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Abstract

The choice of depreciation method from among straight-line and accelerated methods can
have a significant impact on the present value of expected tax payments. This is a problem that
has been studied for decades, with most results indicating the optimality of accelerated methods.
Recent research has begun to question this claim by relaxing one of the original assumptions of
positive taxable income. The situation where net-operating losses may be carried-forward and
backward in time to when a profit is made is the subject of this paper. This paper models this
situation and establishes the conditions that allow straight-line depreciation to be preferred over
accelerated methods. The results are focused around a threshold number of periods of
consecutive losses, which are determined by the allowable periods to carry a loss forward. For
consecutive losses beyond this threshold, straight-line will always be optimal. When the
cumulative depreciation charges up to and including the window are guaranteed to be applied on
or before the threshold period, then straight-line will never be optimal.

Keywords: Decision Analysis; Depreciation; Tax minimization; Cash Flow Analysis

1. Introduction

The general problem of selecting a depreciation method is important because it directly
affects the émount of taxes paid in a given period. Payments made in later periods receive
greater discounting, so there is an obvious advantage to postponing payments through
depreciation in order to minimize the present value (assuming a constant discount rate). Since
aéceleréted methods provide a greater deduction in earlier periods than the straight-line method,
they have typically been identified as the o'ptimall methods. Numerous authors have reached this

conclusion, including Davidson [3], Davidson and Drake [4,5] and Wakeman [12]. There are
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certain conditions when this is not the case though and therefore this problem has continued to
receive attention in recent years. When cash-flows ére uncertain and negative taxable income is
ekpected, the choice of depreciation method is not as apparent. Motivated by Berg et al. [2], this
paper examiﬁes the case whére cash flows are growing and becoming more sté,b}e with time,
leaving the opportunity for negative taxable income in early periods. Given this, an optimal
depreciation policy is aetennined when losses can be carried-forward and applied to future -
periods, where a profit is realized. The loss carryuback_ward case is also modeled.

Current tax law allows a choice between straight-line (SL) and approved accelerated
depreciation methods, namely Double Declining-Balance (DDB) and Sum of the Years-Digits
(SYD). Straight-line depreciation applies a constant charge each period of the asset’s life.
Accelerated methods are those that initially apply a deduction larger than SL and then tape.r off
to a deduction smaller than SL by the end of the asset’s life (V). For SYD, the depreciation
percentage is a declining fraction where the denominator always equals the sum of the digits
from 1 to N, and the numerator begins at N and decreases by 1 each year. DDB takes a fraction
of the residual value each period. Under this method, the asset would never be fully depreciated,
so it is typically adjusted in some way at or near the end so that the residual value is zero after
year N. With this choice of depreciation has come significant study of the optimal method in
terms of the maximum present value of taxes saved each period by‘ depr¢ciat10n.

Early papers on the subject [3] quickly and easily showed that the accelerated methods
are preferred over straightmline. Later work [4,5,11] then studied the two accelerated methods
more closely and identified the conditions that make one preferable over the other.

Eventually, research turned to a closer examination of the superiority of accelerated

methods and formulated specific decision rules to select the optimal depreciation method. Work



bjz Schoomer [12] and Wakeman [14] compared both the accelerated methods to SL and showed
 that there are cases when SL is preferred to DDB if there is a low rate of return and a low salvage
value. Wakeman’'s [14] final conclusion selected DDB switching to SYD as the new optimal
method. ‘Given that the switch is made in the year which maximizes the present value of the tax
savings, this method will always be ?referred over any other allowable method.

This idea of switching is another topic that has received mﬁch attention. Authors such as
Greene t’]] and Ricks [10] studied the timing of the switch to SL and developed criteria and
strategies for optimum switching. An optimum switching rule, used by Wakeman [14] was
developed by Schwab and Nicol [13]. |

The early research in tax minimizing dépreciation assumed a constant tax rafe, cash flows
large enough to cover the depreciation expense each period, and dlid not address asset
disposition. More recentiy; résearch has been extended to co.nsider these situations where these
assumptions do not hoid.

The effect of uncertain cash flows on the optimal depreciation inethod was first studied
by Berg and Moore [2]. They found that when negative taxable income resulted in lost
depreciatioﬁ deductions, then SL depreciation could be preferred to an accelerated method. Berg
et al. [1] continued this study with a particular emphasis on cash flow proEability distributions
that represent a company in a growth stage, where cash flows increése and their standard
deviation decreases with time. They found that SL depreciation can be preferred when early
periods have a higher probability of negative income, assuming that a carry-forward or carry--
backward does not occur with negative income. These two papers {1,2} also examine the issue
of a non-constant tax rate in the form of a progfes'sive tax system, The result is that stable or

growing future cash flows in a progressive tax system cause SL depreciation to be optimal in



order to offset the chance of moving to a higher tax bracket. Anothef recent paper [15] focuses
exclusively on a progressive ta_ﬁ( system without the uncertain cash flows. This paper includes
replacement investments and examines firms in a steady state where reinvestments are made to
offset technical deterioration and keep capital stock constant. The results of this paper are that
accelerated depreciation methods may not be optimal, even'if- taxable income is always positive,

Fleischer et al. [6] examined premature asset disposal and its effect on the optimal
depreciation method. When an asset is salvaged eatly, the total depreciation is dependent on the
method used and may result in cfifferent taxable gains. The results are difficult to characterize in
a general sen$e because they depend on the property class, discount rate, and year of asset
disposal. |

We specifically analyze the case where losses can be carried forward or backward in time
and their impact on the optimal depreciation mefhod. This paper proves that an accelerated
method remains optimal as long as thé number of consecutive peribds of loss does not exceed the
carry-forward period. In other words, when the carried-fqrward deductions. are not lost, the most | |
accelerated rnetho& will result %n the minimum present value of tax payments. When the number
of consecutive periods exceed the permitted carry-forward time frame, straight-line may be
optimal depending on when the losses began and if they end before the conclusion of the
equipment’s depreciation time frame. |

~ This paper is structured as follows. Section 2 discusses the model used to seiect an

optimal depreciation methoci in order to minimize the present value of the expected tax
payments. There are three versions of the model presented, each handling different carry-
forward possibiﬁties, and a five-period example is evaluated by each version. Sectiﬁn_ 3 develops

several conditions on the nature of the cash flows, which will determine the optimal depreciation



method. The final section concludes with a summary of the contributions of this paper and ideas

for further research in this area.

2.0 Models and Examples

This section presents models for different case/s;l of losses being carried backwards or
forwards in timé. Notation used throughout the section is presented first.
2.1 Notation and Formulation

For each case, the general moael will be expléine_,d and then applied to the s;,mali example.
First, the basic notation and equations necessafy for the model are presented. For consistency,
the notation is similar to that provided by-Bérg etal [1].

{ = period

D = initial value of asset

N = number of periods over which the asset is depreciated

d = straight-line depreciation deduction taken each period through N

d; = accelerated depreciation deduction in_ period i

C; = cash flow in period 7 prior to deducting depfeciation. This is a random

variable with a probability distribution of F(x) = P(C, < x).
T e (0,1]= constant tax rate

o € [0,1] = constant single period discount factor.

The analysis compares the straight-line depreciation method (SDM) to accelerated
methods (ADM), represented by DDB and SYD. The formulas for calculating the depreciation

charges for each method are shown below.



Straight-line (SL):

d=2
N

Sum of the Year’s-Digits (SYD):

AN —i+1)D

= fori=1,...,.N
N(N +D

Double Declining-Balance (DDB):

‘ ' 5—1. | |
d, = D(%](L«-%J fori=1,...,N-1
2 N-1
d,=Dj1-=|
o ( --N)

To compare SDM to ADM, the present values of the expected tax payments are
calculated for each method and compared. Since a lower payment is desired, the smaller of the
_ two tax payments determines the optimal method. Similar to Berg et al. [1], we use the

following formula from Nahmias [9] for calculating the expected positive value:
E[max(C, - x,0)] = [(C, —x)f(x)dx

-{JC~,cr>2

o-J—

Throughout the following models, the problem horizon is con51dered to be equal to the

where f (x) = for the normal distribution with a mean of p and a standard dewatmn of o.

life of the asset. When expected tax payments are compared they are all assumed to end at
period V. It is also assumed that no value is received or paid for the disposai of the asset at the

end of its life.



2.2 No Carry-Forward of Losses

We briefly summmarize the notatioﬁ and an example from Befg et al. [1], as it forms the
basis for (_:omparison. Withoﬁt the carfynfbrward of 1osses., the taxable income in each period is
determined solely from (C; — d;). If this _Value ié positive, then a tax of T(C,- —d;) is paid. Ifitis
negative, the tax payment ié zero and the excess depreciation deduction is lost. As shown in
Berg et al. [1], the rforrnulas for the present value of the éxpected tax péyments without .carry-

forward for straight-line and accelerated methods are:

Taxg (@) = Tﬁ o (mag(cj -d0) = Tia" ?(c,. —x) £ (x)dx

Tax ,(cr) = Tia" (max(C, — d, ,0)) = Ti o' mj(c,. ~ %) f(x)dix

=) | i1
Exaﬁ:ple 2.1 The data for a five-period example comes from Example 3.1 iﬁ Berg et al. [1].
Straight-line depreciatiqn is compared to accelérated methods repfesented by DDB and SYD.
N=5 |
D=5
=02
C1~N(2,2) C3~N(32) C3~N#42) Ci~N@,1) Cs~ N@,I) |

SL: d=£=
5

: . 2 . 3 4
o 420 422 -2 4o 4
- 5 s A5 505 sA5 5
d =2 d,=12 dy=072 d,=0432 d,=0648

SYD:



dlzwg—D dzziD d3=iD d$=—n2—D dszj_D
SR 18T 15 15 15

5 2 1
d==d,=— d,=1 d, == dy=—
153 % 3 N
Using the above tax payment equations, expected values can easily be obtained from the
data above for any value of . The results coincide with those shown by Bergetal. [1] and are

given in Table 2.1 below for o from 0.80 to 1.00.

Table 2.1 No Carry-Forward Expected Present Value

1.00

o SL SYD DDB
0.80 1.266250041 1.225015062 | 1.235050446
0.81 1.30303287 1.274266051 | 1.285875476

0.82 1.351309985 | 1.325194491 1.33747795
0.83 1.401120709 | 1.377846321 | 1.3D0802634
0.84 1.452505102 1.43226836 1.445894723
0.85 _1.505503962 | 1.488508319 | 1502800852
0.86 1.560158839 | 1.546614807 | 1.561568101
0.87 1.616512039 | 1.606637341 1.622244508
0.88 1674606628 | 1.668626355 | 1.684878973
0.89 1.734486447 | 1.732633208 | 1749521266
0.90 1.7961961412 | 1.798710195 | 1.816222037
0.1 1.859781024 | 1.866910554 | 1.885032825
0.92 . 1.825287377 | 1937288472 | 1.956006062
0.93 1.982762163 | 2.000899102 | 2.0289195083
0.94 2.062253183 | 2.084798562 | 2.104654138
0.85 2.133809048 2.16204385 2.182438392
0.56 2207479194 | 2.241693352 : 2262603041
0.97 2.283313881 2.323805848 | 2.345207814
0.98 2.361364209 | 2.408441528 | 2.430307985
0.99 2441682115 | 2.495661487 | 2.517963379

2.52432039 2.585527851 | 2.608233882

Without carry-forward, negative taxable income in a given period results in a loss of the
depreciation deduction. This example shows that in situations where there is a higher probability
for a loss in early periods, accelerated methods are not necessarily preferred. This is because
higher depreciation deductions may be wasted in early periods (and lost) rather than saving the

deduction for a time when the cash flows are higher.



There is a threshold value of o around 0.895. Below this value, SYD provides a lower -
expected tax payment and above it SL is preferred. DDB, which is the ﬁore accelerated method,
is completely dominated by SYD.

2.3 Infinite Carry-Forward Example

Here, we model the ability to carry losses forward rather than losing any depreciation in
excess of the cash flow Ci. The simplest case to model allows losses to be carried-forward for an
" infinite number of periods. This not only lessens the complexity of tracking the parry-forward“
value, but it means that as long as the firm is eventually profitable, the depreciation deductions
can never be ‘Iqst, though their impact on the present value of the tax payments decreases as they -

afe applied férther into the future. | |

Let y; represent the total losses carried-forward from period i wﬁén tﬁe carry-forward
périod is infinite. It is cglculated as:

y, = max(d +y,_, —C,,0) for all i = 1,...,N for the straight-line method

y, = max(d, + y_, —C,,0) forall i = 1,...,N for accelerated methods

Yy =0
The present value of the tax payments made using SDM and ADM can then be

represented by the following expressions.

Targ(@) =TS & (max(C, —d - y,,00)

ie=]

Taxy(@) =T o @ax(C; — d, ~ y,,.0)

i=l
The model consists of building probabilistic paths of profits where each node is
represented by the cash flows, minus depreciatioh for the period and any éarry-—forward

deductions. The branches at each node are for the cases of positive or negative taxable income.
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In the first period, we have a _cash flow of Cy and depreciation deduction of d;. The tax
payment in period 1 is 7fmax(C ;.—dl,O)]. The taxable i_ncome is positive with a probability of
P(C>dy), resulting in no losses carried-forward. The probability that it is negative is P(C<d;) =
I- P(Cy>d)). In this case, the expected loss E[max(d; - C},0)] is carried-forward and applied to
the next period. This is illustrated in Figuré 2.1.

P(C>d)
y,=0

+

E[Tax], = T[max(C,-d,,0)] |
E[Loss],= max(d,-C,,0)

(C-d)

1-P(C>d)
¥y =d-C,

~ Figure 2.1 Payments, Losses, and Probabz’!itiés in Period 1

If the taxable income in period 1 is positive and the top branch is followed, then the same
procedure is repeated in period 2, as shown in Figure 2.2. The probabilities on the branches are
now conditional, since they depend on what has occurred in previous periods.

P(C,>d,| Cp>d)
V=0

-

E[Tax],, = T[max(C,-d,,0)]
E[Loss),, = max(d,-C,,0)

1-P(C>d,| C>d,)
y,=dyC,

Figure 2.2 Payments, Lossés, and Probabilities in Perz'od 2 (Upper Branch)

10



Following the bottom branch in period 1, the carry-forward amount of (d;-C1) must be
deducted from C, along with ¢,. This also affects the calculation of the probabilities of positive
and negative taxable income. These new Qalu@s are used to calculate P(Co+-Ci>dytd; | Ci<d)). |
The exPeﬁted value of the tax payment consists of (C2-¢3) minus the expected loss carried-
forward from Iperiod 1. .Cleaﬂy, this value is lower thanw.t}‘le tax payment expected when a loss
did not occur in the pre\‘rio‘us period. Figure 2.3 illustrates this situation.

v P(C+Cp>d+d, | C<d)
+ y2=0 . S B

(Cz“dz)“(dx"cl) E[Tax], = T[max(C,-d,-E[Loss] ;),0)]
_ . E[Loss], = max(d2+E[Loss]1-C2,Q)

-

1-P(C,+C,>d,+d, | C,<d))
y,=dytd, - (C,+C))

Figure 2.3 Payments, Losses, and Probabilities in Period 2 (Lower Branch)

In a given period i, there are a finite nun.lber‘ of possibie carry-forward scenarios. Only 0,
I, 2,'..; ,i—~1,0ri périods of consecutive loss can be brought forward; Regardless éf the path
taken to get there, all the branches with 2 periods of loss carried-forward are the same in a given
period. This results in many of the nodes being the same and they can be combined to keep the
t:eé to a manageable size. | The overall expected tax paymeﬁts in each period are calculated
Vusing the cumulative probability of each node. For example, in period 2:
EfTax], = T{max(Cz-dz,O)]*P(C?dl.) + T[max(C2~dz~max(d;—C1,O),O)]*[1—P(C1>d1)]
The present value as a function of « is then computed from the eXpected payments in each

period.
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Example 2.2 The same example data is used to show some of the Qalcuiatiohs in the infinite
carry-forward method. The cash flows C; are assumed to be normally distributed and
independent, which allows the probability of traversing each branch to be easily obtained. When
necessary, multipl.e independent, normal random variables can be combined relativei.y easily.

(For example, combining C; and C; would resultin a combined mean of u; + 1y, and a standard

deviation of /o + 07 )

Using DDB debreciaﬁon, the expected value of the tax payment in period 1 is E[Tax]; =
Efmax{C;-2,00]*0.2 = 0.1596. The probébiiity that taxable income is positive and no losses are
carried-forward is P(C1~N(2,2)>2) ={.5. The'prolb'ability of a loss occurring is 0.5, and‘-the
expected value of the loss carried-forward to period 2 is E[max(2-Cy,0)] = 0.79788. When the
taxable income in period 2 is (C;-1.2), the expected tax payment is 0.4002, and when the taxable
~ income is (C3-1.2-0.7979) the expected payment is 0.2794. Uéing the probabilities from period
~one of reaching each node, E[Tax]g = B Tax],+(0.5) + E[Tax]z-(O.S) = 0.4002;“0.5 +0.2794%0.5 =

0.3398. Each branch is calculated similarly. Figure 2.4 shows the tree for the first two periods.

For o from 0.8 to 1.0, the expected present values for the five-period example are.
shown in Table 2.2. Note that now, the most .accelerated depreciation method (DDB) dominates '.
the other two in providing the lowest present value of expected tax payments. SYD is only

preferred over SL for & <0.94 .

12



P(C,>1.2) = 0.8159
»,=0

FPeriod 2 +

- E[Tax],, = 0.4002

P(C>2) =05 — (C-1.2) E[Loss],, = 0.2009
T2 )

»=0

o

1-P(C,>1.2) = 0.1841

Period 1 y,=12-C,

. B[Tax], = 0.1596
€2 E[Loss],= 0.7979 |
P(CAC>3.2)=0.7377

+ %70

1-P(C>2)=0.5

»n=2-C m»(c +C, - 32) E[Tax], = 0.2794

EfLoss], = 0.3949

1-P(C,+C>3.2) = 0.2623
3, =32-(CH#+C)

Figure 2.4 Numerical Example of Infinite Carry-Forward Tree

Table 2.2 Infinite Carry-Forward Expected Present Value

o E[TaXSL} E{Taxsy.;] E{TaXDDB}
0.80¢ 1.24045 1.1817186 1.1673
0.81 1.286792 1.24004 1.214509

0.82 1.383977 1.341722 1.313721
0.83 1.383977 1.341722 1.313721
0.84 1.434899 1.305172" 1.365808
0.85 1,487429 1.450425 1.419606
0.86 1.541607 1.507529 1.475159
0.87 1.597475 1.566534 1532514
1 0.88 1.655078 1.62749 1,591714
0.89 1.714459 1.690448 1.652806
0.90 1.775661 1.755461 1.715838
0.91 1.838732 1.822581 1,780858
0.92 1.903716 1.891863 1.847915
0.93 1.970661 1.963361 1,917058
0.04 | 2039614 2.037133 1.988338
0.95 2.110625 2.113234 2.061806
0.96 2183741 |7 2.191723 2.137515
0.97 2259015 2.272659 2.215518
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0.8 2,336496 2.356101 2.295868
0.99 2.416237 2442111 2.378621
1.00 2.49829 2.5630752 2463832

2.4 Finite Carry-Foi-ward of Losses
| The above two examples represent extreme scenarios of either all or nothing carry-

forward. SDM can dominate ADM when carry-forward is not allowed and DDB dominates
wheﬁ carry-forward is allowed over an infinite horizon. T_herefore the length of n, defined as the
nl_amber of periods that losges may be carried-forward, determines in SDM can evér be optimal.

When losses 'rrllay only be carried-forward for 7 periods, the model ‘becomes moire
t:omplicated. Earlier losses carried-forward shﬁﬁld be applied as soon as ‘possibie'to avoid losing
any unused portion of the deduction. Once the allowed carry-forWard horizon has. been
exceeded, any remaining value of the losses must be _e}iminated from the total carry—forward
deduction. In order to track this, the annual carfy-fomard vaiues must be kept separate from one |
period to the next and updated to reflect any changes from applying all or part of the carried-
forward loss. | |

To acc_omélish this tracking, a second index is added to the carry-forward variable such
that it becomes yx;. The first index represgnts the period from which the loss is originally
carried-forward. The second index represents the period in which thé value of the loss yy; still
remains. For example, a loss occurring in period 1is _)./1" 1 = 10. In period 2, if there is a positive
taxable income of 7, the amo.unt remaining after period 2 is y; 2 = 10-7 =3,

The positive taxable income in each period is defined as:

i~1
max(C, ~d ~ »_¥,,,,0) for the straight-line method or

J=i-n

14



i-1
max(C, ~d, - Z ¥,.1,0) for accelerated methods.

Jmi-n :
To caleulate the initial loss carried-forward, y;;, the equation is the same as the infinite
carry-forward case. As long as (i - k) < n, then a new current value for y, is assigned each period

according to the following equations:

ikl ik

max(y,,, —(C, ~d, ~ Zy e 0), 1(C, >d, + ZJ’ j,;—]) .
Viekj = Jmien . Jeimn fork=n n-1..1

Vi Otherwise -
y, =0 foralli<1

These update equations take the améuni of loss remaining from period i-k& and subtract
the rerhaining positive taxable iﬂcome in perio.d i represented by the cash ﬂow in /, minus the | |
depreciation deduction in §, minus the losses carried from pefiods prior to i-k. Since the updates
are made starting with £ = » and working towards k= 1, this guarantees that losses ﬁom earlier

periods are used before those from later periods. This update pfoc'edure is only used while there

il
is remaining profit to which the losses can be applied. As soonas C, <d, + Z ¥, (remaining

J=i-n
taxable incohae is < 0), any losses that cannot be applied in the current period carry-over to the
next, assuming they have not expired. |
The present value of the tax paymeﬁts made using SDM and ADM can be represented by

the following expressions:

N ' -t
Taxg (@) =Ty o' max(C,=d— Y y,,,,0)
il

J=i—n

Tax,(c) = Tiai (max(C, —d, — iyj,i—[ 50))

i=1 J=i—n

15



The next example allows carry-forward for one period (n =l 1). At any period, only new
losses can move to the next period. There.fore,‘ the total .1035 carried-forward to period [ + 1 is
either (d;-C;) or 0. This efféctiveiy adds an exira branch on the tree from any node that already
contains a loss carried-forward. Period 1 will not change, but the bottom nocfe in period 2, which
has a taxable income of max(Cz-dzu_(dp-C;),O), will have three branches instead of two. The first
branch represents a cash flow C; large enough to cover the depreciation expense in that period
and the loss carried-forward. This resultsina Positive tax payment, no losses carried-forward to
period 3, and occurs with probabiliiy P(C3+Co>dytdy | Co<d). The second brénch is the case
where (Cy-cb-(ch-C2))<0, but C;>dh. No taxes would be paid in this period, but the cmy~forwérd
- amount would be zero. This branch occurs with a probaﬁility of P(C3+C2<d3+dz |
C2<d2)*P(C2>d2‘). The final branch is the cése where Cp<dy, which résults in no taxes paid and a
loss of dy-C; to be brought forward to périod 3. o

The next périod begins with the same two scenarios from pefiod 2. There is either a cash
flow of (Cs-ds) or (C3~d3.(d2—C2)) if a loss of (cz’yCi) has been broﬁght forward. Figure 2.5
illustrates thé change in the second period from an infinite to a 1-period carry-forward example
(compare to Figure 2.3).

Given an n period carry-forward iimit, the tree will not change from the infinite case until
period n-+1. Moreover, the gxpected tax payment is not affected by the new branches and
different probabilities until per_iod n+2. The most prominent effect of the carry-forward limit is
- to increase the probability of states occurrix_lg that have lower losses carried-forward. Higher -
carry-forward values correspond to lower expected tax payments, so by eliminating some of the

cumulative losses carry-forward, the expected tax payments become higher.
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- P(CHC>d,Hd)
¥,=0 :
P(C,+C,<d+d)*P(C>d,)

(Cpd)d C)L
. 7 ¥, —-.{)

P(C,+C,<d,+d,)*P(C,<d,)
Yy =dy- G

E[Tax],. = T[max(C,-d,-E[Loss],),0)]
E[Loss], = max(d,+E[Loss], —CZ?O)

Figure 2.5 [-Period Carry-Forward Tree (Period 2)

To illustrate this, compare the probabilities of the possible taxable income states given an
infinite and a 1-period carry-forward limit. This is shown in Table 2.3 for DDB in period 3 of
the same examplé used previously.

INFINITE. 1-PERIOD

CARRY-FORWARD CARRY-FORWARD
State E[Tax] Probability Probability
1 (Cs-0s) 0.66446 0.77684 0.88383
2 (Cy+Cor{ds+dy) 0.62653 0.09203 0.11617
3 {Ca+Co+Cy-(datdotdy) 059036 0.13113 0.00000
‘ E[Tax}; = 0.65125 0.66005

Table 2.3 Branch Probability Comparisons

The expec‘te& value of the tax payment in period 3 is higher for 1-period carry-forward
thén fér infinite. The same is true for all periods i > n+1. Specifically, the 1-period example
cannot have the third state where losses are carried-forward from period 1 and 2. Therefore the
probability of state 3 occurring must be divided over the other two states, The amount sent to the
(C3-ds) cash flow state is proportionate to P(Cy>d5). Likewise, the amount sent to the (C3+Cs-

(ds+dh)) state is proportionate to P((5<dy).
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Eiample 2.3 Once again, applying this procedure to the five-period example results in the
expected tax ?ayments shown in Table 2.4. Since losses may only be carried-forward one
period, we have the éituation where some of the losses in the early periods are lost, since the cash
ﬂpws are not large enough to cover the current depreciation énd the loss frbm the previous
period. For o:l = 0.937, SDM is optimal in this example. When compared to the resuits shown
“in Table 2.1 for the cas.e where losses cannot be caﬁied—forward, the threshold value for the
optimality of SDM has shifted downward.from 0.895 to 0.937. Allowing carry-forward for one
period causes the range for which SDM is preferred over ADM to decrease. A further downward
shift can be expected as # is increased until at some point ADM will completely dominate SDM,

“Table 2.4 I-Period Carry-Forward Expected Present Value

o E[Taxs ] E[Taxsvo} E[Taxppsg]
0.80 1.241371 1.195128 1,194896
0.81 1.287749 . 1.243582 1.243755
0.82 1.335615 1.293703) 1.294278
0.83 1.385007] 1.345535] 1.346508
0.84 1.435967 1.399125 1.40049
0.85 - 1,488536 1.454522 1.456273
0.86  1.542753 1.511774) 1.613901
0.87 1.598663 1.570928 = 1.573424
0.88 1656308 - 1.632039 1.634891
0.89 1715731 1.695155 1.69835
0.90 1.776977 1.760329 1.763854
0.91 1.840093 1,827615 1.831452)
0.92 1.805123 1.897066] - 1.901198
0.93 1.972114 1968737 . 1.973145
0.94 2.041115 2.042688 2.047347
0.95 2.112175 2.118967.  2.123859
0.96 2.185342 2.19764 2.202738
0.97 2.260666 2.278764 2.28404
0.98 2.338199 2.362399 2.367823
0.99 2.417993 2448605 2454148
1.00- 2.500101 2.537446 2.543089
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2.5 Finite Carry-Forward and Backward of Losses

When losses can Ee’ carried-backward, the model must now incorporat_e prior profitability
into the carry-forward 'vériable Y. Either a positive value is cafriednfomard, representing a prior
proﬁt,.or a negative value is carried-forward to represent a loss. The equations 1o calculate the
¥k value remain ths same as before when a loss is being carried-forward. When proﬁts are
being brought forward (equivalent to carrying losses backward), then the equations to balculate '

update yii; are:

bl bl

min(y, ., —(C, —d, - b0, i (C <d + )y,
y,‘_nk,i = (y kit ( ‘;nyj, 1) ) . ) j;nyj’ ]) fOI‘k=i’Z, n-'],...,J

Vi, Otherwise
y, =0 foralli<l

When.a loss occurs, a refund would be .retumed to the firm for the ?nihimum of the
current logs or the sum of the taxable income over the carry-backward period, each multiplied by
the tax rate. If the loss exceeds the profits iﬁ the ti;ne-ffame, any leftover loss would then be -
carried-forward. T\he equation to represent taxable inéome whén a loss is carried-forward

remains the same, but the equation when a profit is carried-forward is |

!
min| C, -4, Z ¥y j,i_l] for the straight-line method or

j:j—n .

il _
min| C, ~d,, Dy J,H) for accelerated methods,

Je=i-n-

This method would not only provide tax savings at an earlier point in time, but could
reduce the potential for losing a portionlof the loss if the carry-forward horizon does not produce

a sufficient profit.
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In a one period carry-forward and one period carry-backward example, the tree again
remains the same in the first period. In the second period, the tree hanging from the top branch
of period one carries-forward a negative quantity representing the profit (negative loss) achieved

in period 1.

P(C>d, | C>d,)
»y=Cyd,

e

E[Tax], = T[max(C,+C, -dy-d,,0)-,]

1P(C2>d2 | Cl>d1)
y2 = max(d,-C,-y,,0)

Figure 2.6 [-Period Carry-Backward/Forward Tree (Period 2 Upper Branch)

The lower portion of the second period tree carries forward a positive value as Before, and the
differences in the carry-backward tree arée the expé_cted tax payments and the possibility of

carrying-forward a profit to which a loss in the next period may be applied.

P(C,+C >d,+d,)
¥, = max(C,-d,-y,,0)

(Cd,)-(d,-C )L P(C,+C,<d,+d )*P(Cp>d,)

¥, =Cyd, '

P(C,+C,<d,+d }*P(C,<d)
Y, =dy-C,

E{Tax], = T[max(C,-d,-y,,0)]

Figure 2.7 [-Period Carry-Backward/Forward Tree (Period 2 Lower Branch)
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Example 2.4 Using the same five period example, the results of ‘a one period carry-backward

and one period carry-forward are shown in Table 2.5.

Table 2.5 [-Period Carry-Backward/Forward Expected Present Va?ue

G EfTaxy] E{Taxsyp] E[Taxpng] '
0.80 1.18944265 1.1543595 1.16170642
0.81 1.24457926)  1.20166346, 1,20972897
0.82 . 1.29118028 1.2506133 1.25664033
0.83 1.33028473 1.30125473  1.31077398§
0.84 1.38893237] 1.35363434] 1.36388644]
0.85 1.4401637 1.4077996, 14187869
0.86 1.49301996] 1.46379889  1.47552248
0.87 1.54754315 1.52168148 1.5341411
0.88 1.60377602,  1.58149756/ 1.59469159
0.88 1.66176211  1.64329825 1.65722361
0.80 1.72154672]  1.70713561 1.72178772
0.91 1.78317192) 1.77306261, 1.78843536
0.92 1.8466866 1.8411332]  1.85721887
0.93 191213642  1.91140228 1.92819149
0.94 1.97956887| 1.98392572 2.00140738
0.95 2.04903222 2.05878036  2.07692155

- 0.96 2,12057558  2.13506403] 2.15479004
0.87 2.19424888 2.21559555  2.23506877
0.98 2.27010289 2.2977147§ 231781861

- 0.99 2.3481892 2.38238248 240308537
1.00 2.42856027, 246966058 2.49095982

This example does not produce a drastic change in the expecteci tax payments due to the
nature of the cash flows in the problem and the fact that only a one-period carry-backward was

allowed.

3.0 Optimal Depreciation Conditions

Now that several different carry-forward scenarios have been modeled and the results for
a S-period example have been shown, some intuition may exist concerning the conditions
determining the optimal depreciation method. This section will establish these conditions and

discuss their realistic implications.
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3.1 General Accelerated Depreciation Characteristics
For the accelerated methods, the depreciation deductions d; are such that the values are
non-increasing and must sum to the initial value of the asset. Therefore, they begin larger and

end smaller than annual SL deductions. This requires the existence of some threshold period

k e{l,...,N} that identifies the last period where the accelerated deduction is larger than the

straight-line deduction [1].
From this, there comes an important characteristic of accelerated depreciation methods

that is fundamental to this analysis. If one considers the total depreciation from period 1 to any

- period < N, the cumulative sum is always greater for ADM than SDM. This is formally stated in

the following definition.

Definition 4.1. An accelerated depreciation method is one where

N

>d =D,

i=]

d2d, Vi=1,N-1,

there exists some k € {l,..., N} such that

L

d,.ai?— forall i<k
N

d, <-9~ forall i >k
N

and

/ D
dzj—=1| ¥Yjei{l.,N
Z;, J(N] jef }

Even without stating this final property about the cumulative depreciation, Berg et al. [1] prove

that ADM provides a lower present value of tax payments when P(C;>di)'= lforall i<k.
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As an example, the depreciation percentages for the five-period example are shown in
Table 3.1. The cumulative depreciation percentages verify that both DDB and SYD exceed SL
at any time in terms of the total depreciation charged since period 1.

Table 3.1 Cumulative Depreciation Charges for 5-Period Example

Depreciation Charge % Cumulative Depreciation %
Period SL SYD DDB SL SYD DDB
1 02 0.3333 0.4000 0.2 0.3333 0.4000
2 0.2 0.2687 0.2400 0.4 0.6000 0.6400
3 0.2 0.2000 0.1440 0.6 0.8000 0.7840
4 0.2 0.1333 0.0864 0.8 0.9333 0.8704
5 0.2 0.0667 0.1296 1.0 1.0000 - 1.0000 .

3.2 Effect of Carry-Forward on Cumulative Depreciation

When losses can be carried forward, the only way SDM is preferred to ADM is When the
losses‘ cannot be applied’ within the carry-forward period and are ultimately lost. For this to
occur, the number of consecuiix}e peri(;ds of losses must exceed the cafry~for\;\fard length n. By
exanﬁining the cumulative depreciation charge percentages in t'er.ms.: of .a.sliding window of
Ieﬁg’ch n+1, some conclusions can be drawn about the optimal depreciation ﬁwthbd.

At a maximum, 7 périods of depreciation may be brought forward to period i. If C;

exceeds d; plus all the losses carried-forward, the total depreciation realized in period i will be

Z (C,—d,)), as.suming'that Cj <d for all periodsj < i Otherwise, SDM cannot yield a lower

Jrien
preseﬁt value since ADM would apply a deduction at least as large as that 6f SDM given the
opportunity of profit. In thé case of small profits, the pfesent value of the téx payment ﬁsing
SDM would at best be equal to that of ADM.

If the current period is /, the siiding window analysis requires that a loss has occurred

" from period 1 to -1, and
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i~] .
Cizd, + > (d,-C)).

Jeion
This allows the last # periods of depreciation to be used in its entirety, but anything prior to / —n
has been lost. In terms of cumulative depreciation, this may allow SbM to realize a greater
- deduction in period i since the extra depfeciatidn provided by ADM prior to period i — # has been .‘
Jost. Whether or not this is the case depends on the length of » and the period in which a profit is
attained and whether the carry~forwérd déductions can be used.

The cumulative ciepreciation charges shown in Table 3.1 repre'sent the cése where infinite
carry-forward is allowed. The depreciation deductions are never lost, so if a profit is ever
realized, ADM will apply a deduction greater than or equal to that of SDM. Tables 3.2 3.7

“show the cumulative sliding Window depreciation for n=0,...,5 'and N=35.

Table 3.2 No Carry-Forward Cumulative Depreciation

n=0 ___Depreciation Charge % Consec.
Period SL  SYD DDhB " Loss
1 0.2  0.333333 0.4 0
2 0.2 0.266667 0.24 1
3 0.2 02 0.144 2
4 0.2 0.133333 0.0864 3
5 0.2 0.066667 0.1296 4

‘Table 3.3 /-Period Carry-Forward Cumulative Depreciation

n=1 Depreciation Charge % Consec.
periods SL . . SYD DDB Loss
1 0.2 0.333333 0.4 0
1+2 0.4 08 0.64 1
2+3 0.4 0.466667 0.384 2
3+4 04 0.333333 0.2304 3
4+5 04 0.2 . 0218 4

Table 3.4 2-Period Carry-F orward Cumulative Depreciation

n=2 Depreciation Charge % Consec.
periods SL SYD DDB Loss
1 0.2 0.333333 0.4 0
1+2 0.4 0.6 0.64 1
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14243
2+3+4
3+4+5

0.6
0.6
0.6

0.8
0.6
0.4

0.784
0.4704
0.36

Gy M

Table 3.5 3-Period Carry-Forward Cumulative Depreciation

n=3 Depreciation Charge % Consec.
periods SL - 8YD DDB Loss
1 6.2 0.333333 0.4 0
1+2 04 0.6 0.64 1
1+2+3 0.6 0.8 0.784 2
1+2+3+4 0.8 0.933333 0.8704 - 3
243 +4+5 0.8 0.6 4

0.666667

Table 3.6 4-Period Carry-Forward Cumulative Depreciation

n=4 Depreciation Charge % Consec,
periods SL SYD DDB Loss
1 0.2 0.333333 04 -0
142 . 0.4 0.6 0.64 1
1+2+3 0.6 0.8 0.784 2
1+2+3+4 08 0.833333 0.8704 3
1+2+3+4+5 1 1 1 4

Table 3.7 5-Period Carry-Forward Cumulative Depreciation

n=5 Depreciation Charge % Consec.
periods SL . SYD DDB Loss
1 0.2 0.333333 0.4 0
142 0.4 0.6 0.64 1
1+2+3 0.6 0.8 0.784 2
1+2+3+4 0.8 0.933333 0.8704 3
_1+2+3+4+5 1 1 1 4

The period iﬁ which the cumulative depreciation charge reaches a maximum value
indicates the last period where ADM has an advantage over SDM and will remain the optimal
method. This always occurs at period n+1, which means that none éf the depreciation charges up
to and incfuding nt+1 are lost. By definition 4.1, the first period’s depfeciation is the largest. In
the sliding window sur, when dj is lost the change in the sum is (dy+; — di) < 0, assuming losses
have occurred every period. This supports the result that if initial periods of depreciation for |

ADM are lost, SDM can possibly dominate.
| 25



Per_iod nt+1 can then be identiﬂeci as the last ﬁeriod where ADM provides .a greater
cumulative depreciation charge than SDM over the past u consecuti;re pertods of loss. Using this
threshold value, the cash flows can be divided into three categories, each resulting in a different
* optimal depreciation decision. The thrée major cateégories are:

k
(13') Zyi,i+n = 0

L im]

(Iby P(C, <d)=1V i>n+l
2 Zy fian = de'
i=1 ' il

3) PC. <d)e® Visn+l

For each of the situations mentioned above, an example will be discussed to illustrate the
results before a formal probf is provided. The same five-period example will be used once again
with » = 1. This provides a threshold value of n+1=2,

The first case has two components, each resulting in the same optimal depreciation

decision for all values of . In (1a), the situation is represented when none of the depreciation is

lost over a window of periods beginning in 1 and ending in . This also provides a unifying

concept between this work and Lemma 3.1 in Berg et al. [1], which requires profits prior to

period % . The difference is that now losses may be carried forwérd, as long as they are used
within 7 periods. For n =0, (1a) corresponds exactly to Berg’s et al.[1] statement in Lemma 3.1.

For n > 0, some leniency is obtained in the actual timing of profits, as long as the depreciation

charges are not lost prior to & .
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The results in this example are provided for the scenario in which C;< 0 for i <k, and

C_ must be greater than the entire loss carried-forward. The present values of expected tax
k

payments are evaluated in terms of the difference between ADM and SDM for this example due

to'the complexity of obtaining the ADM and SDM values directly. 'i‘he following equation

represents the difference in periods 1 through k for this situation.
N
Ma)=a| Y (d, ~d)
' i=l

" Since d; and d represent savings, A(a)<0 indicates a lower tax payment for ADM. From
" periods & +1to N, the e}tpectéd present value can be calculated by the method in Section 2:4,

using a starting cash flow of (C, —d,) and (C, ~d)for i = k+1 with a probability of 1 for ADM
and SDM respectively. Table 3.8 shows fhe differences in the present value of expected tax
?a&menfs. As this is a worst-case scenario, having higher cash—ﬁoWs in early periods will only
increase the sévings from using ADM. The differences are neggti\fe for'. all values of @, therefore

ADM dominates SDM in case (1a). A formal statement and proof of this follows.

Table 3.8 Case (1a) Expected Tax Payment Differences

o E[Taxgyp-Taxs ] | E[Taxpps-Taxs]
0.80 -0.031448181 -0.066902358
0.81 -0.031148064 -0.055887555
0.82 -0.030751046 -0.05473068
0.83 -0.030251715 -0.053426389
0.84 -0.029644509 -0.051969236
0.85 -0.028923717 -0.05035368
0.86 -0.028083481 -(.048574082
0.87 -0.027117786 -0.046624702
0.88 -(0.026020469 -(.044499701
0.89 -0.024785207 -0.04219314
0.90 -0.023405524 -0.039698078
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0.81 -0.021874783 -0.037011071
0.92 -0.02018619 -0.034123172
0.93 -0.018332785 -0.03102893
0.84 -0.01630745 -0.027721889
095 | - -0.014102899 -0.024195487 .
0.96 -0.011711681 -0.020443055
0.97 -0.009126177 -0.016457817
0.98 -0.006338596 -0.012232889
0.99 -0.003340981 -0.007761276
1.00 -0.000125198

-0.003035876

_ . ; _ ‘ _
Proposition 3.1, If Z Visn =0 , ADM dominates SDM. (i.e. E{Taxa(e)] < E[Taxs(a)]
=1 - 7

forall o «[0,1}.)
Proof. The proof of this follows that of Lemma 3.1 in Berg et al. [1]. Z Vi =0
. : i=}

. requires that the entire depreciatién charges from period 1 to k are utilized. This is
" equivalent to Lemma 3.1, with the additional flexibility that the depreciation charges do

not need to be used immediately since they may be carried forward » periods. As'long as

d; has been entirely used by period i+»n for i < k, ADM will dominate.

The next case, (1b), requires that a loss occur every period beyond n+l. This can be
easily modeled by setting the tax payments from »#+2 to N equal fe z&o. The results for this
example are shown once again in terms of the present value of the exp.ec.ted tax payment in Table
3.9

Table 3.9 Case (1b) Expected Tax Payments

o Effaxg] | EfTaxsvp] | E[Taxpps]
0.80 | 0487878 | 0371740 | 0.345128
0.81 | 0.497325 | 0.379116 | 0.352195
0.82 | 0.506855 | 0.386560 | 0.359329
0.83 | 0.516467 | 0.394071 1 0.366531
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0.84 | 0.526162 | 0.401649 | 0.373802
1.0:85 | 0.535040 | 0.408294 | 0.381140
0.86 | 0.545800 | 0.417007 | 0.388546
0.87 | 0.555744 | 0424788 | 0.396020
0.88 | 0.565770 1 0.432635 | 0.403562
0.89 | 0.575878 | 0.440550 | 0.411173
0.90 | 0.586069 ; 0.448533 | 0.418851
0.91 | 0.596343 | 0.456583 | 0.426597
0.92 | 0.606700 | 0.464700 | 0.434411
0.93 | 0617139 ; 0.472885 | 0.442293
0.94 | 0.627661 | 0.481137 | 0.450242
0.95 | 0.638266 | 0.489456 | 0.458260
0.96 | 0.648953 | 0.497843 | 0.466346
0.97 | 0.659723 | 0.506297 | 0.474500
0.98 | 0.670576 | 0.514819 | 0.482721
0.99 | 0.681511 | 0.523408 | 0.481011
1.00 | 0.692529 | 0.532064 | 0.499369

The expected tax payments are lower for ADM for all values of «, therefore ADM also

dominates SDM in case (1b).

‘Proposition 3.2. When P(C, <d,)=1V i>n+1, ADM dominates SDM.
 Proof. Given that P(C, <d,)=1VY i>n+1, the tax payments in { > n+1 are zero and

the expected value only needs to be evaluated from 1 to n+1. By definition 4.1,

ntl ‘ ) .
Zd,. > (n+1)d . Forany C;, i <nt+l, ADM provides a depreciation deduction greater

i=l
than or equal to SDM, which occurs either at the same time or earlier. Given that the
time value of money discounts later periods, ADM results in a greater savings, and thus a

lower tax payment.

The next case is the opposite of (1b), where a loss occurs such that all depreciation up to

and including & is lost. This is modeled by using a slightly relaxed case where a tax payment of
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zero occurs for periods 1 through n+1, and the method from Section 2.4 is used to compute the

1+41

remainder. At period n+2, a loss carried-forward of Z(Ci —d,) occurs with a probability of 1.
=2

The results indicate that SDM is élways optimal, as shown in Table 3.10.

Proposition 3.3. If Z Vivm = Zd,. , SDM dominates ADM.
: : i=l )

i=1
Proof. Given that none of the depreciation in periods 1 through & can be uscd; the only

. - Lo N .
attainable depreciation is for periods i > k. Since d; <dfori> k, Zd! S(N-kd,

‘ imE
SDM provides a depréciation deduction greater than or equal to ADM, which results in a

lower tax payment.

The final case corresponds exactly to the situation modeled in Section 2.4. There is some
probability between 0 and 1 associated with a loss occurring in each period. The optimal
depreciation choice becomes a function of the discount rate in this situation.

Table 3.10 Case (2) Expected Tax Payments

o | E[Taxs] | E[Taxsvn] | E[TaXpps] |
0.80 | 0.739787 | 0.805088 | 0.832756 |
0.81 0.7762 | 0.845475 | 0.873905
0.82 | 0.814006 | 0.887444 | 0.916633
0.83 | 0.853244 | 0.931039 | 0.960984
0.84 | 0.893954 | 0.976308 | 1.007004
0.85 1 0.936175 | 1.023299 | 1.054739
0.86 | 097995 | 1.072058 | 1.104235
1087 | 1.025321 | 1.122636 | 1.155541
0.88 | 1.07233 | 1.175083 | 1.208706
0.89 | 1121022 | 1.22945 | 1.263778
0.90 | 147144 | 1285789 | 1.320808
0.91| 1.22363 | 1.344152 | 1.379847
0.92 | 1.277638 | 1.404595 | 1440049
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0.93 ] 1.333511 | 1.467172 | 1.504185
0.94 1 1.391296 | 1.531938 1.66955
0.95 1 1.451041 1.50895 | 1.637189
0.96 | 1.612797 | 1.668267 | 1.707047
0.97 | 1.576613 | 1.739947 | 1779272
0.98 | 1.642539 1.81405 | 1.853891
0.99 | 1.710628 | 1.890637 | 1.930963
1.00 ;] 1.780933 1.96977 | 2.010547

A naturél question is “What are the conséquences of this analysis?” We can only speak
to current United States tax law which allow for a 2.0-yea'r carryufofward period to aﬁply net-
opefatingrlosses before they aie lost t8]. In light of this large value of n, the ﬁossibility of ADM -
optimality ié greatly iﬁcréased. In most cases, this 21 yeaf window will .extend besfond the life of
the ésset; B'y'propbsi_tion 3.1, as long as the cumulative depreciation chafges frorﬁ periods 1 to
~ min(¥,21) are used on or before period 21, thén ADM dominates SDM. Thus, it would appear in

realitjr (U.S. iaw) that ADM would always dominate.

4.0 Conclusions and Directions for Future Research

“The ability to carry-forward losses works in favor of ADM; resulting in a lower present
value of the exi;ected tax payment. When losses can be carried-forward for an iﬁﬁnite number of
periods, the results are equivalent to the traditional analysis where losses do nét occur. In this
case, ADM is always optimal. When losses may oniy be carried-forward for a finite number of
periods, the results become signiﬁbanﬁy more difficult to characterize.

To help make some general statements about the optimal depreciation decision, a_-

threshold period of either & or n+1 was identified, depending on the nature of the statement.
This is the last period in which a consecutive loss can occur starting from period 1 and still allow

ADM to dominate SDM regardless of the discount rate. Depending on the nature of the cash
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flows before and after this threshold period, the optimal depreciation method can be identified.
When.the cu?nulative’ depreciation is guaranteed to be used by the threshold period, then
regardless of what occurs after, ADM will always domiﬁate SDM. Similarly, if the cash flows
are guaranteed to be negative after the threshold period, ADM will again always provide lower
expected tax payments. Wheﬁ losses occur with probability 1 up to and including the threshold
period, then ADM has lost its advantage' of greater initial depreciationl and SDM will always be
preferred régardless of what happens aﬁer the threshold period. Finally, in the case where losses
and profits occur with a probability between 0 and 1, .fhe optimal depreciation method depends
on the discoﬁnt rate given the cany-forWard limit and distributioﬁs of the casﬁ flows.

There are é few major assumptions in this paper, which ma;y be explored in future

- research. | The first is the problerﬁ horizo}l,'whigh stops at period N when calculating the present

value of the expe@ted tax payments. Whenl carry—fdrward is allowgd, the possibility of having
residual lqsses after period N to apply to fqture periods would affeét the present value. Although |
the effect would be small, it would be moré realistic to still consider this in the calculations.

* Another area for future research concerﬁs asset disposal or replacement, particularly
when some value is received. The gain or loss from the sale of the assét will be affected by the
amount of depreciation. If the asset is kept to the end of it’s life, the book. value will bé
equivalent fbr‘ ADM aﬁd SDM, but if it is retired or replaced early, the book values, and

therefore the gain/loss, will differ.
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