U industrial and Systems Engineering e -———————

: ’" "'5{;__i'ﬁ--M@dehng zmd Optxmlzatlon of Productmn Systemsf\;
R ?'Wnth Timed Color Petrx Nets and Heurlstic Search L

Gonzalo MEJIH
Cand

Nlcholas G. Odrey
! Jehlgh bmversnty

s 'Uﬁivérs'ity' R

200 West Packer A,venue SRS
Bethlehem PA 18015 SR

Modeling and Optimization of Production Systems with Timed
Color Petri Nets and Heuristic Search

Gonzalo Mejia
Department of Industrial and Systems Engineering
Lehigh University
Bethlehem, PA 18105

Nicholas G. Odrey
Department of Industrial and Systems Engineering
Lehigh University
Bethlehem, PA 18105

Abstract

This paper presents a Peuri Net-based multi-level multi-layer structure to model hierarchical manufacturing systems consistent
with manufacturing control requirements. We describe our approach by modeling the activities of the so termed workstation leve]
using Timed Color Petri Nets (TCPN) at the highest layer and Timed Petri Nets at the second layer. We concentrate our efforts at
the lowest layer where time critical aralysis is performed. For such analysis we use the heuristic A* search that has shown
promising resuits. To improve the performance of the A* search algorithm we selectively limit the markings that can be explored.
We test our algorithm on our modeling approach and also compare it with previous work. Our resulis show significant
improvements over past work.

Keywords. Color Petri Nets, Flexible Manufacturing Systems, Heuristic Search. Hierarchical Architectures.

1. Introduction

Many researchers advocate the use of Petri Nets as a mathematical tool for modeling FMS due to their capabilities to
represent features such as asynchronous event-driven behavior, concurrency, non-determinism and resource sharing,
In addition their graphical representation makes them attractive for designers and practitioners. As pointed by [8]
one of the purposed of modeling is to achieve a comprehensive task decomposition that converts into a sequence of
coordinated activities which in turn is translated into manufacturing commands for controllers at each hierarchical
level of the FMS,

In our approach task decomposition is accomplished by assigning production activities to distinct levels of a
hierarchical structure according to its complexity and planning horizon. In particular we follow the standards set by
NIST [1] to assign tasks to hierarchical levels. In order to accommeodate the complex nature of the manufacturing
activities, a hybrid Petri Net approach is proposed to facilitate hierarchical task decomposition. In this paper we
present a methodology to synthesize the classes of Petri Nets used in our approach. Our synthesis methodology
guarantees structural properties and provides enough freedom to model a variety of manufacturing processes. Our
approach includes the derivation of state equations used to track the evolution of the net in terms of the marking and
the remaining processing time vector.

A major issue is optimization: of the operation of the manufacturing system at the workstation level. The primary
activity of a workstation controiler is to realize effectively the process plan. An adequate model of such process plan
is a requirement for optimization. Petri Nets have not recefved much attention for solving optimization problems
because they suifer of state space explosion. Exhaustive search of the reachability graph is known to be a problem of
exponential complexity. To overcome this problem recent approaches attempt to use Artificial Intelligence (AI)
techniques [3] [5] [7] to the search the state space of Timed Petri Nets. In this paper we adopt a classical heuristic
search method in combination with features that limit the search space and a new heuristic function. Preliminary
results show significant improvements over previous work.

2. Modeling and Synthesis of Manufacturing Activities using Petri Nets.

In this paper we propose a multi-layer Petri Net framework that uses Ordinary Petri Nets (OPN), Timed Petri Nets
(TPN) and Timed Colored Petri Nets (TCPN) to model the activities at workstation level. The advantages of
TCPN’s are fully utilized at the highest abstract layer where similar features are best described by a coloring scheme
[8]. Lower layers are best represented by OPN’s where explicit details need to be represented. Intermediate layers
use TPN’s for time critical analysis [8]. In this paper Hmit our model to a two-layer Petr] Net. Typical activities at
the workstation level include processing of parts, loading to and unloading from machines, and tool changing,

The first layer is modeled with a TCPN which has the purpose of modeling the following flexibility features:
¢ Routing: A part can be processed by the different machines of the workstation,

e Transportation: A part can be transferred by different material handiing devices between machines.

e Sequencing: Machines can process parts in different orders.

Colors at the TCPN layer are defined by a part number (p#) and resource numbers (rs#), In addition a resource
number is decomposed into several colors that represent specific resources. For example the set ry can include
machine (m#), robot (r#) material handling (A#) and buffer colors (B#). Example: token carrying the color {pl, m/,
#1} represents a part pr/, handled by robot r/ and being machined by machine ml. In cur scheme we use the
traditional color “merging” described by [4]. Colors from input places are merged in transitions and assigned to
output places according to pre-established coloring rules. Flexibility features require the definition of which color
sets are aflowed in the net. Processing or time constraints may forbid certain color sets from the net. For example
merging colors from sets {ptl, pt2} and {ml, m2} will result in the color set {ptiml, p2m?2, p2ml, p2m2} but a
processing constraint may eliminate the color p2m2. The second iayer is modeled with TPN that results from
unfolding the TCPN layer. At this layer a specific part sequence, resource allocation and timing for each operation
are incorporated in the model. A key issue concerns as to how the layers should be constructed. In the foilowing
sections we present describe the construction rules for such nets.

2.1 Petri Nets Definitions and Modeling Techniques:

Timed Colored Petri Net (TCPN): A TCPN is 7-tuple G = (P, T, I, O, M, 1, C). Where P = set of places, T = set of
transitions I = arcs (P x T) O = arcs (T x P}, My = Initial marking. P T = {0}.1 = Set of time delays associated
with places. C = set of colors.

2.1.1 Definition: Sequence of Activities (SA)

A SA is a Petri Subnet that is intended to model the activities at a given hierarchical level required to process a part

ot a job (the distinction depends on the hierarchical ievel) and it accounts for precedence relationships and

alternative routings. Each sequence starts in one unique place (termed here as start place)} and ends in another unique

place (termed here as end place). Places that belong to a SA are denoted as operational places. Places representing

resources or other ways of coordination are not accounted for. The properties of a SA are:

* A SA is a connected state machine. This is each transition has only one input and one output arc.

» A SA contains no cycles.

» All places have at least one input and one output arc except the start place (no input arcs) and the end place (no
output arcs). An example is shown in figurel.

B R

Figure 1 A valid SA.
2.1.2 Definition: Set of Sequences of Activities (SSA).

SSA is an extension of SA’s. SSA is the Petri Net formed by several SA’s. An SSA consists of one or more
unconnected SA’s. A 88A represents the activities of all current jobs that have been allocated to an individual entity
of a particular level within the manufacturing system. Usually the start place of each SA that belongs to the S8A is
initiatly marked and the goal is to bring tokens from the start places to the end piaces of each SA.

2.1.3 Definition: Set of Activities with Resources (SSAR)

A SSAR represents the addition of resources to a set of sequences of activities. The addition of resources implies
addition of places (termed as resource places) which represent, the availability of the resource, and arcs but not
additional transitions. See figure 2 for an example. Resources are allocated to the SSA by connecting arcs from/to
the resource places from/to the existing transitions. In our methodology we take provisions to avoid ensure the
proper allocation and release of the resources. Provisions include checking that a resource is allocated and released
in each branch of a SA and that a resource cannot be allocated (resp. released) twice before being released (resp.
allocated. This ensures that the net remains bounded. This definition was adapted from [2].

2.1.4 Structural Properties

1t can be proved with the theory of the p-invariants that a SSAR is bounded. However liveness cannot be guaranteed
unless a very strict allocation policy (e.g [10]) is adopted. To avoid deadiocks we determine a control policy which
maintains the net liveness using heuristic search as explained later in this document. Since in real-life applications,
the control policy may not be applied exactly as planned, we are investigating techniques to maneuver out of
deadlock states.

')
ta tle

OROPOPO2O O ObOHO

|
_ >(O-PO . l>>‘O
Fal Tos i /

Figure 2 a valid SSAR. Figure 3. (a) Linear sequence (b} a Split-OR (¢) Join-OR
2.2 Petri Net Synthesis

The concepts presented in this section apply to OPN’s but can be readily extended to TPN’s and TCPN’s. To
synthesize a Petri Net we consider a hybrid methodology between top down and bottom up approaches: Top down
in this context refers to the subsequent refinement of places and transitions into more detailed activities at different
levels and layers. Bottom up synthesis consists of having modular constructs that are subsequently connected to
form a coherent structure.

We adopt the concept of modules in conjunction with the concepts of SSAR. The modules (i) have neither resources
places nor arcs to resource places and (i) do not represent specific operations. Instead we use three generic modules
that can accommodate a variety of situations, These modules are adapted from [9] and [12]. See figure 3.

s Linear Sequence {1.S);
*= Split-OR Subnet (8-OR):
= Join-OR Subnet (J-OR):

A Sequence of Activities (SA) is generated by properly linking these constructs. Then resource places and their
corresponding arcs are added using the SSAR construction rules. In addition to such rules we constrain the
operational places whose processing time is greater than zero to only allow one token at a time. This constraint
guarantees that the remaining process time is not ambiguous. In the case of modeling a TCPN, there is only one start
place that is initially marked with as many classes of part color tokens. The example shown in figure 4 illustrates the
unfolding of the TCPN into a TPN. The TCPN on the left contains two distinct part tokens and two distinct machine
tokens. This hierarchical construction has the property that a SSAR at the TCPN layer unfolds into a SSAR at the
TPN layer.

Part ready (two colors:A and B) Part A ready o o Part B ready Symbols
B k IBx Input Buffer x,
OBx Output Buffer x
o @ o>o IB Mx: Machine x.
Rx: Robot x.
Hx: Handling device
(o)

Move out of (o) (2) @)0
OB Hi H1

()Part processed (0 (0)

Notes: Some places have been dupiicated for clarity, Numbers inside places indicate the process time
Figure 4. TCPN (left) and its unfolding into a TPN (right)

4. Optimization using Heuristic Search,

Current research is focused to optimization of the execution of the net. In particutar the TPN layer is amenable with
Al techniques such as A* search. A* search seeks to expand only the most promising branches of the net
reachability tree based on the heuristic function M) = g(M} + h(M). g(M} actual time from M, to the marking M
and h(M) is an estimate of the cost from marking M to the final marking. A* uses two lists, namely OPEN and
CLOSE. The list OPEN contains markings generated but not yet explored. The OPEN list is sorted in according to
the heuristic function fiM) and the first marking is removed from OPEN and put on the back of CLLOSED. The
children of the last marking of CLOSE are put on OPEN and the algorithm goes on until the final marking is reached
or OPEN becomes empty. The reader is referred to [5] for further details of this methodology applied to Timed Petri
Nets.

To guarantee that A¥ search finds an optimal solution (M) must be equal or less than the actual value A*(M) at all
markings [5]. However employing admissible heuristic functions leads fo breath-first strategies that produce
exponential growth of markings [7]. To overcome this drawback the most commeon strategies are (i) limiting the
scope of selection and (i} limiting the back-tracking capability of A¥ search [7]. Limiting the back-tracking
capability of the search results in reduced compilexity at the expense of optimality.

We limit scope of selection with a heuristic function A(M) described later in this paper. To limit the back-tracking
capability we adapt the strategy of a “moving window” [7} which excludes both too shallow and toc deep markings
from further expansion. With this method we explore only markings whose depth in the reachability tree are
contained between predetermined bottom and top depths. Figure 5 shows an example of the moving window method
applied to a net reachability graph. In our method, the first marking on OPEN is moved to CLOSE for exploration
only if its depth in the reachability tree falis inside the current top and bottom depths. If no marking on OPEN falls
in the window, then the first marking on OPEN is moved to CLOSE. When the number of markings in the window

exceeds a pre-defined number (we say the window is full}, the windows “moves up” atlowing markings further deep
in the reachability graph to be expanded. When the window is full and moved up, we can adopt a strategy that
might vary from (i) completely emptying the window to (ii) removing just one marking from the window, If the
window is emptied some non-promising markings afready discarded may be expanded. If just one or few markings
were removed from the window the search would go too quickly towards markings deep in the reachability graph.
Best results were obtained when the window was half-emptied. We name our method as Advanced Moving Window
(AMW) algorithm. The prototype for this aigorithm is AMW (A, mw, ws) where k is the heuristic function used, mw
is the maximum number of markings in the window and ws is the window size.

» bottom depth

\

Q.
2B
q %\t;i\Q\ Y y top depth
00 007

Figure 5. The search window

In this section we first describe our methodology and compare it to previous work and then we test our algorithm on
the unfoided net shown in figure 4.

Example 1: To compare our results with previous work, we used the benchmark presented by [7] and [11]. The
results obtained were computed from a job shop with 3 machines and 4 jobs with no alternative routings and 3
operations per job (1 per machine). We tested two heuristic functions: The first heuristic is &,=-wd, where d is the
depth of the marking in the reachability graph and w is a weight. This heuristic was used previously by [5]. The
second heuristic A.(M) is defined as:

ho(M) = ETLC(M) 1/ NR

TLC(M) ; is Time Left to Completion of a part token i. A token and NR is the total rumber of resources.

Time Left to Compietion is addition of the optimal time that a part token requires to reach its end place plus the
remaining process time at its present location. The optimal time is the time according to the process plan (or along
the optimal path in case of alternative process plans). This ideai situation would arise if there were unlimited
resources and tokens spent no time at all waiting in queues. The number of resources NR accounts for how many
jobs can be performed simultaneously. The lot size for each job, the makespan and the strategy used are shown table
I.

Table 1. Comparison Results versus [7] and [11]

Lot Size BF DwS AMW (b, 15, 20) AMW (-2d, 2,3)
Job 1, 2,3 4 MK #T MK #IT MK #IT MK #T
5,522 38 3437 58 431 58 165* 60 164
8,844 10¢ 9438 100 856 100 1232 100 284
19,10, 6, 6 134 23092 134 1204 146 1577 134 380

Symbols: BF: Best First [11]. DWS (Dynamic Window Search} [7]. MK {Makespan). #IT. Number of Iterations
* The strategy (ha, 2,3) was used here.

Example 2: Next we test our AMW algorithm on using the unfolded net of figure 4 with different batch sizes and
different strategies. The processing times are shown in figure 4, A sample of the results is shown in fable 2.

Table 2. Results of AMW with different heuristics, window sizes and window capacities.

Lot Size (hy 3, 2) {-2d, 3, 2) (he, 15, 20) (-2d, 135, 20) thy, 2,3) (-2d, 2,3)
MK #IT MK #1T MK #IT ME #T MK #T MK #1T
1 60 44 65 44 52 76 53 70 60 28 65 28
3 245 237 253 236 244 459 245 452 266 156 266 159
g 389 381 397 380 388 751 381 738 417 255 417 255
10 485 477 493 476 49] 910 493 880 513 319 513 316

MK (Makespan). #1T. Number of iterations

The results in table 2 show that the size of the window and the maximum number of markings have greater impact
on the search than the heuristic function. Having small window sizes and window capacities brings quickly the
search deep into the reachability graph and towards the final marking, at the expense of optimality. In the opposite
case, the search can perform a broader scan on branches within the window.

In example 1 the best heuristic was h,, as it can deducted from the results. However, it might not be the case when
the process times are very dissimilar as shown in example 2. We tried different weights w for the function without
significant improvements. Even A, does not consistently outperform /,, it avoids adjusting the weight w of the
function /,. This is because &, is based on the inherent characteristics of the net.

5. Conclusions

This paper presents a Petri Net modeling approach for flexible manufacturing systems which takes advantage of
hierarchical task decomposition, Our modeling approach considers different nets to represent different Jlevels of
complexity. Alternative sequences and resources are incorporated in the process task modef to provide flexible
operation instructions. To optimize the performance at the workstation level we use a modified version of the A*
search algorithm which shows significant improvement over previous work. Further research is focused towards the
improvement of the heuristic functions and optimization under stochastic scenatios.

References

1. Albus, I. McLean, C. Barbara, A, Fitzgerald, M. 1983. “Hierarchical Controi for Robots in an Automated Factory™, 13"
ISIR/ Robots Symposium.

2. Ezpeleta, §. Colom, M, Martinez, I. 7. 1995. IEEE Transactions on Robotics and Automation. 11(2) 173-184

3. Jeng, M, D. Chen, S. C. 1999. Heuristic Search Based on Petri Nets for FMS Scheduling. IEEE Transactions on Industry
Applications. 35(1) 196-202.

4. Jensen, K. 1981. “Coloured Petri Nets and the Invariant Method™. Theoretical Computer Science, 14(1) 317-336.

5, Lee, D. Y. DiCesare, F. 1994. “Scheduling Flexible Manufacturing Systems using Petri Nets and Heuristic Search”, JEEE
Transactions on Robotics and Automation, 10(2)123-131.

6. Liu, C, Ma, Y. Odrey, N. 1997, “Hierarchical Petri Net Modeling for System Dynamics and Control of Manufacturing
Systemns”. Proceedings of the 7" FAIM International Conference. June 25-27. Middlesbrough, UK. 1997,

7. Moro, A. Yu, H, Kelleher, G. “Advanced Scheduling Methodetogies for Flexible Manufacturing Systems using Petri Nets
and Heurtstic Search”. Proceedings of the 2000 TEEE International Conference on Robotics and Automation. San Francisco,
California, USA. April 2000, 2398-2403

8. Odrey, N. Ma, Y. 1995 “Intelligent Workstation Control: An Approach to Error Recovery in Manufacturing Operations™
Proceedings of the 5™ International FAIM Conference. Stuttgart, Germany. 124-141

9. Odrey, N. Ma, Y. 2001, “A Multi-Level Multi-Layer Petri Net Based Approach for Manufacturing Systems Control”.
Proceedings of the 11" FATM International Conference. July 16-18, 200, Dublin, Ireland.

10. Wyns, J. Valckernaers, P. Van Brussel, H. Bongaerts, L. 1996 “Implementation of Resource Allocation in the Helonic
Workstation Architecture”. 1996, Proceedings of the 1% Europe-Asia Congress on Mechatronics. October 1-3. Besancon,
France.

11. Xiong, H. Zhou, M. 1998. IEEE Transactions on Semiconductor Manufacturing. v11(3) pp384-393

12. Zhou, M. DiCesare, F. 1993, Petri Net Synthesis for Discrete Event Control of Manufacturing Systems. Kluwer Academic
Publishers. USA,

