HUP: Heuristic for U-Shaped Parallel Lines

Louis Plebani
Lehigh University

Sihua Chen
Binney & Smith, Inc.

Report No. 03T-008



HUP: Heuristic for U-Shaped Parallel Lines

Louis Plebani! and Sihua Chen?

Department of Industrial and Systems Engineering, Harold 5. Mohler Laboratory,
200 West Packer Avenue, Bethlehem, PA 18015-1582

2 Manufacturing Development Manager, Binney & Smith, Inc., 1100 Church
Lane, P.O. Box 431, Easton, Pennsylvania. 18044-0431

Abstract

Largely due to pressures of just-in-time (JIT) manufacturing, many
assembly lines are designed as U-shaped assembly lines. While the
straight assembly line has been studied for nearly 5 decades, the first
published work on U-shaped lines was not until 1994. This paper intro-
duces a model of a new U-shaped assembly line balancing problem, the
U-shaped assembly line balancing problem where parallel stations are
permitted. The model incorporates the practical constraint that par-
allel stations are allowed only to accommodate a task with processing
time greater than the cycle time. A heuristic to solve this problem and
computational results are presented.

1 Introduction

In the simple assembly line balancing problem Type I, we are given a finite
set of tasks having fixed processing time T = {t1,1s,...,tx}, and a set of
precedence relations P = {(z,y)} specifying task x must be completed before
task y. The goal is to assign the tasks to an ordered sequence of workstations
such that the precedence relations are satisfied, the sum of the processing
times at each station does not exceed a station uniform cycle time, and the
number of stations in minimized. The straight line assembly line balancing
problem was introduced by Salveson in 1955 [9]. In order to obtain increases in
line efficiency, flexibility in assigning tasks into stations, and higher production
rates, Freeman and Jucker suggested straight line balancing with parallel work-
stations in 1967 [3]. Buxey studied the practical aspects of parallel stations



including costs of duplicated equipment and difficulties of layout and trans-
portation and concluded that the numbers of parallel stations should be tightly
constrained [2]. His arguments centered around the fact that parallel work-
stations should not detract from the essential benefits of just-in-time flow line
production. They should only be used to fit longer elements into demanded
cycle time. Largely due to pressures of JIT, Miltenburg and Wijngaard in-
troduced U-shaped line balancing in 1994 [8]. U-lines have the potential for
better balancing, improved visibility and communications, fewer work stations,
more flexibility for adjustment, minimization of operation travel, and easier
material handling when compared to straight lines. This paper introduces a
new U-shaped assembly line balancing problem, the U-shaped assembly line
balancing problem where parallel stations are permitted.

The ALBP is known to be NP-Hard [7]. Solution approaches have included
various heuristic approaches and exact methods using Integer Programming,
Dynamic Programming and Branch and Bound. [1,4,10]. While exact proce-
dures, particularly branch and bound, have had some success with small to
modest size problems, heuristic procedures are needed for feasible solutions
and bounds for exact methods and for use in solving variations of the ALBP
using search procedures where the Type I problem is repetitively solved. We
present a heuristic (HUP) for solving the U-shaped assembly line balancing
problem where parallel stations are permitted.

2 U-shaped Assembly Line with Parallel Sta-

tions

A U-shaped assembly line with parallel stations can be viewed as a U-shaped
line where stations are replaced with stages where a stage is two or more
identical workstations operating in parallel. The capacity of the k™ stage is
giC, where ¢, is the number of identical workstations and C' is the cycle time.
The goal is to minimize the total idle time in the system

M N
S aC-) t (1)
k=1 t=1



A 4

84

B T e e = T
-

o
F 3
o
i)

A s
g

station 2a

Figure 1: U-shaped line with a parallel station showing task sets and work
flow

which is equivalent to minimizing » | gz Define the following sets:

Ry, k =1,2,..M are the set of tasks that are processed at the k™ stage
during the first half of the U-line,

Riren, k = 1,2,..M as the set of tasks that are processed at the k™
stage during the second half of the U-line.

These sets are identified in the schematic of a 3 stage U-shaped line, with
9 parallel stations in the second stage, shown in Figure 1. A model of the
U-shaped assembly line with parallel stations line balancing problem is:

M
Minimize ) g (2)

k=1



Subject to:

Sk = Rp U Rprk (3)
M
kglsk =T (4)
S@ﬁszﬂ, for all Z%j (5)
St <l k=1,2.,M (6)
€Sy
forall (z,y) e P:ifz e R;andy € R;, theni < j (7)
_ |k - |
gy = 1701 , where £} = max t; (8)

Equations (3) define all tasks in a stage. Equation (4) ensures that all the
tasks are assigned. Equations (5) ensure that each task is assigned to only one
stage. Inequalities (6) limit the total workload in a stage to the capacity of
that stage. Conditions (7) enforce the precedence restrictions. Equations (8)
enforce Buxey's practical consideration that, in a high tech assembly envi-
ronment, parallel stations are only used when necessary to accommodate the

largest task time [2].

3 HUP Algorithm

The HUP (Heuristic for U-shaped Parallel lines) algorithm belongs to the fam-
ily of single pass, score, rank, and assign heuristics. It proceeds by repeatédly
creating a new stage as required and filling the stage with the highest prior-
ity tasks until no tasks remain to be assigned. HUP uses a suite of scoring
functions adapted from straight line balancing to calculate tasks priorities [5].

WE : work element time, the processing time of a task;

PW : positional weight, the sum of the processing times for a task and
all the tasks that must follow (precede) it;

NF : number of followers, the number of tasks that follow (precede) a
task;



NIF : number of immediate followers, the number of tasks that immedi-

ately follow {precede) a task.

Investigation determined that it was not possible to predict which the scoring

function would provide the best solution for any particular network. Thus

HUP’s default mode is to apply the complete algorithm using each of scoring

functions separately and choose the best of the resulting four solutions.

HUP organizes the information contained in the precedence network as a

list of task objects with the following attributes:

(43

Pl =
Sl, =
P2, =

S92, =

processing time of task k;
{1] (¢,k) € {(4,7)}}, set of immediate predecessors of task k;
{7 1(k,5) € {(3,7)}} set of immediate successors of task k;

P1,U | P1,, set of all predecessors of task k;
p=n

S1e U |J S1s, set of all successors of task k.

§-n

We define the following variables:

the number of parallel stations in stage n,

the slack time for the current stage,

the set of tasks assigned to stage n,

the set of task that have been assigned to any stage. Initialized
to 0.

the set of tasks available for assignment to the current stage.
Initialized to §.

The following steps are repeated until all tasks are assigned.

Step 1: Create a new station n:

gn =B, slack =C, (T,) = 0

Step 2: Look for tasks that have no unassigned predecessors or no unassigned

successors by performing the following for each task k € T NT,. Upon

5



completion go to Step 5

if Pl NT, =, perform step 3 and return
if S1; N T, = @, perform step 4 and return

Step 3: Add the assigned task to A and calculate the ranking score for the
predecessor free task &k using the scoring function in effect.

A=Au{k}
PW:ti+ > & WE : 4,
1eS52,MTY
NF: | 82, nT" | NIF : [$1, 0T

Step 4: Add the assigned task to A and calculate the ranking score for the
successor free task & using the scoring function in effect.

A= AU{k}
PW:ite+ > WE : &,
i€ P2,
NE: | P2, 0T | NIF : |P1,NTyl

Step 5: Determine the task with the highest priority task which is feasible
for the current stage. Priority is determined by the following boolean
condition which defines task x less than task y:

T <Y =(rsy <r8y) V (rsy=18y) Aty <ty)

Feasibility is determined by comparing the task time with the current
slack time in the station. If the task time is not greater than the slack
time then the task is added to the current stage. Special processing is
done if the task time is greater than the cycle time. In such a case, the

current stage is examined to determine if one or more parallel stations



should be added to the stage.

if slack =0 : go to step 10

loop :
if A=0: gotol0
Select. the highest priority task i
ift,>C A g=1: gotostep6
ift; <C:gotostep 7

Step 6: Determine if the current stage n (which consists of a single station)
should be expanded to accommodate task . The decision of whether to
expand the stage incorporates Buxey’s global constraint on minimizing
duplicated equipment. Therefore, the limit to the number of parallel
stations is [¢;/C}. This means that only one task ¢ where ¢; > C may
he contained in any stage. If the station cannot be expanded because of
the time consumed by the tasks already assigned to the stage, the search

- [¢]
Trest = C

tiest = 8lack + (Gress — 1)C
if tz g (ﬁtesf then

for a feasible task continues.

In = Gtest
slack = tieer —

else go to 5

Step 7: Task ¢ is assigned to the current stage and the set of tasks assigned to
any station is updated:

T, =T, U {i},
T, =T, U{i}

slack = slack — t;,



Step 8: The ranking scores for the tasks which remained in A are immediately
adjusted for the effects of adding task 7 if the ranking criteria is PW, NF,
or NIF. No adjustment is necessary for the WE ranking criteria. For all
ke A

PW: if (i € P2, V i€ 52), then rs; = rs, — 1;
NF: if{ie P2 V ic S2), then rsp =78, — 1
NIF: if (i € Pl V 1€ 81;), then rsp =rsp — 1

Step 9: The predecessors and successors of task 7 just assigned are checked for
availability.

for all k € S1; : if P1, T, = §, perform step 3 and return
for all k € P1; : if S1, N7, =0, perform step 4 and return

Go to step b

Step 10: The current stage is completely loaded based upon the tasks that are
currently available. Record the statistics of the current stage. If there
are unassigned tasks, go to Step 1.

4 Computational Results

HUP was coded using C++ and run on a Pentium III 733Mhz computer. The
benchmark data sets of Talbot, Hoffmann, and Scholl were used for evalua-
tion. [6,11,12]. These data sets consist of 25 different networks. They have
been used for testing and comparing solution procedures in almost all relevant
studies since the early nineties.

There are no exact solvers for the U-shaped assembly line balancing prob-
lem where parallel stations are permitted. In order to obtain a basis for eval-
uation, the HUP algorithm was first compared with published solutions to
non-paraliel UALBP’s based on the benchmark networks. The well known
bin-packing lower bound for ALBP’s, LB = [> #/C| was also compared.
There were 269 problems in this test set. The 269 problems took a total of 3
seconds or 0.011 seconds per problem to execute. The number of stations re-

_8-



sults are summarized in Table 1. In the table, deviation and relative deviation
of solution s from z is defined as s — z and (s — z)/z, respectively. HUP was
then used to solve a set of problems each of which required at least one stage
of two or more parallel stations. These problems were formed by varying the
cycle time for each of the benchmark networks from the minimum task time
to one less than the maximum task time of the respective network. Solutions
were compared to the lower bound LB. There were a total of 14829 problems
in this test set. The problems took 248 seconds or an average time of 0.0167
seconds per problem to run. The longest problem took 0.26 seconds. This
corresponded to the somewhat unrealistic case where the largest network of
297 tasks was run with a very small cycle time resulting in nearly 14000 par-
allel stations. When the smallest cycle time was limited to 80% of the largest
task time, the average time per problem was 0.010 seconds with the longest
problem time of 0.07 seconds. The number of stations results for the parallel
problems are summarized in Table 2.

Table 1: Summary for 269 non-parallel problems

PW NF NIF WE Bestof4
Number equal to LB~ 42 44 45 46 59
Avg. Dev. from LB 2.02 198 190 1.88 1.80
Avg. Rel. Dev. from LB 0.089 0.087 0.087 0.087  0.076

Number equal to Optimal 108 111 111 117 133
Avg. Dev. from Optimal 0.75 071 064 0.62 0.53
Avg. Rel. Dev. from Optimal 0.044 0.043 0.042 0.042  0.032

Table 2: Summary for 14829 parallel problems
PW NF NIF WE Bestof4
Number equal to LB 1494 1678 2378 2173 3038
Avg, Dev. from LB 7.10 693 676 6.67 6.36
Avg. Rel. Dev, from LB 0.069 0.065 0.062 0.062 0.055

5 Conclusions

It is clear that the HUP heuristic found the optimal solution to at least 20.4%
of the 14829 parallel test problem cases, i.e., those cases for which the Hup

-9.



solution was equal fo the lower bound LB. This correlates favorably with the
non-paralle]l case where the heuristic had nearly 22% of its solutions equal to
LB. For these non-parallel problems the optimal solution was found nearly
50% of the time. The average deviation from LB of the HUP solutions is larger
for the parallel solutions because of the large values of stations resulting from
small values of cycle time. The average relative deviations are an attempt to
normalize the effect of large solution values. The average relative deviations
from LB are actually much better than in the non-parallel case. If we assume
this that the smaller average relative deviations of the parallel case implies
that the relationship between LB’s and optimal solutions for the parallel case
is at least as good as the non-parallel case we could hypothesize that Hup finds
the optimal solution on average 50" % of the time.

References

[1] I. Baybars. A survey of exact algorithms for the simple assembly line
balancing problem. Management Science, 32(8):909-932, 1986.

2] G. M. Buxey. Assembly line balancing with multiple stations. Manage-
ment Science, 20:1010~1021, 1974.

3] J. R. Freeman and J. V. Jucker. The line balancing problem. Journal of
Industrial Engineering, 18:361-364, 1967.

[4] S. Ghosh and R. Gagnon. A comprehensive literature review and analysis
of the design, balancing and scheduling of assembly systems. International
Journal of Production Research, 27(4):637-670, 1989.

[5] S. Hackman, M. Magazine, and T. Wee. Fast, effective algorithms for
simple assembly line balancing problems. Operations Research, 37(6):916—-
924, 1989,

6] T. Hoffmann, Bureka: a hybrid system for assembly line balancing. Man-
agement Science, 38(1):39-47, 1992,

[7] R. M. Karp. Reducibility among combinatorial problems. In Complez-
ity of Computer Computations, (Proc. Sympos. IBM Thomas J. Watson

-10-



Res. Center, Yorktown Heights, N.Y.).New York: Plenum,, pages 85-103,
1972.

(8] G.J. Miltenburg and J. Wijngaard. The u-line balancing problem. Man-
agement Science, 40(10):1378-1388, 1994,

[9] J. H. Salveson. The assembly line balancing problem. Journal of Industrial
Engineering, 6(3):18-25, 1955,

[10] A. Scholl and R. Klein. Balancing assembly lines effectively-a computa-
tional comparison. European Journal of Operational Research, 114:50-58,
1999,

[11] A. Scholl and R. Klein. Ulino: Optimally balancing u-shaped jit assembly
lines. International Journal of Production Research, 37:721-736, 1999.

[12] J. Talbot, F. Patterson and W. Gehrlein. A comparative evaluation of
heuristic line balancing techniques. Management Science, 32(4):430-454,
1986.

-11-



