P1 :blem;.Reductmn for ()ne—Dimensmnal Cuttmg
And Packmg Problems ERE

Bethlehem Ste{ﬂ Cerporatlﬂn . P s

Jeseph C Hartman
Lehzgh Umver51ty

s Umverszty

o 200 West PackerAvenue-
Bethlehem PA 18015 ;:



Problem Reduction for One-Dimensional Cutting and
Packing Problems

Peter A. Huegler | Joseph C. Hartman
Homer Research Laboratories | Industrial and Systems Engineering Dept.
Bethlehem Steel Corporation Lehigh University
Bethlehem, PA 18016 Bethlehem, PA 18015
USA USA

And

Industrial and Systems Engineering Dept.

Lehigh University

Bethlehem, PA 18015

USA

1 Abstract

This paper presents a polynomial time reduction procedure for one-dimensional
cutting and packing problems. This reduction procedure is based upon separating the
original problem into two sub problems whose optimal solutions can be combined into an
optimal solution to the original problems. This reduction procedure is compared with the
reduction method of Martello and Toth [13], [14]. A second reduction method is
presented that combines the separation-based method and Martello and Toth’s method.
The effect of the combined method on upper and lower bounds is analyzed. The
application of the combined reduction procedure and a column generation based upper
bound on 39,970 test pfobiems found optimal solutions 94.55% of the time, a gap of one

large object 5.21% of the time and a gap of two large objects .24% of the time.
2 Introduction

The one-dimensional bin packing problem (BPP) can be stated as follows:



Given a positive integer C and a set [ = {1,2,...,n} of n items, each having
a positive integer size s, (i= 1,...,n) satisfying s, < C, the bin packing
problem (BPP) is to find the smallest integer m such that there is a
partition B = {B,B,,.... B, } of set ] where the sum of the sizes in each B;

does not exceed C. Informally we can think of the problem of packing n
items into a minimum number of identical bins of capacity C; each subset
B; is in this case the contents of the bin. [14]

The one-dimensional cutting stock problem (CSP) differs slightly from the BPP in
terminology but is mathematically equivalent. Instead of packing » items into a

minimum number of identical bins, the CSP cuts #n items from a minimum number of

inventory items.

Dyckhoff [6] and Dyckhoff and Finke [7] developed a classification system for
cutting and packing problems. The system is as follows:

1. Dimensionality
(N) Number of dimensions
2. Kind of assignment
(B) All large objects and a selection of small items
(V) A selection of large objects and all small items
Assortment of large objects
{O) One object
(1) Identical figure
(D) Different figure
4. Assortment of small items
(F) Few iterns (of different figures)
(M) Many items of many different figures
(R) Many items of relatively few (non-congruent) figures
(C) Congruent figures

W

In the bin packing and cutting stock problems, large objects refer to the bins and
inventory items and small items refer to the items to be packed or cut. Using this
typology, the BPP is 1/V/UM and the CPP is I/V/I/R. The difference is in the assortment

of small items. The BPP has many items of many different sizes and the CPP has many

items of relatively few sizes. -



There are rﬁany solution procedures for both the BPP and CPP. The following
sections discuss the procedures analyzed within. For more information refer to Haessler
and Sweeny [12], Cheng, Feiring, and Cheng {2}, Coffman, Galambds, Martello, and
Vigo [4] and Coffman, Garey and Johnson [5].

Section 3 presents the bounds used in the remaining sections of this paper.
Section 4 discusses the separation-based reduction method and the combined Martello
and Toth and separation-based method. Section 5 reviews the test problems analyzed
within the analysis section. Section 6 is the analysis of the reduction methods.

Conclusions are presented in section 7.

3 Problem Bounds

3.1 Lower Bounds

Martello and Toth [13], {14] developed one of the better lower bounds for the
cutting and packing problem by partitioning the small items into three groups and
computing the bound based on the sizes in each partition. By evaluating all of the
possible partitions, the algorithin generates a high-quality lower bound. The lower bound
is calculated without constructing a solution. This lower bound method is referenced at
MTL2 in the analysis section. The algorithm is polynomial time running in O(n} time.

Marteﬂo and Toth also present a second, improved lower bound in [13]} and [14].
This lower bound is a combination of the MTL2 lower bound and the Matello and Toth
reduction procedure. This lower bound method is referenced in the anaiysis section as
MTL3. This algorithm is also polynomial time_running in O(r°) time.

A third lower bound is based on the Gilmore and Gomory column generation

(CG) algorithm presented in [10] and [11]. Vanderbeck proves in [18] that the CG



solution of the CSP rounded up to the next highest integer is a lower bound and

dominates the lower bounds due to Martello and Toth [13], [14].

3.2 Upper Bounds

The any fit decreasing (AFD) algorithms are heuristic methods to solve the bin
packing and cutting stock problems. The algorithms differ in the rule used to assign
items to a particular bin. There are three common fit rules for the AFD algorithm. The
‘best fit decreasing (BFD) rule assigns the item to the bin that leaves the most remaining
bin capacity. The worst fit decreasing (WFD) rule assigns the item to the bin that leaves
the least remaining bin capacity. The first fit dccreasing (FFD) algorithm assigns the
item to the first bin in which the item fits. These algorithms are polynomial time
algorithms.

The modified subset sum greedy (MSSG) heuristic is based on the subset sum
problem. This heuristic solves a series of subset sum problems to generate packing
patterns. The outline of the algorithm is as follows: |

1. Apply the small items larger than one-half the large object size to
separate large objects.

2. Starting with the large object with the least remaining capacity,
find the largest subset of the remaining small items that {its within

the remaining capacity and assign the small items to that large
object.

3. Repeat step 2 until all partially filled large objects are filled or no
small items remain. Quit if no small items remain.

4. Taking an unused large object, find the subset of the remaining
small items that fills the large object and assign the small items to
that large object.

5. Repeat step 4 until no more small items remain.

Two different exact methods are used to solve the subset sum sub problems. First, the
problem is solved using an enumeration algorithm similar to the algorithm presented on

page 201 in Chviétal [3]. Secondly, the problem is solved using Pisinger’s minknap [15]



algorithm to solve the sub problems. These methods are referred to as MSSGEnum and
MSSGMinKnap respectively. These algorithms execute fast in practice although the
subset sum problem is NP-Hard.

The column generation residual (CGRes) algorithm is based on Gilmore and

Gomory’s column generation algorithm [10], [11]. The outline of the algorithm is as

follows:

famy

Solve the LP relaxation of the CSP using column generation.
2. For each pattern of small items identified in the column generation

solution, apply the pattern to l_xij large objects.
3. Using only the remaining small items, solve the problem using

a. FFD

b. BFD

c. WFD

d. MSSGEnum

e. MSSGMinKnap

4. Use the best solution from step 3 to complete the problem.

This algorithm incorporates upper bound methods that solve the subset sum problem.
Therefore, this algorithm is not polynomial time, but in practice, executes sufficiently
fast.

4 Problem Reductions

4.1 Martelio and Toth Reduction

Martello and Toth describe a method for reducing BPP and CSP problems in [13]
and [14]. This method identifies dominant cutting or packing patterns, which are
removed and thereby reduce the original problem. The initial reduction method -
presented is exponentially inefficient because all thé possible packing patterns must be

generated and compared. Martello and Toth present a modified reduction method that



limits the cardinality of the packing patterns to three or less small items. The modified
method is a polynomial time algorithm.
4.2 Separation-Based Reductions

Our separation-based reduction method attempts to reduce the problem size by
identifying separable sub problems whose optimal solutions combine to be an optimal
solution for the original problem. It is based on the following lemma.

Consider a BPP with items I ={1,2,...,n}, sizes s, (i =1,...,n}, and a bin capacity
of C. Select a size s, such that %C <5< C. Construct a partition I ={I,,1,}. Where I;
contains a}l items in / such that s, =25 or 5, £C~ys. Let k be the number of items in [,
with s, > %C . Lethh contaiﬁ the remaining items, or the set /\ [, with C—s<s; <s.

Lemma 1: If there exists an optimal solution to the partition I; with Z; =k , then
the optimal solution to the master problemis Z" =k +Z, .

Proof: Assume there exists an optimal solution to the partition f; with Z;} =K.

By construction, no items from I; can be moved to I; without creating a new bin in the [;
optimal solution. This is because each pattern in /; contains a small item with a size

s, 2 and all items in [, have a size C—s > 5, > 5. Further, the smaller items

(s, <C—s)inl; can be moved to I, but their removal will not improve upon the optimal

solution to I; (as the number of small items greater than %C is equal to k) and at best, the

solution to I will rernain the same and at worst increase the solution by one bin per small

item moved. Similarly, moving one larger item from I, to I; will create a new bin in the



optimal solution to I, and will reduce the optimal solution to I; by at most one bin with
possibly no reduction at all. Therefore, there is no swapping of items between I; and I,

that can improve the optimal solutions to 7; and I, and therefore, the optimal solution to
the master problem can be expressed by Z" =k + Z;; .0

The difficultly with applying the result of this lemma is that if requires an optimal
solution to BPP, which is NP-hard. However, the above lemma can be used to examine

an existing solution of any BPP to determine if the problem is reducible. Considera
feasible solution, P, to the BPP. Select an s, such that %C < s £ C. Partition the packing

patterns into two groups, P; and Pz, where P, contains all of the patterns that contain an
item with size greater than or equal to s. Let /; be the items that are included in the
patterns in P; and let I, be the itemns that are included in the patterns in P;. Let Sy be the

set of items in 7 such that 5; < C—s. Let S, be the set of items in I, such that s, <C—s.
If §, =S, then the partition [ = {I,,1,} has the properties required by Lemma 1. The

patterns in P; are an optimal solution to I; because of the construction of P;. Therefore,
using Lemma 1, the problem is separable and the individual sub problems can be solved
independently. And since P; is an optimal solution to I;, only [; is considered further to

optimize the entire problem with /.



Item Number Size
a 9
b 9
¢ 8
d 8
e 7
f 4
g 3
h 3
i 2
J 1

Table 1 — Example Problem
Pattern Number Pattern

I ' 9-1
2 9
3 8-2
4 8
5 7-3
6 4-3

Table 2 ~ Selution to Example Problem

As an exampile consider the solution in Table 2 to the example problem in Table
1. First, let s =7 . P; contains the patterns 1,2,3,4,and 5. I, = {9,9,8,8,7,3,2,1},
1, =143}, S, ={3.21},and 5, ={3321}. Since §, =S, , the partition [ = {1,,1,} does
not have the same properties required for Lemma 1. Therefore, it cannot be proven that
this problem can be reduced using this partition.

Now consider s =8. Pjcontains the patterns 1,2, 3,and 4. [, = {9,9,8,8,2,1},
1,={7433}, 5, ={2.1}, and S, ={2,1}. Since S, =S, , the partition J = {1,,1,} has the
properties required for Lemma 1. The patterns in P, are an optimal solution to 17 as

Zf‘ =k . Using Lemma 1, the problem can be separated uSing this partition. Now, the

problem can be reduced and only ; needs to be optimally solved.




The above example suggests the following algorithm for calculating the smallest s

for which Lemma 1 identifies a separable problem.

1. Create two sets of items.

a. Let I; be the set of items where s, S—C.

C anditemiisina

b. Let I» be the set of items where s, <

. . , 1
pattern with another item i; where s, > EC .

2. Sort the patterns in descending order based on the largest small
item in each pattern. .
3. Find the pattern in the list with the smallest small item with a size

8§, > }««C .
2 .
Set s to the size of the largest small item in the current pattern.
Remove the items from set /; with asize 5, >C~—s.
If I, =1, then stop.
Remove the small items in the current pattern from .

Move the previous pattern in the sorted pattern list.
Go to step 4.

Lo o A

Step 1 can be executed in O(n) time. Bach item in each pattern must be examined and
there are n items. Step 2 can be executed in O(nlogn) time. At the worst case, there will
be n patterns in the list. Therefore, step 3 will execute in O(r) time. At most, there will
be » items to be removed and step 5 will also execute in O( n) time. For the same reason,
step 7 will execute in O(n) time. The loop from step 4 to step 9 will execute at most n

times. Therefore, the whole algorithm will execute in Of 7’ ) time.

4.3 Hybrid Reductions

The Martello and Toth and'Pr()bicm Separation methods can be gombined into a
hybrid reduction method. First, methods ére selected for the hybrid algorithm (e.g.
Martello and Toth, Problem Separation using the FFD solution, Problem Separation using

the MSSG solution). The basic outline for the hyﬁrid method is as follows:



Select the reduction method

Execute the current method.

Reduce the problem using the results.

If the problem is completely reduced, stop.

Execute subset sum to determine a new capacity.

Repeat steps 2 through 5 for each selected method.

Repeat steps 1 through 6 until no methods reduce the problem.

Al

Four hybrid methods are examined. The hybrid methods are selected based on the

analysis in section 6. Table 3 lists the hybrid methods.

Hybrid Method Selected Reduction Methods

Hybrid FFD . Martello and Toth
Problem Separation using FFD solution

Hybrid MSSGEnum Martello and Toth
Problem Separation using MSSGEnum
solution.

Hybrid MSSGMinKnap Martello and Toth
Problem Separation using MSSGMinKnap
solution.

Hybrid ALL Martello and Toth

Problem Separation using FFD solution

Problem Separation using MSSGEnum
solution

Problem Separation using MSSGMinKnap
solution

Table 3 ~ Hybrid Reduction Methods
The Hybrid methods are not polynomial time algorithms because step 5 solves the subset
sum problem. Although this problem is NP-Hard, in practice, solution times are fast. In

practice, the execution times of the Hybrid methods are also fast.
5 Test Problems

Seven problems sets are used as test problems. Problem generators generate two
of the data sets. BPPGEN [17] is a generator used to create 35,000 bin packing problem

instances. The souzce code for BPPGEN can be obtained from bttp://prodlog, wiwi.uni-

halle.de/sicup/non _pub/research-support/bppgen.html. CUTGEN]1 [9] is a problem

generator for the one-dimensional cutting stock problem. It is very similar to BPPGEN.

10




CUTGENT is used to generate 3,600 problem instances. The source code for CUTGEN1

can be obtained at http://prodlog. wiwi.uni-halle.de/sicup/non_pub/research-

support/cutgenl.himl.

The remaining problem sets are not from problem generators. The BISON [16]
problem instances consist of three sets of problems. These problems were used to test the
BISON algorithm against Martello and Toth’s MTP [13] algorithm. The first problem
set, referred to as BisonDS1 contains 720 problem instances. BisonDS2, the second
problem set contains 480 instances. The final data set is referred to as BisonHard. This
set contains 10 instances. The total number of instances for all three BISON data sets is

1.210. The BISON data sets can be obtained at hitp:/www bwl.tu-

darmstadt.de/bwl3/forsch/projekte/binpp/. The remaining problem sets are taken from J.

E. Beasley’s OR-Library [1]. These prdblems originate from E. Faulkenauer [8] and
were used to test a grouping genetic algorithm. The OR-Library contains two sets of
problems. One set of instances contains uniformly generated item sizes and referred to as
BeasleyUniform. The other set of instances contains specially generated triplets and is
referred to as BeaslyTriple. Both BeasleyUniform and BeasleyTriple contain 80

instances. These test problems can be obtained at http://www.ms.ic.ac.uk/info.html.

6 Analysis

6.1 Implementation Notes

All of the problem generators, reductions and algorithms are programmed in
FORTRAN, C, and C++. Original source code from the authors was used where

available. The programs were compiled with Microsoft Visual Studio and DEC Visual .

11



Fortran compilers. The programs were executed on a 900 MHz Pentium I Compaq
Presario 1800T with 384 MB of RAM running Microsoft Windows 2000 Professional.

For each proble:rﬁ, a subset sum problem is solved to determine the minimum
required large object capacity. If the solution returns a sum less than the current large
object capapity, the large object capacity is replaced by the sum.

The column generation algorithm requires an initial set of patterns. Chvatal [3]

(page 199) proposes uéing a pattern for each small item made up of lSE‘J of the small

items. This implementation of the column generation algorithm adds to the Chvatal
suggested patterns, the patterns generated by solving the BPP with FFD, BFD, WFD,
MSSGEFEnum, and MSSGMinKnap. All duplicates are removed. The additionai patterns
significantly decrease the column generation execution time. The knapsack sub problemi
is solved using a O(nC) dynamic programming based algorithm presented in {19].
6.2 Problem Reductions

Initially, six reduction methods are analyzed. The first method is the limited
cardinality Martello and Toth (MT) reduction method. The remaining five are variations
of the Problem Separation method using the following starting solutions; First Fit
Decreasing (SepFFD), Best Fit Decreasing (SepBFD), Worst Fit Decreasing (SepWFED),
Modified Subset Sum Greedy —~ Enumeration (SepMSSGEnum) and Modified Subset
Sum Greedy — Minknap (SepMSSGMinKnap). The reduction procedures are performed

on problems from six different test problem sets as described in section 5.

12



Sep Sep
Problem MSSG | MSSG
Generator Count MT SepFFD | SepBFD |SepWFD| Eovm |MinKnap
BeasleyTriple 80
BeasleyUniform 80 30
BisonDS1 720 720 396 338 128 397 395
BisonDS2 480 36
BisonHard 10
BPPGEN 35,000 22,630, 10,900 8,724 4,301 10,751 10,747
CUTGEN1 3,600 817 1,160 3771 0 351 L116 1,115

Table 4 — Reduction Count by Method — All Problems
Table 4 displays the number of problems reduced by each reduction method. The
first column, “Generator”, identifies the test problem set. The column, “Problem Count”,
is the number of problems in each set. The remaining columns are the number of
problems reduced by the respective metﬁods. In general, the MT method reduced more
problems than the problem reduction methods, the only exception being the CUTGEN1
problem set. This set is the only cutting stock problem set with the remaining being bin

packing problem sets.

Sep Sep
Problem MSSG | MSSG

Generator Count MT SepFFD | SepBFD | SepWFD | Enum |MinKnap
BeasleyTriple 80
BeasleyUniform 80, 49.64%
BisonDS1 7200 73.50%| 65.66% 62.64%| 72.98%| 65.64%| 6537%
BisonDS2 480 14.99% .
BisonHard 10
BPPGEN 35,000 60.15%| 71.73%| 72.49%] 78.55%| 71.44%| T1.45%
CUTGEN1 3,600 20.81%| 70.66%| 90.57%| 92.32%; 69.70%| 69.73%

Table 5 — Percent Reduction by Method — All Problems
Table 5 displays the percent reduction by each reduction method. The “Problem
Count” column is again the number of problems in each problem set. The remaining
columns dis;ﬂay the percent reduction for each reduction method. The percent reduction
is only calculated from reduced problems. As an example, consider the BisonDS1 results

for the SepWFD reduction procedﬁre. From Table 4, this method reduces 128 problems.

13



From these problems, SepWFD, on average, removes 72.98% of the small items. The

problem separation based reductions tend towards a larger reduction percentages than the

Martello and Toth reduction. SepWFD generally outperforms the other reductions but

reduces few problems. SepFFD is the second best separation-based reduction method

and it reduces more problems than the other separation-based methods.

Sep Sep

Problem | Reduced MSSG | MSSG
Generator Couni | Count MT SepFFD | SepBED | SepWFD | Enum MinKnap
BeasleyTriple 80
BeasleyUniform &0 801 100.00%
BisonDS1 720 7200 92.50% 8.89% 4.86% 2.50% 8.80% B8.61%
BisonDS2 480 36| 100.00%
BisonHard 10
BPPGEN 35,000 22,8711 87.95%| 1627% 9.87%) 7.23%| 15.57%| 15.54%
CUTGENI 3,600 1,271 24.31%| 77.58%| 25.89%| 26.36%| 73.72%| 73.64%

Table 6 — Percent Best Reduction by Method

Table 6 displays the percentage each reduction method finds the best reduction as

compared to the other methods. The Martello and Toth method performs well on all

problem sets but the CUTGENI problem set. The SepFFD, SepMSSGEnum and

SepMSSGMinKnap perform the best on the CUTGEN1 problem set. SepBFD and

SepWFD perform the worst.

Sep Sep
Problem| Reduced MSSG | MSSG
Generator Count | Count MT SepFED (SepBFD | SepWFD| Enum |[MinKnap
BeasleyTriple
80
BeasleyUniform 80 80 80
BisonDS1 720 720 656
BisonDS2 480 36 36
BisonHard 10
BPPGEN 35,000 22,871 19,134 78 1
CUTGEN1 3,600 1,271 281 32 1

Table 7 - Strictly Dominant Reduction Count by Method

" Table 7 displays the number of strictly dominant reductions for each method. A

reduction is strictly dominant when the reduction removes more small iterns from a

14




problem than any other reduction method. The “Reduced Count” column displays the
total number of problems reduced by any of the methods. The remaining columns
disf:iay the number of problems where the reduction method generated strictly dominant
reductions. Consider fhe BisonDS 1 problem set. The six reduction methods reduce a
total of 720 problems. The Martello and Toth method reductions of 656 problems strictly
dominate. For the remaining 64 reduced problems, multiple reduction methods find the
largest reduction.

A second method of improving the reduction results is to combine the different
reduction methods into a meta-method. The Hybrid method (see section 4} is a structure
that combines several different reduction methods. The following is an analysis on four
Hybrid methods. Hybrid FFD combines the Martello and Toth and SepFFD methods.
HybridMSSGEnum combines the Martello and Toth and SepMSSGEnum methods.
HybridMSSGMinKnap combines the Martello and Toth and SepMSSGMinKnap
methods. And finally, Hybrid ALL combines Martello and Toth, SépFFD,
SepMSSGEnum, and SepMSSGMinKnap methods. The four methods combined into the
Hybrid methods are selected for different reasons. The Martello and Toth method is
selected because of the large number of strictly dominant reductions. Thé separation

methods are selected because of the high percent reduction.

Hybrid | Hybrid
Problem  Hybrid | MSSG MSSG | Hybrid
Generator Count FED Enum | MinKnap, ALL

BeasleyTriple 80

BeasleyUniform 80 30 80 80 80
BisoaDS1 7260 720 720 720 720
BisonDS2 480 36 36 36 36
BisonHard 10

BPPGEN 35,000 22,870 22,862 22,862 22,871
CUTGEN1 3,600 1,270 1,229 1,229 1,271

Table 8 —~ Reduction Count by Hybrid Method — All Problems

15



Table 8 displays the reduction counts for all of the Hybrid methods. There is no
improvement in the results for both the BeasleyTriple and BisonHard problem sets. The
BisonDS1 and BisonDS reduction counts are the same as the reduction counts for the
Martello and Toth method by itself. The Hybrid methods improve number of reductions

in the BPPGEN and CUTGEN1 problem sets.

Hybrid | Hybrid
Problem | Hybrid | MSSG MSSG | Hybrid
Generator Count FED Eoum | MinKnap| ALL

BeasleyTriple 80

BeasleyUniform 801 49.64%| 49.64%| 49.64%| 49.64%
BisonDS1 7200 T76.45% T7647%| T637%| T643%
BisonDS2 4801  14.99%| 14.99%| 14.99%| 14.99%
BisonHard 10

BPPGEN 35,000 69.53%| 068.85% 68.82%| 09.45%
CUTGEN1 3,600] 79.89%| 78.63%| 78.48% 80.11%

Table 9 — Percent Reduction by Hybrid Method ~ All Problems

Table 9 displays the Hybrid methods percent reductions for all problems. The
hybrid methods do not improve the percent reductions for the BeasleyUniform and
BisonDS2 problem sets. The methods do improve the reductions for the BisonDS1,

BPPGEN and CUTGENI1 problem sets.

Hybrid | Hybrid
Problem |Reduction| Hybrid { MSSG MSSG | Hybrid
Generator Count Count FFD Enom | MinKnap| ALL

BeasleyTriple 80

BeasleyUniform 80 80| 100.00%| 100.00%| 100.00%: 100.00%
|BisonDS1 720 720]  99.86%| 100.00%| 99.72%| 98.06%

BisonDS2 480 36 100.00%| 100.00%| 100.00%i 100.00%

BisonHard 10

BPPGEN 35,000 22,871 99.93%| 99.23%| 99.21%| 97.99%

CUTGENI 3,600 1,271  99.69%| 95.83%| 95.67%| 99.53%

Table 10 — Percent Best Reduction by Hybrid Method
Table 10 displays the percentage each hybrid method finds the best reduction as

cormpared to the other hybrid methods.

16



Sep Sep
Problem | Reduced MSSG MSSG Hybrid
Generator Count Count MT SepFFD | Enum |[MinKnap: ALL

BeasleyTriple 80

BeasleyUniform 80 801 100.00% 100.00%
BisonDS1 720 726|  90.00% 1.67% 1.67% 1.67% 100.00%
BisonDS2 480 36| 100.00% 100.00%
BisonHard 10

BPPGEN 35,000 22,871 87.50% 6.11% 6.03% 6.02%| 99.92%
CUTGEN! 3,600 1,271 23.76%] - 14.32%| 13.69%| 13.69%| 100.00%

Table 11 — Percent Best Reduction -~ Summary Comparison

Table 11 displays a comparison of the percent best reductions between the

Hybrid ALL reduction method and the component methods. The Hybrid ALL method

significantly improves the individual methods.

SepMSSG [SepMSSG

Generatoy MT SepEFFD | SepBED | SepWID | Enum | MinKnap
BeasleyTriple
BeasleyUniform 00053 _
BisonDS1 0.0031 0.0034 0.0050 0.0051 0.0057 0.0651
BisonDS2 0.0028
BisonHard
BPPGEN 0.0046 0.0042 0.0047 0.0045 0.0063 0.0621
CUTGEN! 0.0078 0.0061 0.0070 0.0071 0.0140 0.2045

Table 12 - Normalized Reduction Times by Method

Hybrid | Hybrid
Hybrid MSSG MSSG | Hybrid
Generator FFD -Enuom | MinKnapi ALL

BeasleyTriple

BeasleyUniform 0.0113 0.0221 0.0555 0.0383
BisonDS1 0.0081 0.0103 0.0340 00226
BisonDS2 0.0072 0.0331 0.1177 0.0778
BisonHard

BPPGEN 0.0130 0.0154 (10435 0.0275
CUTGENI 0.0187 0.0294 0.2592 0.1037

Table 13 — Normalized Reduction Times by Hybrid Method

Table 12 and Tabie 13 display the normalized average execution times for each of

the analyzed methods. All of the times are reported in seconds. The times are

normalized because within each problem set, there are problems with differing number of

17




small items. The value displayed in each table is the average execution time per 1,000
small items. Also, the times are an average only of those problems a method reduced.
For example, the SepFFD method reduced 396 problems for the BisonDS1 problem set
(Table 4). The times for only those 396 problems are included in the calculation for the
time shown in Table 12. The calculations are performed this way because of the way the
Problem Separation reduction executes. This method first tests whether a problem is a
candidate by looking at the number of big items. If this number is zero, the reduction is
stopped. Problems with no big items take no time in this reduction method. Including
these problems would skew the times. Therefore, the times are only reported on those
problems that were reduced. As shown by the data, executing the reduction methods is
trivial.
6.2.1 Lower Bounds

Six lower bound methods are analyzed in this section. Three are Martello and
Toth 1.2 (MTL2), Martello and Toth L3 (MTL3) and Column Generation (ColGen).
Each of the remaining three lower bound methods first reduce the problem using the
Hybrid ALL reduction method, then execute the lower bdund method. These three are the
Reduced Martello and Toth L2 (RedMTL2), Reduced Martello and Toth L3 (RedMTL3)

and Reduced Column Generation (RedColGen). The following discusses the results.

Red Red Red
Problem| MTL2 | MTL3 | ColGen | MTLZ | MTL3  ColGen

Generator Count Best Best Best Best Best Best
BeasleyTriple 804 100.00%, 100.00%) 100.00% 100.00%: 100.00% 100.00%
BeasleyUniform 80| 98.75%| 98.75%1 100.00%| 98.75%; 98.75% 100.00%
BisonDS1 7201 74.17%| 90.00%] 100.00%| 91.25%| 91.94%; 100.00%
BisonDS2 480 95.21% 95.21% 100.00%| 93.21%; 95.21%; 100.00%
BisonHard 10/ 30.00%| 30.00%] 100.00%|  30.00%| 30.00%| 100.00%
BPPGEN 35,0000 72.73%| 89.71%) 100.00%| 90.98%| 091.30%| 100.00%
CUTGENI 3,600 65.47%] 70.08%| 100.00%! 77.56%| 78.33%| 100.00%

Table 14 — Percent Best by Lower Bound Methods

I8



Table 14 displays the percent of the problems each of the six lower bound
methods found the best lower bound. There is no improvement for the BeasleyTriple and
BisonHard problem sets because the HybridALL reduction method does not reduce any
of these problem instances. The column generation methods dominate the remaining
methods. ColGen and RedColGen always find the best lower bounds.

Reducing the problem prior to the executing the ColGen method does not improve
any of the lower bound calculations. This is explained by the fact that the HybridALL
reduction removes small items by identifying packing patterns and the ColGen lower
bound procedure is based upon packing patterns. In effect, the reduction procedure
identifies packing patterns that are included within an optimal column generation solution
along with a minimum usage for those patterns. This will not improve the lower bounds
calculated using the ColGen method. However, the reduction should improve the

execution time of the ColGen lower bound method.

Generator Problem | Improved Average Minimum Maximum

Count Count | Improvement  Improvement| Improvement

BeasleyTriple 80

BeasleyUniform 80 66 5.61 i 21

BisonDS1 720 634 3.58 1 35

BisonDS2 480 27 21.59 6 55

Bisonkard 10

BPPGEN 35,000 20,345 6.09 1 110

CUTGEN! 3,600 872 1.15 1 9

Table 15 ~ ColGen Reduction Improved Iteration Comparison

Generator Problem | Deteriorated Average Minimurs Maximuom

Count Count Deterioration | Deterioration | Deterioration

BeasleyTriple 80

BeasleyUniform 80 8 (1.88) (13 (4)

BisonDS1 720 36 (2.61) L ¢

BisonDS2 480 8 (3.63) ) {7

BisonHard 10

BPPGEN 35,000 1,127 (6.43) (1) (3%

CUTGENT 3,600 74 {2.69) () (12}

19

Table 16 —~ ColGen Reduction Deteriorated Iteration Comparison



Table 15 and Table 16 display the effects of the reduction on the ColGen lower
bound method. Table 15 contains statistics for the problems whose iteration count was
imprdved by the reduction. Table 16 contains statistics for the problems whose iteration
count was made worse by the reduction. Significantly more problems had improvements

(54%) than did not (3%). Reducing the number of iterations reduces the execution time

of the ColGen method.
Red
Generator MTL2 MTL3 ColGen |Red MTL2|Red MTL3| ColGen
BeasleyTriple 0.00104 0.63676 4.79562 0.01363 0.64269 497245
BeasleyUniform 0.00075 0.06480 0.87224 0.03842 0.14667 0.53833
BisonDS1 0.00157 0.01376 (0.46487 0.02336 0.03936 0.23730
BisonDS2 0.00058 0.28682 5.20823 0.02321 0.31295 5.03325
BisonHard - 0.09550| 757.18900 0.47700 (.56700] 758.15450
BPPGEN 0.00102 0.03713 4.44067 0022201 . 005840 408619
CUTGEN]1 (.00076 1.10868 1.52208 0.11091 1.11912 1.61980

Table 17 ~ Normalized Lower Bound Times by Method with Reduction Time

Table 17 displays the average no@ﬂized execution times for each lower bound
method., All the times are reported in seconds. The times are normalized to a 1,000 small
item problem because each problem set contains problems of different sizes. There is
véry little time penalty for reducing a problem before caicuiating‘ the lower bound and in
many instances, the reduction iinproves the execution time.
6.2.2 Upper Bounds

Six upper bound methods are analyzed on non-reduced problems and proﬁlems
reduced with the Hybrid ALL for a total of twelve upper bound methods. The six
methods executed on non-reduced problems are First-Fit Decreasing (FFD), Best-Fit
Decreasing (BFD), Worst-Fit Decreasing (WFD), Modified Subset Sum Greedy
Enumeration (MSSGEnum), Modified Subset Sum Greedy Pisinger minknap

(MSSGMinKnap) and Column Generation Residual (ColGenRes). The same six

20



methods are executed on reduced problems. The names of these six methods are

RedFFD, RedBFD, RedWFD, RedMSSGEnum, RedMSSGMinKnap and

RedColGenRes.
Problem MSSG MSSG | ColGen
Generator Count FFD BED WFD Enum | MinKnap Res
BeasleyTriple 80 61.25% 83.75%| 100.00%
BeasleyUniform 80 7.50% 1.50% 2.50%| 56.25%| 21.25% 91.25%}
BisonDS1 700 T76.67%F 76.81% 61.81% 89.44%| 76.67% 99.31%
BisonDS2 4801 52.08%! 52.08%| 46.67%] 88.13%| 73.54% 99.58%
BisonHard 10 90.00% 100.00%
RPPGEN 35,000  §7.16%| 87.26%; 76.15% 92.04% 82.26% 99.35%
CUTGEN]1 3,600 52.86%| 53.25%| 44.67%| 55.22%; 36.64%; 99.83%
Table 18 — Percent Best by Upper Bound Method
Red Red Red
Problem MSSG MSSG | ColGen
Generator Count | Red FID | Red BFD [Red WFD| Enum |MinKnap Res
BeasleyTriple 80 61.25%| 83.75%| 100.00%
BeasleyUniform 80 7.50% 7.50% 2.50%| 5625%| 60.00% 97.50%
BisonDS1 T2 76.81% T6.94%| 69.58%| 8944% 84.86%| 99.44%
BisonDS2 4801  52.08%| 52.08%| 46.88%| B88.13%| 7T4.58%| 99.38%
BisonHard 10 90.00%| 100.00%
BPPGEN 35,0000 87.40%| 87.50%| 78.53%| 92.30%, 82.68%| 9929%
CUTGEN!1 3,600  52.86%| 533.25%| 4697%| 56.39% 37.81%| 99.75%

Table 19 — Percent Best by Reduced Upper Bound Method
Table 18 and Table 19 display the percent of the time that each upper bound
method calculates the best upper bound. Table 18 contai.ns the best percentages for the
non-reduced upper bound methods and Table 19 contains the percentages for the reduced
upper bound methodé, As with the lower bound methods, there is no improvement for
the instances in the BeasleyTriple and BisonHard prdblem sets because these instances
are not reduced by the Hybrid ALL reduction method. The ColGenRes and

RedColGenRes find the best upper bound more often than the other methods.

21



6.2.3 Gap Analysis

This section analyzes the gap (inventory items or bins) between the six reduced

upper bound methods and the RedColGen lower bound, as it dominates the other lower

bound methods.

Red Red Red
Problem MSSG | MSSG | ColGen
Generator Count | Red FFD | Red BFD |Red WFD| Epum |MinKnap| Res
BeasleyTriple 80 13
BeasleyUniform 80 19
BisonDS1 ' 720 36
BisonDS2 480 2 204
BisonHard 10 1
BFPGEN | 35,000 1 9 75 416
CUTGENI 3,600 1,294

Table 20 — Strictly Dominant Gaps

Table 20 displays the number of strictly dominant solutions from the reduced

upper bound methods. An upper bound strictly dominates all other upper bounds when

the upper bound is less than all of the other upper bounds. The RedColGenRes upper

bound method finds the best upper bound in all but 87 instances. These results suggest a

new upper bound method that takes the best upper bound from the RedBFD,

RedMSSGEnum, RedMSSGMinKnap and theRedColGenRes methods. This upper

bound method is referred to as RedBest. Table 21 displays the gap analysis of the |

RedBest upper bound method.

Generator Problem | Percent | Average | Minimum | Maximum
Count | Optimal Gap Gap Gap

BeasteyTriple 80 13.75% 1.00 1 1
BeasieyUniform 80 93.75% 1.00 1 1
BisonD§1 720]  97.64% 1.00 1 1
BisonDS2 480  90.00% 1.08 1 2
BisonHard 10|  90.00% 1.00 1 1
BPPGEN 35,0000 95.08% 1.04 1 2
CUTGENI 3,600 93.538% 1.00 1 1

Table 21 — RedBest Gap Analysis

22



Generator RedBest | Problem
Gap Count

BeasleyTriple Optimal 11
BeasleyTriple 1 69
BeasleyTriple 2 i
BeasleyUniform | Optimal 75
BeasleyUniform 1 5
BeasleyUniform -
BisonDS] Optimal 703
BisonDS1 1 17
BisonDS1 -
BisonDS2 Optimal 430
BisonDS2 1 46
BisonDS2 2 4
BisonHard Optimal 9
BisonHard 1 1
BisonHard -
BPPGEN Optimal 33,196
BPPGEN 1 1,712
BPPGEN 2 92
CUTGENI1 Optimal 3,369
CUTGENI1 1 231
CUTGEN1 2 -

Table 22 - RedBest Gaps by Gap Amount
Table 22 diéplays a breakdown of the number of problems by the gap calculated

using the RedBest upper bound method. The only problems with a gap of two are in the

BisonDS2 and BPPGEN problem sets.

7 Conclusions

In this paper, two new reduction procedures are presented. The first reduction, a
polynomial time algorithm, is based on identifying separations of a BFP or CSP problem
that can be optimally solved and combined back into an optimal solution of the original
problem. Sufficient conditions are identified for when this reduction is valid. A
polynomial time algorithm is presented that uses the conditions to ideiltify a separation
from any given solution. Five separation-based reduction procedures (using different

initial solutions) are compared to the Martello and Toth reduction procedure which is

23




based on pattern dominance. The second reduction procedure is a combination of several
separation-based reduction procedures and the Martello and Toth reduction procedure.
This procedure, although not a polynomial time algorithm, executes fast in practice. The
hybrid method outperforms the individual reduction procedures.

The effects of the hybrid reduction procedure on lower and upper bounds are
examined. It is shown that the reduction improves the Martello and Toth 1.2 and 1.3
lower bounds [13], [14]. It does not improve the results of the lower bound based on
Gilmore and Gomory’s column generation procedure [10], [11]. The reduction, in
general, does improve the execution time of this lower bound procedure.

"The reduction also improves upon upper bound procedures. The upper bound
procedures include three Any-Fit Decreasing procedures, First-Fit Decreasing, Best-Fit
Decreasing and Worst-Fit Decreasing. Two other upper bound procedures are based on
solving a series of subset sum problems, each using a different algorithm to solve the
subset sum problem. The final upper bound is based on the column generation technique,
removing the integer portion of the solution, and using other upper bound methods to
solve the residual problem. It is shown that the hybrid reduction improves the solutions
generated using these upper bound methods. The column generation based upper bound
performed the best. An uppér bound method that uses the best bound from all of the

-methods is also examined.

Finally, an analysis of the gap between the column generation based lower bound
method and upper bound methods is examined. It was found that the maximum gap for
all of the problems using the best upper bound is two large objects. The best upper

bound, when executed on 39,970 test problems, found optimal solutions 94.55% of the

24



time, a gap of one large object 5.21% of the time and a gap of two large objects .24% of

the time.

This research was sponsored, in part, by NSF Grant DMI-9984891.

8 References

[1]
[2]
(3]
[4]
[5]

(6]
[7]
[8]

[9]

[10]
[11]
[12]

[13]
[14]

[15]

[16]

(17]

J. E. Beasley, OR-library: distributing test problems by electronic mail, J ournal of
the Operational Research Society 41 (1990) 1069-1072.

C.H. Cheng, B.R. Feiring, T.C.E. Cheng, The cutting stock problem - A survey,
International Journal of Production Economics 56 (1994) 291-305.

V. Chvatal, Linear Programming (Freeman, New York, 1983).

E.G. Coffman Jr., G. Galambos, S. Martello, D. Vigo, Bin packing approximation
algorithms: combinatorial analysis, in: D.-Z. Du, P.M. Pardalos, eds., Handbook
of Combinatorial Optimization (Kluwer Academic Publishers, 1998).

E.G. Coffman Jr., M.R. Garey, D.S. Johnson, Approximation algorithms for bin
packing: a survey, in: D. Hochbaum, ed., Approximation Algorithms for NP-Hard
Problems (PWS publishing, Boston, 1996) 46-93.

H. Dyckhoff, A typology of cutting and packing problems, European Journal of
Operational Research 44 (1990) 145-159.

H. Dyckhoff, U. Finke, Cutting and Packing in Production and Distribution
(Phusica-Verlag, Heidelberg, 1992).

E. Paulkenauer, A hybrid grouping genetic algorithm for bin packing, Working
paper CP 106-P4, CRIF — Research Center for Belgian Metalworking Industry
(1994).

T. Gau, G. Wischer, CUTGEN1: a problem generator for the standard one-
dimensional cutfing stock problem, European Journal of Operational Research 85
(1995) 572-579.

P.C. Gilmore, R.E. Gomory, A linear programming approach to the cutting stock
problem, Operations Research 9 (1961) 948-959,

P.C. Gilmore, R.E. Gomory, A linear programming approach to the cutting stock
problem — part TI, Operations Research 11 (1963) 863-888.

R.W. Haessler, P.E. Sweeny, Cutting stock problems and solution procedures,
European Journal of Operational Research 54 (1991) 141-150.

S. Martello, P. Toth, Knapsack Problems (Chichester, 1990).

S. Martello, P. Toth, Lower bounds and reduction procedures for the bin packing
problem, Discrete Applied Mathematics 28 (1990} 59-70.

D. Pisinger, A minimal algorithm for the 0-1 knapsack problem, Operations
Research 45 (1997) 758-767. 4

A. Scholl, R. Klein, C. Jirgens, BISON: a fast hybrid procedure for exactly
solving the one-dimensional bin packing problem, Computers and Operations
Research 24 (1997) 627-645.

P. Schwerin, G. Wischer, The bin packing problem: a problem generator and
some numerical experiments with FFD and MTP, International Transactions in
Operational Research 4 (1997) 377-389.

25



[18] F. Vanderbeck, Computational study of a column generation algorithm for bin
packing and cutting stock problems, Mathematical Programming, Series A, 86
(1999) 565-594.

[19] L. Wolsey, Integer Programming (John Wiley & Sons, Inc., New York, 1998).

26



