0 ndustrial and Systems Engineering e

Bal‘mcmg U Shaped Assembly».; ines

Slhua Chen L T i B

Loms Plebam
Lehlgh Umvermty

Report No 03T 007?"1‘3-}

7 Univeniy

200 West Packer Avenue S
Bethlehem PA 18015

Balancing U-Shaped Assembly Lines
Sihua Chen
Binney & Smith, Inc.

Louis Plebani
Lehigh University

Report No. 03T-007

Balancing U-Shaped Assembly Lines

Sihua Chen! and Louis Plebani®*

! Manufacturing Development Manager, Binney & Smith, Inc., 1100 Church Lane,
P.0O. Box 431, Easton, Pennsylvania. 18044-0431

?Department of Industrial and Systems Engineering, Harold S. Mohler Lab-
oratory, 200 West Packer Avenue, Bethlehem, PA 18015-1582

Abstract

This paper presents a new heuristic and an optimal best first branch and
bound procedure for the U-Shaped assembly line balancing problem. Results
using standard assembly line balancing problem benchmarks show that the
new heuristic provides improved solutions over previous heuristics without ex-
cessive increase in execution time. The new heuristic together with several
lower bound heuristics adapted from bin packing and vehicle routing, are used
to provide tight bounds to the best first branch and bound algorithm. Results
are presented which shown the new branch and bound algorithm has excellent
performance when compared to current algorithns.

1 Introduction

The assembly process consists of a precedence constrained sequence of tasks typically
depicted as an acyclic Activity on Node (AON) network precedence diagram such as
Figure 1 [32]. The nodes {k : £} represent a task k that consumes deterministic time
t, and cannot be sub-divided. Arc (i,j) means that task ¢ must be finished before
task j can start.

The assembly line balancing problem (ALBP} is to group tasks into workstations
such that the sum of the processing times at each station does not exceed a station
uniform cycle time. There are two common versions of this problem: (ALBP-1) to
find the smallest number of workstations for a given cycle time ; and (ALBP-2) to find
the smallest cycle time for a given number of workstations. Virtually all researchers
use search procedures for ALBP-2 which iteratively solve ALBP-1 problems obtained
by varying the cycle time. This paper limits discussion to the solution of ALBP-1.

Figure 1: Example of A Precedence Network

Straight assembly line balancing (SALBP) has been studied for nearly five decades
since first introduced by Salveson [29] and is known to be NP-Hard [15]. Heuristic
methods such as genetic algorithms [5], filtered bean search [18], revised Hoffmann
heuristic [7] and tabu search [25] are among the recent attempts to solve this problem.
Integer Programming [4, 26,34, 36], Dynamic Programming [10, 14, 30|, and Branch
and Bound approaches [9,11,13,24, 27, 28,31, 37] have been used for exact solution.
Among these exact algorithms, branch and bound has consistently proven to be the
best approach [2]. Figure 2 shows the optimal solution to the straight line problem

...

‘ e I I iy H i
' i i+ I] I vy ‘
1 IR i i H e I s
H e i I] I I]
' B 1] Tl I i) H
v J B
i i i (Rt i v i
H IE 1 e H 1 [i
H I3 1 [HE i I 1

% i I v N 1

i i . ! . I " HE - H
PSwonl i1 Station2 i Station 3 v Station 4 i Station 5 i Station & L Stion 7

..

Figure 2: Straight Assembly Line Solution to Figure 1

(SALBP) corresponding to Figure 1 and a cycle time of 10. It can be seen that seven
workstations are needed, each grouping the tasks as shown.

Largely due to pressures of JIT, many assembly lines are now designed as U-shaped
assembly lines because of their potential for better balancing, improved visibility and
communications, fewer work stations, more flexibility for adjustment, minimization
of operation travel, and easier material handling when compared to straight lines [19].
Figure 3 shows an optimal U-shape assembly line for the example network of Figure 1.
Only six workstations are required as compared to the seven required in the straight
assembly line case.

U-shaped line balancing is a relative new research topic having first been intro-
duced and formulated by Miltenburg and Wijngaard in 1994 [19]. Since then, there
has been a modest amount of heuristics work [1,6,8,12,19,21-23, 32] and few ex-

2.

]
M .
v o b
] M [l
. M *
* '
1 [
N 1
[1
LN)
] L]]
N x
* o L]
+ o L)
1] L [
[3 v
' 1

Station 1 :E Swaion2 1

Swion3 Station S : ’ Sttion §
Figure 3: U-shaped Assembly Line Solution to Figure 1

act solution approaches to the problem. Sparling introduced depth first branch and
bound, best first branch and bound, and dynamic programming for U-shaped lines
of up to 30 tasks in 1997 {33]. Scholl and Klein created a depth-first station-oriented
branch and bound algorithm called ULINO, which was a clone of their straight line
algorithm called SALOME [32], in 1999.

This paper reports a best-first branch and bound algorithm called OBUL (Optimal
Balancing of U-shaped Lines). Motivations for a depth first B&DB approach were two-
fold: (1) Baybars concluded that branch and bound is the best optimal solution
methodology for straight assembly line balancing [2]; (2) Sparling’s research for U-
shaped assembly line balancing, in particular, and Morton’s research, in general, has
shown that a best-first branch and bound approach is superior to depth-first methods
if high quality lower and upper bounds are available [20]. OBUL uses multiple lower
bound algorithms and a new upper bound heuristic to achieve tighter bounding.

2 Network representation

In addition to the information contained in the precedence network, other attributes
are calculated for convenience in algorithm processing. The resulting representation
of the network A is a list of node objects where each node contains the following
information (z < y indicates x is constrained to precede y in the assembly sequence):

) . node number,

tn : Processing time of task n.

Pl, = {i]|(,n) € {(7)}} The set of immediate predecessors of node n.

Si, = {j|(n,j)€{(i, 7)}} The set of immediate successors of node n.

P2, = |J Pl;. The set of all predecessors of node n not contained in Pl,.
k<n

82, = |J 91 The set of all successors of node n not contained in 51,.
ken

3 Bounds

OBUL achieves reasonably tight bounds through the use of multiple lower bound
algorithms and a new heuristic called Immediate Update Score First Fit (IUSFF).

3.1 Lower bound

OBUL uses four lower bound algorithms. In addition to the traditional lower bound
LB, = Zt" /n, OBUL uses three bounds based upon arguments from bin packing,

machine %scheduling and vehicle routing. LB, and LBj can prove useful when the
cycle time is small enough to result in three or fewer tasks per station, which is
where strong bounds are most needed [13]. LB, is the number of tasks which have
a duration greater than half the cycle time, since these cannot share a station, plus
one half the number of tasks equal to exactly half a cycle time.

LB, = N (C/2,C] + E N [c/zﬂ 1)

LBj partitions the task times into sets of third’s of cycle time C/3. Any task with
task time greater than 2C/3 will occupy a single station, tasks with task time exactly
equal to 2C/3 may share a station with a task whose task time is exactly C/3 or less.
No more than two tasks with task time between C/3 and 2C/3 may share a station
with each other.

LBy = [N (20/3,C] + % N [20/3] + % N(C/3] + 3 N(C/3,20/3)] @)

LBy is a lower bound developed by Labbé [16] in a vehicle routing context and was
found by Berger [3] to be a strong lower bound for assembly line balancing. The

A

bound is calculated in several steps:

Step 1: All tasks are sorted in nondecreasing order of processing times. W (a,b] is
defined as the set of tasks with a < t < b. Starting with the longest task, assign
the tasks of W{(C/2,C] to different stations, since any two of them have a total

processing time exceeding C.

Step 2: Consider the tasks of W(C/3,C/2]. Starting with the smallest task, and all
stations corresponding to the tasks of W(C/2,C}, in non-decreasing order of
idle times. Successively assign the task of W(C/3,C/2] to the first available
station. Stop when all these tasks have been assigned or no station remains.

Step 3: Let K be the number of unassigned tasks of W(C/2, C) after step 2. Then
at least [K/2] are required since at most two tasks of W{(C/3,C/2) can be
assigned to the same station.

Step 4: Determine the number of additional stations required for all unassigned tasks.
Based upon arguments by Martello and Toth [17], the number of additional
stations required for all tasks for which ¢ > ¢ is:

X = (W(C/2,C o) +[K/2)) C
ieW(e,C—c]
. ®)

p(c) = max ¢ 0,

This calculation of p(c) is based on the fact that a task with ¢ > ¢ cannot be
executed on a station which is already busy for at least C — ¢ time units. Since
equation 3 holds for any value of ¢, and p(c) = 0 for ¢ > C/3:

LB4= max, {(IW(C/2,C = o)) + [K/21) + p(e)} (4)

3.2 TUSFF heuristic for upper bound

IUSFF (Immediate Update Score First Fit) is a modification of Hackman'’s IUFF
(Immediate Update First Fit) heuristic for straight assembly line balancing [9] which
in turn was based upon the GFF (Generalized First Fit) heuristic described by Wee
and Magazine [38]. Similar to these heuristics, IUSFF balances the line by scoring,
ranking, and assigning tasks to workstations until none remain. Four separate scoring
functions are used: (WE) work element time, the processing time of a task; (PW)

B

positional weight, the sum of the processing times for a task and all the tasks that
must follow (precede) it; (NF) number of followers, the number of tasks that follow
(precede) a task; and (NIF) number of immediate followers, the number of tasks that
immediately follow (precede) a task. Investigation determined that it was not possible
to predict which scoring function would provide the best solution for any particular
network. Thus the default procedure is to apply the complete algorithm using each
of scoring functions separately and choose the best of the resulting four solutions.

In addition to obvious modifications necessary to accommodate U-shaped lines,
JUSFF improves over earlier heuristics by immediately adjusting scores and re-ranking
available tasks after each task assignment. The adjustment and re-ranking is critical
in U-Shaped line assignments since tasks can be assigned from either end of the line
which immediately affects the rankings scores in the case of PW, NIF, and NF criteria.

The IUSFF algorithm repeatedly creates a new station and fills it with tasks until
no tasks remain to be assigned. Input is the precedence network A representation
from section 2, the set of tasks that have already been assigned 7', and the cycle time
C. The following general heuristic is repeated until all tasks are assigned:

Step 1: Identify the set of unassigned tasks U:
U=N-T (5)

If J == () the algorithm is terminated.
Step 2: Instantiate a new station. Major data members of the new station are:

slack : the slack for the current station. Initialized to C.
T.. - the set of tasks assigned to this (n'") station. Initialized to .
A : set of tasks which are available for assignment to the current station.

T8, : ranking score of task &.

Step 3: A is initialized by performing

if P1,NT' =0 execute step 4 and return

VkelU : { (6)

if S1, NT" =0 execute step 5 and return

After initialization go to step 6.

Step 4: Task k has been determined to have no unassigned predecessors. Update A
and calculate the ranking score for a task that is predecessor free using the

current scoring function:

A= AUk} (7)

PW: 7rsy =1+ Z t; + Z t (8)
iESLAU ieS2ny

WE: rs, =1 (9)

NF: rs=|SL,nU| + |S2,nNU | (10)

NIF ;. rsp = |S1yNU | (11)

Step 5: Task k has been determined to have no unassigned successors. Update A and
calculate the ranking score for a task that is successor free using the current
scoring function:

A=AU{k} (12)

PW: rep=tet Y ti+ Y & (13)
IEPLNU iEP2ZNU

WE: rsp=1 (14)

NF: rsp=|PLNU| + | P%NU| (15)

NIF: 78 =|PL.NT | (18)

Step 6: If A = {1, the station is fully loaded. Go to step 12,

Step 7: A is sorted ascending based on the following boolean condition which defines
task z less than task node y:

T <y=(rs; <rsy) V (rsg =7r8y) A (ty < ty) (17)

Step 8: Determine the task with the highest ranking score which is feasible for the

current station using the following operations (A is processed as a LIFO stack):

while A # § : (18)
k= A.Pop
if t. < slack then go to step 9

If A =0, the station is fully loaded. Go to step 12

Step 9: Task k (determined in step 8) is assigned to the currently opened station.

slack = slack — (19)
T=T,U {k} s (20)
T=TU{k} (21)

If slack == 0, the station is fully loaded. Go to step 12.

Step 10: Ranking scores for the tasks which remaining in A are immediately adjusted
for the effects of adding task % if the ranking criteria is PW, NF, or NIF. No
adjustment is necessary for the WE ranking criteria. The adjustments are made
by iterating through the nodes in A and making adjustments in the ranking score
for the effect of adding task k& as appropriate for the scoring criteria in effect.

PW: if (ke P2, V k€ S52), then rsy =rs; — t;
Vke A NF: if (ke sP2 V k€ s52), then rsp =rs,—1 (22)
NIF: if (ke sPl, V k€ sS1y), then rsy =rs; — 1

Step 11: Check availability criteria for all predecessors and successors of task k just

assigned.
Vie Sl :if PLNT =0 (23)
calculate rs; as in step 4
A.Push(k).
Vie Pl if SLNT' =0 (24)
calculate rs; as in step b
A.Push(k).

8

Go to step 6

Step 12: At this point the current open station is completely loaded based upon the
tasks that are currently available. i.e., there is no predecessor or successor free
task with time is less than the current slack time of the open station. Go to
Step 1.

3.3 Performance of the IUSFF heuristic

The IUSFF heuristic and the IUFF heuristic were each used fo solve the data sets
of Talbot and the data sets of Hoffmann. These data sets have been established as
standard benchmarks in the literature [11,35]. The Talbot data set is based on 12
precedence networks with 8-111 tasks combined with several cycle times for a total of
64 instances. The Hoffman data set uses 30-111 tasks for a total of 50 instances. Both
algorithms were implemented in C++ and run on a Pentium III laptop. Results are
summarized in Table 1 where relative deviation is defined as (UB — LB)/LB. UB is
the value reported by the respective algorithm, and LB is either the optimal solution
or the best known lower bound to the associated problem. It can be seen that IUSFF
provides superior results without excessive processing time. The average deviations
for IUSFF are approximately 28 to 55 percent smaller than those of IUFF. IUSFF
found 47 optimal solutions versus 34 for IUFF for the Talbot data set and 15 optimal
solutions for the Hoffmann data set versus 6 for IUFF.

Table 1: IUSFF/IUFF Comparison

IUSFF IUFF
Talbot Hoffmann Talbot Hoffmann
Number of Problems 64 50 64 50
Optimal Solutions Found 47 15 34 6

Average Relative Deviation 0.039 0.056 0.088 0.078
Max Relative Deviation 0.33 0.20 0.50 0.20
Average cpu secs 0.013 0.034 0.009 0.017

4 OBUL Branch and Bound

OBUL is a station oriented best first search branch and bound algorithm. The major
data structure of OBUL is a priority queue of branch and bound nodes (BBN’s). Each

0.

BBN represents a partial solution. A BBN representing stations 1...n is at level n in
the B&B tree. Major data members of the BBN are:

T : the set of all tasks assigned to all stations up to and including current station
being filled,

slack + the slack time at the current station,
ts : total slack time for all stations up to and including the current station.

In the priority queue, BBN node x is ranked higher than BBN node y, i.e., more desirable
for branching, if the following boolean is true:

(z.LB <y.LB) V (2.LB =y.LB) A (z.ts > y.ts)

(25)
V (z.LB = y.LB) A (z.ts = y.ts) A (z.n > y.n)

Nodes are continually popped from the priority queue and processed until the queue
is empty, or the global upper bound becomes equal to the global lower bound, or
an optional user specified time limit is reached. As each node is popped, fathoming
tests are performed and the branching algorithm is applied. The branching algorithm
pushes new feasible partial solutions onto the priority queue. If execution time ex-
ceeds the optional user specified limit, the B&B terminates and a heuristic finishing
procedure is used.

4.1 Branching Algorithm

Input to the branching algorithm is the newly popped BBN representing the tasks
that have been assigned to n stations. The purpose of the branching algorithm is to
create new BBN’s by adding all possible feasible sets of tasks (which form new filled
stations), to the input node and to push each newly created node onto the priority
queue after passing a series of fathoming tests. The new nodes are, by definition,
at depth n + 1 of the branch and bound tree. Much of the processing time of the
branching algorithm is consumed by determining all sets of feasible tasks that could
fully populate a new station. Key working storage variables are:

avail @ list of tasks which are available for assignment to the present station.

unav : a set of which are forbidden to be assigned to the present station.

-10-

sts : the smallest task time of those available tasks which were specifically omitted
from the immediate assignment sequence.

The major steps of the branching algorithm are:

Step 1: Initialize working storage from the attributes of the input BBN node:

unav =T, Avail =0, slack =10, sts=o00 (26)
VEeN :
if (k¢ unav) A (PLpnT' =0)Vv{(S1,NT" =0) : Avail. Push(k) (27)

Step 2: This step is the first of a recursive sequence. In addition to the initial entry
from the outer loop, it will be entered numerous times as the algorithm proceeds.
avedl is sequentially searched for a task k ¢ unav that can “At” into the current

station, i.e., with processing time f; < slack.

If a task is found, the task is assigned to the current station by executing step 3.
Eventually there is a return to this step at this point. Upon return, the current
task k is removed from the assignment by updating bookkeeping variables:

slack = slack +t, sts = min(sts,tx) (28)

and by removing all tasks from avail which the recursive processing has added
since task k& was assigned. The search resumes starting with the fask immedi-
ately after task k.

When the end of avail is reached, if the current recursive depth is at the outer
level, branching on the input BBN terminates, otherwise go to step 5.

Step 3: Task k is assigned to the current station by updating node and bookkeeping

variables:
T=TUk, slack= slack —t;, unav=unavU{k} (29)

If slack = 0, go to step 5 (station has been filled), otherwise continue with
step 4.

Step 4: Check for tasks that become available due to task & being assigned to the
present station. The only tasks that could become available are the immediate

-11-

predecessors and the immediate successors task k. Tasks that become available
are added to avail.

Vpe Pl

if (p ¢ unav) A (S1, NT" =0) : Avail Push(p), unav = unavUp (30)
Y se Sl :

if (s ¢ unav) A (PL, 0T =), : Avail.Push(s), unov = uncvUs (31)

Go to step 2 which starts a new recursive search for next task to assign.

Step b: A feasible assignment of tasks has been found. The following series of fath-

oming tests is performed in the order listed:

1. If all tasks have been assigned go to step 6,

2. The maximum load rule is applied. If during the process of creating the
immediate assignment, a task was skipped that could fit into the current
assignment (sts < slack), discard the current assignment and return to
the appropriate recursive level in step 2.

3. If a solution is to be better than the current global upper bound (GUB)
then
ts <(GUB—1)+C— > # (32)

Vk
must be true, otherwise, discard the current assignment and return to the
appropriate recursive level in step 2.

4. The priority queue is checked for a BBN that is both at the same depth
as the candidate node and has the identical total assignment T as the
candidate node. If such a node is exists, discard the current assignment
and return to the appropriate recursive level in step 2.

5. The lower bound algorithms are applied to the tasks remaining to be as-
signed (M — 7). If the returned LB plus the current number of stations is
greater than or equal to GUB, discard the current assignment and return
to the appropriate recursive level in step 2.

If all fathoming tests are passed, push the candidate BBN onto the priority queue,
and return to the appropriate recursive level in step 2.

_19-

Step 6: A complete feasible solution has been found. The solution is used to up-
date the global upper bound. If GUB becomes equal to the current global
lower bound of the problem, the optimal problem assignment has been found.
Otherwise, return to the appropriate recursive level in step 2.

4.2 Heuristic Finishing Procedure

This procedure is executed if the branch and bound portion of OBUL exceeds the
user specified allowable execution time limit. This ensures that the algorithm always
returns at least one feasible solution. The procedure randomly selects a user specified
parameter maximum (we used 100) of BBN’s from those that remain in the priority
queue. For each BBN, the number of stations n is combined with the result of the
IUSFF algorithm is applied to the remaining N — T tasks. The best solution is
reported.

5 Computational Results and Discussion

5.1 Computational Results

OBUL was coded using C+-+ and run on a Pentium III laptop computer. The compu-
tational results are compared with the reported results of the best known algorithm,
Scholl and Klein’s depth first branch and bound algorithm ULINO. The Talbot and
Hoffmann’s data sets are used for comparison. OBUL’s user specified time limit was
set to 500 seconds. Overall results are shown in Table 2. In the Talbot data set OBUL
found 3 more optimal solutions than ULINO. In the Hoffmann data set, OBUL found
5 more optimal solutions than ULINOQO.

Table 2: OBOL/ULINO Comparison

OBUL ULINO
Talbot Hoffmann Talbot Hoffmann
Number of Problems 64 50 64 50
Optimal Solutions Found 63 37 60 - 32

Average Relative Deviation 0.003 0.019 0.004 0.020
Max Relative Deviation 0.071 0.091 0.071 0.100

The influences of network structure were studied by considering three major pa-
rameters of network structure: the number of tasks (NT'); the order of strength (O.S);

13-

and time variability ratio (T'V).

5.1.1 The Number of Tasks (NT)

The combined Talbot and Hoffmann data set was partitioned into small, medium,
and large groups as shown in Table 3. With increasing NT', the number of optimal

Table 3: Influence of Number of Tasks (NT)

NT Class # Instance # Opt Ave. Dev. Ave.Time (s)

NT <25 27 100 % 0O 0.02
25 < NT < 80 49 93.9 % 0.005 58.12
NT > 80 38 63.2 % 0.014 179.11

solutions decreased from 100% to 63.2%, and average calculation time increased from
0.0011 second to 179.11 seconds. This is primarily due to the branch and bound tree
growing with the number of tasks.

5.1.2 The Order of Strength (0OS)

'The order of strength is defined by the number of arcs in the precedence network
divided by n(n — 1)/2. It measures the relative number of precedence relations in the
precedence network. In the Talbot and Hoffmann combined data set, the minimum
08 is 22.5% and the maximum is 83.3%. This range was partitioned into small,
medium, and large groups as shown in Table 4. With increasing OS, the percentage

Table 4: Influence of Order of Strength (OS)

OS Class # Instance # Opt Ave. Dev. Ave.Time {s)

0S8 < 45% 52 73.07 % 0.0102 130.37
45% < OS5 < 65% 50 94 % 0.0044 48.5
08 > 65% 12 100 % 0 0.005

of optimal solutions improved, and average calculation time decreased from 130.37
seconds to 0.005 second. This mainly due to the fact that order of strength limits

-14-

the number the number of feasible task combinations which results in the branch and
bound tree being reduced in size.

5.1.3 The time Variability Ratio (T'V)

tmam

The time variability ratio is defined as T'V = . It measures the time structure
in the precedence network. In the Talbot and Hoffmann combined data set, the
minimum TV is 5.7 and the maximum is 568.9. This range was partitioned into small,

medium, and large groups as shown in Table 5. With increasing TV, the percentage

Table 5: Influence of Time Variability (I'V)

TV Class # Instance # Opt Ave. Dev. Ave.Time (s)

TV <15 24 100 % 0 0
156 <TV <80 47 100 % 0 9.255
TV > 80 12 67.44 % 0.0349 203.94

of optimal solution decreased, and average calculation time increased from 0 second to
204 seconds. A primary explanation of this is that large task times require large task
time. If relatively smaller task times exist then the number of feasible combinations of
tasks to fill a station gets large which increases the number of branching computations
at each branch and bound node.

6 Summary

The U-shaped assembly line balancing problem has been addressed in this paper. A
new heuristic algorithm IUSFTF was introduced that improved upon solution quality of
earlier heuristics without excess computation time requirements. A best first branch
and bound algorithm call OBUL was presented which used IUSFF to obtain initial
upper bounds. Results showed that with improved bounds, the performance of a
best first branch and bound can compete with that of the best known depth first
algorithm.

-15-

References

[1] D. Ajenblit and R. Wainwright. Applying genetic algorithms to the u-shaped
assembly line balancing problem. In Proceedings of the IEEE Conference on
Fuvolutionary Computation, pages 96-101, 1998.

(2] 1. Baybars. A survey of exact algorithms for the simple assembly line balancing
problem. Management Science, 32(8):909-932, 1986.

[3] Bourjollly J. Berger, I. and G. Laorte. Branch-and-bound algorithms for the
multi-product assembly line balancing problem. European Journal of Operations
Research, 58:215-222, 1992.

[4] E. Bowman. Assembly-line balancing by linear programming. Operations Re-
search, pages 385-389, 1960.

5] B.A.; Redfern M.S. Carnahan, B.J.; Norman. Incorporating physical demand
criteria into assembly line balancing. IIE Transactions, 33:875-887, 2001.

6] P. Chiang, W. Kouvelis and C. Chen. An efficient heuristic for the u-shaped
assembly line balancing problem in the just-in-time production environment. In

Proceesings of National Annual Meeting to the Decision Sciences, page 11286,
1997.

7] K.S. Fleszar, K.; Hindi. An enumerative heuristic and reduction methods for

the assembly line balancing problem. Furopean Journal of Operational Research,
145:606-620, 2003.

18] F Guerriero and J. Miltenburg. The stochastic u-line balancing problem. J.
Nawval Research Logistics, 50(1):31-57, 2003.

9] S. Hackman, M. Magazine, and T. Wee. Fast, effective algorithms for simple
assembly line balancing problems. Operations Research, 37(6):916-924, 1989.

[10] R. Held, M. Karp and R. Shareshian. Assembly-line balancing-dynamic pro-
gramming with precedence constraints. Operations Research, pages 442-459,
1963.

[11] T. Hoffmann. Eureka: a hybrid system for assembly line balancing. Management
Science, 38(1):39-47, 1992.

-16-

112] H. Hwang, J. U. Sun, and T. Yoon. U-line line balancing with stimulated anneal-
ing. In Proceedings of the First Asio-Pacific decision sciences institute confer-
ence, pages 101-108, Hong Kong, June 1996.

[13] R. Johnson. Assembly line balancing: a branch and bound algorithm and compu-
tational comparison. International Journal of Production Research, 19(3):277-
287, 1981.

[14] E. Kao and M. Queyranne. On dynamic programming methods for assembly line
balancing. Operations Research, 30:375-390, 1982.

[15] R. M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, (Proc. Sympos. IBM Thomas J. Watson Res. Center,
Yorktown Heights, N.Y.).New York: Plenum,, pages 85-103, 1972.

[16] Laporte G. Labbé, M. and H. Mercure. Capacitated vehicle routing on trees.
Operations Research, 39:616-622, 1991.

[17] S. Martello and P. Toth. Lower bounds and reduction procedures for the bin
packing problem. Discrete Applied Mathematics, 28:59-70, 1990.

[18] C.A. Matanachai, S.; Yano. Balancing mixed-model assembly lines to reduce
work overload. IIE Transactions, 33:29-42, 2001,

[19] G. J. Miltenburg and J. Wijngaard. The u-line balancing problem. Management
Science, 40(10):1378-1388, 1994.

[20] T. Morton and D. Pentico. Heuristics scheduling systems. John Wiley and Sons,
Inc, 1993.

[21] K. Nakade and K. Ohno. Analysis and optimization of a u-shaped production
line. Journal of Production Research Society of Japan, 40(1):90-104, 1996.

[22] K. Nakade and K. Ohno. Stochastic analysis of a u-shaped production line with
multiple workers. Computers and Industrial Engineering, 33(3-4):809-812, 1997.

[23] K. Nakade and K. Ohno. An optimal worker allocation problem for a u-shaped
production line. International Journal of Production Economics, 60-61(3-4):353—
358, 1999.

-17-

{24] F. Nourie and E. Venta. Finding optimal line balances with optpack. Operation
Research Letters, 10:165-171, 1991,

25] C.; Duran A.; Perez M. Pastor, R.; Andres. Tabu search algorithms for an in-
dustrial multi-product and multi-objective assembly line balancing problem, with
reduction of the task dispersion. Journal of the Operational Research Society,
53:1317, 2002.

[26] J. Patterson and J. Albracht. Assembly-line balancing: zero-one programming
with fibonacci search. Operation Research, pages 166-172, 1973.

[27] D. Pinto, P. Dannexbring and M. Khumawala. A branch and bound and al-
gorithm for assembly line balancing with paralleling. International Journal of
Production Research, 13(2):183~196, 1975.

[28] D. Pinto, P. Dannexbring and M. Khumawala. Branch and bound and heuristic
procedures for assembly line balancing with paralleling of stations. International
Journal of Production Research, 19:565-576, 1981.

[29] J. H. Salveson. The assembly line balancing problem. Journal of Industrial
Engineering, 6(3):18-25, 1955.

[30] E. Sarin, S. Erel and E. Dar-El. A methodology for solving single model stochastic
assembly line balancing problem. Omega, the internatioan! Journal of Manage-
ment Science, 27:525-535, 1999.

[31] A. Scholl and R. Klein. Salome, a bidirectional branch-and-bound procedure for
assembly line balancing. INFORMS Journal on Computing, 9(4):319-334, 1997.

[32] A. Scholl and R. Klein. Ulino: Optimally balancing u-shaped jit assembly lines.
International Journal of Production Research, 37:721-736, 1999.

[33] D. Sparling. Topics in U-line Balancing. PhD thesis, McMaster University,
Canada, 1997.

134] F. Talbot. An integer programming algorithm with network cuts for solving the
assembly line balancing problem. Management Science, 30:85-99, 1984.

[35] J. Talbot, F. Patterson and W. Gehrlein. A comparative evaluation of heuristic
line balancing techniques. Management Science, 32(4):430-454, 1986.

18-

[36] T. Urban. Note: Optimal balaneing of u-shaped assembly lines. Management
Science, 44:738-741, 1998.

[37] F. Van Assche and W. Herroelen. An optimal procedure for the single-model
deterministic assembly line balancing problem. European Jouwrnal of Operations
Research, 3:142-149, 1978.

[38] T. Wee and M. Magazine. Assembly line balancing as generalized bin packing.
Operations Research Letters, 1:56-58, 1982.

-19-

