=b-x,. However, this cannot hold true since
8> 6 and 6: > 6., and by assumption 3. In fact, y’ (6, 6-)>b-x,. Since y.,is increasing

with respect to 87", the then part should be satisfied.

- 2

(b) The argument is same as (a) for the stated types.

Proof: Theorem 2.
Let E(QE,QZ)=z*(Ql,92)+z*(6’],Q2), E(@,,Qz)mz*(ﬁlﬁz). Hence, from Lemma 1 and

Theorem 1 we have,

8.8,

C +C, = [ [[C(6,,6,)1d0(6,)dD(6,)
Q! QZ
X
B= j |B(6,,6,)dD(6,)d(8,)
& 8:

If we can show that C(6,,6,) = B(6,,6,), then this implies that C, + C, > B

(i) At the lowest values of types (&,,6,) we have,

C(6,,6,) =22'(6,,0,)= B(6,,6,) =2'(6,,6,) .

(ii) At any (6,,6,)

.Va’(@: ) aF(gl’
o6.

8C(6,9.) _

}’i(G,J‘ ,'}aF(§" aB(Q, )
06,

g,)
oy derand g =)

0 i G

(4 v) I8 e

With assumption 3 we can conclude that at any (6,,6,), C(6,,6,) increases at a higher rate than

B(8,,6,). With (7), this completes the proof.
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Proof: Theorem 3.

By Theorem 1 and Lemma 1 we have,

662

C+C, = [ II(57(6,8,).6,) + T1,(35(6,,6,),6,)1d®(6,)dD(6,)
4,8,
él 52
B = [ [UT,(3(6,,6,).6) + T1,(3;(6,,6,), 6,)1d0(6,)d®(9,) .
6,8,

By assumption 3, At any (#,,6,) the expression inside the integral in C;+C, is greater that the

one inside B. Therefore, C;+C > B.
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