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Abstract

Some electric power markets allow bidders to specify constraints on ramp rates
for increasing or decreasing power production. We show in a small example that
a bidder could use an overly restrictive constraint to increase profits, and explore
the cause by visualizing the feasible region from the linear program corresponding
to the power auction, We propose three penalty approaches to discourage bid-
ders from such a tactic: two based on duality theory of Linear Programming, the
other based on social cost differences caused by ramp constraints, We evaluate the
approaches using a simplified scaled modei of the California power system, with
actual 2001 California demand data.

1 Introduction

Many restructured electricity systems rely on self-commitment of generation resources
rather than on central unit commitment. This structure avoids some of the incentive- -
compatibility problems associated with more centralized systems such as the original
UK system (prior o NETA), PIM, NYPP, New England pools which involve multi-
dimensional auctions allowing bidders to specify technical constraints on the dispatch.
Similarly, FERC’s proposed Standard Market Design allows ramp constraints to be
specified. Such auctions are often susceéptible to manipulation allowing bidders the
opportunity to profit by specifying deceiving technical constraints. Unfortunately, in
systems that rely on self-commitment and clear the hourly day ahead market without
consideration of intertemporal constraints on dispatch, mismatches between the ISO
schedule and the capabilities of generators must be made up in the real-time balancing
market. Not only is this an expensive solution, it shifts a perhaps unnecessary volume
of energy transactions to the real time balancing market. Furthermore, although some
generation technologies hinder efficient scheduling due to their ramp constraints, and

*This work was supported by the Power Systems Engineeﬁng Research Center {PSerc) and by the Electric
Power Research Institute,



Table 1: Problem Data

Off-peak Peak

Demand 1 GW 3GW

Gen, Aoffers | 1 GW, $10/MWh 1 GW, $10/MWh
Gen. B offers | 2 GW, $15/MWh 2 GW, $15/MWh
Gen. Coffers | 2 GW, $25/MWh 2 GW, $25/MWh

Table 2: Auction Results without ramp constraints

| Off-peak  Peak
Clearing Price | $10/MWh  $15/MWh

Gen. A I GW 1 GW
Gen. B 0 2 GW
Gen. C 0 0

‘While one could not fault Generator A for enjoying the windfall, it is clearly inap-
propriate for Generator B to reap extra profits by stipulating a constraint that impedes
efficiency. Such a profit opportunity could motivate generators to misrepresent their
ramping capability in order to drive up prices. Some market designs (e.g., the old UK
system) attempt to prevent misrepresentation of constraints by barring a constrained
generator from setting the clearing price. Our example demonstrates, however, that
such a restriction still does not solve the problem since the constrained generator may
force a more expensive unit into the dispatch’and benefit from the higher clearing price
set by that unit. The Sparish market design eliminates such perverse incentives by
forcing generators to bear the dispatch consequences of their ramp constraints, which
in our example would amount to forcing Generator B out. This rule solves the incen-

tives problem but unfortunately, it may also unnecessarily increase the social cost of
the dispatch, :

Table 3: Auction Results with Gen. B ramp constraint

| Off-peak  Peak
Clearing Price | $10/MWh  $25/MWh

Gen, A 0GW 1GW
Gen. B I 1 GW
Gen. C 0 1GW
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Figure 1: Feasible Region without ramp constraints

eration cost based on the revealed parameter and an additional premium that reflect the
contribution of the offer to social welfare (i.e., the difference in the optimal value of
the objective function with and without the offer). While the VCG auction is incen-
tive compatible and efficient, it may lead to revenue insufficiency, and is considered
undesirable due to its radical departure from the uniform price philosophy underlying
commedity markets. Instead, we propose to capture the essence of the VCG approach
by starting with the usuval uniform (market-clearing) payments as the benchmark and
impose financial penalties on companies whose ramp constraints are active at the op-
timal solution. This would tend to reduce the acquisition costs, instead of increasing
them as the VCG auction does. The following are desirable features of penalty systems:

1. Avoid under-penalizing:

» reduce the incentive to specify misleading constraints

s recover the increase in social cost from ramp constraints
2. Avoid over-penalizing:

» more than the corresponding profit increase
"« more than the corresponding social cost increase
s 50 much that a bidder’s costs are not recovered

3. Quickly computable
4. Transparent

5. Unaffected by multiple optimal dispatch solutions
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Figure 3: Feasible Region with full Generator B ramp constraint

unless it is in league with Generator A (who benefits from B’s ramp constraint and
escapes any penalty payments).

In Figure 4, we use the viewpoint of parametric linear programming to show the
three proposed penalty systems; for now we will focus only on the first system. The
figure shows how the optimal social cost would decrease as a generator’s maximum
ramp rate {in just one hour of the day) is increased. Suppose the current ramp rate
is at the point marked a—the corresponding optimal social cost is marked with a dot.
The slope of the cost curve is the dual variable A for the ramp constraint. If the ramp
rate increased to point b, the optimal basis for the LP would change, and hence the
cost curve changes slope. The distance ¢ = (b — a) corresponds to the allowable RHS
change. Thus, the PP1 penalty A - § comresponds to the vertical distance shown by
arrow 1.

Unfortunately, it is not hard to find examples where the penalty does not exactly
compensate for the shifted profits. In a few cases, the penalty is too much; this tends
to happen when the ramp constraint would be violated in only one period, but after
adding the constraint for all periods (as it natural) there are two periods where it is
binding, so penalties are charged for both periods. In other cases, the penalty is not
enough, so that a company still profits by giving a misleading ramp constraint. This
can happen when the ramp constraint chops off too many corners from the feasible
region. That is, our penalty system is based on the idea of Fig, 2, where the ramp-
constrained optimum is adjacent to the optimum without the ramp constraints. It is this
adjacency that determines how large the RHS-ranges are. It is a matter of coincidence
in the costs that this example works well even with the full ramp constraint, where
the ramp-constrained optimum is not adjacent to the original optimum. To avoid this
situation, we consider next dropping each bidder’s ramp constraints in turn. ‘



incentive-compatible. However, it is possible that a penalty might be so large that
the penalized generator will end up with a deficit. Indeed, the penalty might be even
greater than the income itself. In either of these cases, we can assume that the penalized
company would want to withdraw it offer. We would then exclude that company and re-
optimize (the question remains whether to exclude all such companies simultaneously,
or one at a time starting with the worst-off). Such exclusion, however, will drive up
social and acquisition costs since eliminating an offer amounts to adding a constraint
on the optimization. This could happen with the PP1 penalties as well, but not as often,
since PP1 penalties are typically smaller than PP2 penalties. In either case, there is
a trade-off between reducing acquisition cost by imposing penalties, and increasing
cost by forcing out offers through excessive penalties. Another problem might occur
if an offer that is forced out by a large penalty is needed for relability reasons. If this
happens on a continuing basis then a Reliability-Must-Run (RMR) contract could be
enacted, but it would be harder to deal with if it happened only occasionally.

3.3 Penalty Proposal 3

Qur third proposed penalty (PP3) is again based on duality theory, just like PP, How-
ever, it is more drastic: instead of multiplying the dual variable A by the allowable
change in the RHS before the basts changes, we multiply it by the RHS change needed
to relax the ramp constraint completely. That is, if the dispatch without ramp con-
straints had a maximum dispatched ramp rate of ¢ (referring to 4), and the ramp-
constrained dispatch has a ramp rate of @, we multiply A by (¢ - @) to get the penalty
for this ramp constraint. On the figure, we see that this corresponds to the vertical
distance between the original optimum point and the cross-hatch marked on the dotted
line. Due to the convexity of the cost curve, this point is lower than the optimal social
cost with the constraint relaxed. This vertical distance is shown by arrow 3.

We calculate the value of ¢ by looking at the ramp rates implied for each hour
transition by the non-ramp-constrained dispatch. This means that PP3 requires two
optimizations (one ramp-constrained, the other not) whereas PP1 requires only one.
However, this is still faster than PP2, which requires one optimization for each bidder.

. A potential downside is that PP3 is more vulnerable than PPl or PP2 to multiple opti-
mal dispatches, since the size of the penalty depends on ¢, which might vary from one
optimal solution to ancther.

An interesting note is that the value of ¢ — ¢ is not always positive. This can happen
when the unconstrained dispatch had a large one-period jump that is then spread out by
the ramp constraints to cover two or more periods. We could either ignore the penalty
for that ramp constraint in those cases (in effect, let the penalty be ) - max(0, ¢ — a)),
or continue using the formula A - (¢ — a). We have chosen to continue with the simpler
formula, since in one case the resulting total penalty was equal to the PP2 penalty. This
is an interesting result that might deserve further study, but must be left for another
time.

To suminarize our proposed penalty systems, we expect (from theory and from
Fig. 4) that the penalty sizes will usually fall into the order PP1 < PP2 < PP3, where
the equality cases are a common occurrence. However, we have mentioned some toy
cases where PP1 is larger than expected, or where a penalty is 5o large that a bidder



4.1 Effects of Ramp Constraints

Before we evaluate the penalty systems, we will explore the behavior of the simulated
system without the penalties. To get a feeling for the data set, Fig. 5 shows the social
cost throughout the year for one of the three demand levels, with no ramp constraints
imposed (the other two demand levels look almost the same, except for scaling). Notice

5% Reserve, no ramp constraints

social cost, M$
N

month

Figure 5: Daily social cost for one demand scenario

that, due to the scaled demand, the financial figures are much smaller than one would
expect in reality. For this reason, we will focus our evaluation on percentage rather than
absolute changes. In Fig. 6 we show the percent that profit for “gas3” increased when
that bidder specified a ramp constraint. This figure is broken out into categories by
demand level and ramp constraint value (150 or 200 MW/hour). The higher percentage
increases tended to be on days without much original profit, though. Tables 6 and 7
summarize Fig. 6, showing the percent of days with a profit increase and the the average
percentage increases for these days (weighted by profit amounts). We focus only on
the days with an increase because a bidder that uses this scheme would try to carefully
choose when to specify the constraint, so as to avoid days on which specifying a ramp
constraint would result in reduced profit

4.2 Effects of Penalty Systems

Up to this point, we have described the effects of misleading ramp constraints. Now
we turn to the effects of the proposed penalty schemes. Fig. 7 shows, in percentages,
the net profit increases (after PP1 penalties) for the various scenarios, plotted against
the gross increases. Fig. 8 stmilarly shows the results for PP2, and Fig. 9 for PP3.
Ideally, these graphs would be scattered along a horizontal line through zero (the net

It



Table 7: Percent profit increase (when positive)

Reserve | 150 MW/hr 200 MW/hr
1.5% 0.45 % 0.45%
5% 0.66 % 0.71%
15% 0.76 % 0.67%

1.5% Reserve, 150 MW/hr

1.5% Reserve, 200 MW/hr
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Figure 7: Net (after-PPl-penalty) vs. Gross percentage increase in profits

would prefer to back out) were not an issue in our simulated data set—it did not happen .
in any of our 6 scenarios (ramp rates and demand levels) as it did in a few toy examples.

Also, our expectation that PP1 < PP2 < PP3 was true in most cases. It was always

true that PP2 < PP3, and Table § summarizes how many days had anomalous results

for PP1. We see more anomalous results when reserves are tight, and (in all but one

case) more anomalies when the ramp constraints are more restrictive.

5 Variations on Spain’s System

Spain’s electricity market rules favor a heuristic solution procedure, rather than a pro-
cess based on mathematical programming. The market rules for Spain’s system include
the following restriction [2, pg. 28]:

In any case, when the owner of a production unit which includes the
rising/start-up or descending/stop load gradient condition in an electric
power sale offer, the market operator shall assign the producer a lower

13
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Figure 9: Net (after-PP3-penalty) vs. Gross percentage increase in profits

The first two are fairly easy to implement as simple linear constraints once the initial
dispatch (without ramp constraints) is obtained. The first becomes a set of 24 con-
straints, and the second becomes a single constraint. The third and fourth variations
are much harder to implement, since the income in any period is the product of the
market-clearing price and the dispatch quantity, and so is a nonlinear term. Further-
more, we have t0 add binary variables to the LP formulation to calculate the market-
clearing price in this context. It is possible to eliminate the nonlinearity by noting that
the market-clearing price must come from the set of offers, and creating a constraint
for each combination of possibilities, but this becomes unwieldy very quickly. Over-
all, from the market perspective (ignoring implementation difficulties) it seems that
restrictions on the total daily income make more sense than hourly incomes, due to
cost differences between hours of the day. Also, income constraints seem better than
MW allocation constraints, since the bottom line is profit rather than power genera-
tion (although in Spain power generation may have an indirect effect on profit due to
stranded cost payments.)

‘While any of these four approaches sound fair, there are two other predicaments
that should be considered: they can make the problem infeasible, and they depend
heavily on the initial solution., Electric power dispatch problems are notorious for
having multiple optimal solutions. If the solution chosen as thie initial one gives a
particular company only a small allocation (of power, energy, or income), while another
solution gives it a larger share, it seems unfair to restrict that company to the smaller
of the two. To avoid this problem, though, we might have to optimize once for each
company, trying to give it as big an allocation as possible while maintaining (near-)
optimality. This would significantly increase the computational requirements of the
auction process.

15
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Figure 11: Percent of social cost increase that PP3 recovers
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