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Abstract

We study the problem of delivery-date coordination between the marketing and engineering
divisions within an engineer-to-order firm. Marketing concerns the customer who has a preferred
delivery-date for his order but is willing to compromise in return for price discounts. Engineering
concerns the efficient utilization of resources and is willing to offer a higher service level if the
additional cost is compensated. Operating in a project management environment, we design a
Nash game between marketing and engineering where the two divisions share the responsibility
for timely delivery. Marketing quotes a due date and engineering sets the capacity level based on
their corresponding utilities; the utility functions are defined by due-date extension cost,
flowtime distribution, tardiness penalty, and capacity expansion cost. We characterize the basic
properties of the players' utilities and show that the game between two parties is supermodular,
implying the existence of a Nash equilibrium. We show that equilibrium behaviors of both
parties never coincide with the system optimum. We develop an incentive scheme for marketing
and engineering in such a way that the system optimum can be achieved at equilibrium. We
conduct sensitivity analysis on the transfer payments such that they could be tailored for
alternative utilities.

Keywords: Game Theory; Supermodular Games; Due-Date Quotation; Supply Chain
Coordination

1. Introduction

The literature on due-date-based planning and scheduling typically assumes that order
due-dates are exogenous and given, In most engineer-to-order (ETO) environments, such as
construction, customized industrial machinery, and aerospace, the delivery dates are negotiable,
and due-date quotation is a marketing and sales function. However, when quoting due-dates,
marketing must consider the customer's preferences together with internal constraints, such as
production capacity, and other critical resource requirements at the firm. Most internal
constraints are controlled by the engineering (or project management) division of the firm, which
sets the pace for each project that would ultimately influence the order completion time. To
properly integrate the due-date quotation and project management decisions, the marketing and
engineering divisions must coordinate. However, division managers are typically rewarded based



on the performance of their local units, which have distinctly different cost structures. Since the
best interests of individual divisions rarely coincide with the firm's optimal (profit maximizing)
policy, the firm must provide proper incentives for marketing and engineering to coordinate.
Most ETO firms produce capital-intensive products with long lead time at an extremely low
ordering frequency. According to a study conducted by Konijnendijk (1994), more than 60% of
the surveyed ETO companies service less than 10 orders a year. In addition to pricing, significant
emphasis is put on due-date quotation and subcontracting/outsourcing decisions. Another survey
by Spencer and Cox (1994) supports this observation by concluding that most make-to-order
firms compete on customization, flexibility, and delivery performance, as opposed to commodity
producers and make-to-stock firms that have a primarily focus on pricing. In a typical ETO
setting, detailed production specifications that influence the job completion time are not available
at the initial price quotation phase. However, a finalized due-date quotation must be confirmed
with the customer before the order becomes binding.

Our work is motivated by the operation of the industrial pump division of a large U.S.
industrial machinery manufacturer. When placing the order, say, for a set of customized pumps
to be used in a nuclear power plant, the customer may provide the design specifications while
requesting pricing and delivery-date information. A typical order of this magnitude involves from
several months to over a year to complete, with the order valued at a few million dollars. The
marketing and sales division of the manufacturer communicates the order information to the
engineering division, which in turn lays out the steps required to complete the project and
determines the resource requirements. Engineering may determine that the existing capacity is
not sufficient to handle the project, in which case they need to estimate costs for capacity
expansion or outsourcing. Using this information, marketing negotiates with the customer on
final pricing and the delivery date. This paper focuses on the infernal coordination between
marketing and engineering for due-date quotation. In the context of the ETO operation described
above, due-date quotation involves two main considerations: the customer preferences and the
capacity requirements. A customer may have a preferred delivery date for an order based on a
certain utility, which is usually a function of time (Tang and Tang, 2002), ie., a prolonged
delivery date may degrade the customer's utility. On the other hand, capacity constraints facing
the engineering division might force the marketing division to deviate from customer preferences
on delivery dates; consequently, customers must be compensated for such deviations. We model
this compensation via price discounts that are proportional to the deviation between the quoted
and preferred delivery dates. Keeping this deviation within reasonable range oftentimes
necessitates the cooperation of the engineering division. The engineering division can give more
room to marketing by increasing its capacity to that required to produce the order. However, in



most decentralized environments, engineering has little incentive to do so. We design a Nash
game to investigate the incentives and competition between the marketing and engineering
divisions where marketing determines the delivery date to be quoted for the customer, while
engineering decides on capacity. Since the timely delivery of the order is the responsibility of
both divisions, when the completion time exceeds the promised delivery date, they share the
tardiness cost based on pre-specified terms. To generate proper incentives that align local
decisions with the system optimal, we derive a payment scheme between marketing and
engineering which allows for the system optimal being achieved at Nash equilibrium.

Two areas of literature are directly relevant to our study: marketing and engineering
coordination and due-date quotation. Next, we provide a brief overview of the literature.

Marketing/Production Coordination

The need for coordinating marketing and production decisions has been recognized by
researchers for more than two decades (c.f., Davis (1977), Shapiro (1977), Montgomery and
Hausman (1986) and Karmarkar and Lele (1989)). In general, this line of research defines the
need for marketing and production coordination in companies producing industrial goods and
discusses the nature of the problem as "necessary cooperation but potential conflict.” Areas of
coordination include capacity planning and allocation, forecasting, scheduling, delivery and
distribution, quality assurance, cost control, product design, and adjunct services. A broad survey
of these approaches are reported by Eliashberg and Steinberg (1993).

Porteus and Whang (1991) propose a different approach to the problem by developing an
incentive plan that would reward the division managers for acting in a system-optimal way. They
propose a plan where product managers receive all revenues from the sales, while they pay the
manufacturing manager the realized marginal value of capacity. While this "internal market"
induces optimal local behavior, the firm needs to provide subsidies. Kouvelis and Lariviere
(2000) present a generalization of the internal market mechanism based on linear transfer
payments between functions, i.e., a market maker buys from upstream managers and resells it to
downstream managers, where the buying/selling prices are set in such a way that they lead to
system optimal actions. Desai (1996) compares three different contracts in a marketing-
engineering channel faced with seasonal demand. He discusses Stackelberg games under fixed
retailer processing rate, fixed engineering price, and a general case without variable fixing. Desai
and Srinisavan (1995) consider a signaling game between a franchisee and franchisor where they
investigate the deviation of the franchiser's pricing decisions from the first-best solution when the
franchisec's efforts cannot be observed. Kim and Lee (1998) study optimal coordination
strategies for short-term production and marketing decisions. They propose a scheme where
manufacturing determines the production volume based on the marginal revenue given by



marketing using the previous demand rate. Celikbas ef al. (1999) investigates coordination
mechanisms based on different penalty schemes that enable the firm to match demand forecasts
with production, They consider both centralized and decentralized organizational structures and
show that by setting appropriate penalty levels the decentralized system could operate similar to
the centralized one. In many cases, the work in the contracting and coordination between retailers
and manufacturers can be applied to marketing/production coordination with little modification.
Analytical studies of such problems can be found in Cachon and Zipkin (1999) and Agrawal and
Tsay (2001). In this paper, we will focus our attention on marketing and engineering coordination
in the project management context of an engineer-fo-order firm. In this environment, the
engineering division has more control over project resources, while meeting due date at each
stage of the project is just as important to engineering as it is to marketing.

Due-Date Quotation Problems and Coordination

The importance of setting reliable job due dates in make-to-order production system is well
recognized in the literature for at least two decades. Most early work on due-date setting uses
generalized but ad hoc decision rules. An extensive survey of earlier research regarding
traditional due-date setting problems is provided by Cheng and Gupta (1989). A more recent
survey is given by Keskinocak and Tayur (2003). A vast majority of this literature does not
consider customer preferences when setting due dates, assuming that any due date quoted will be
accepted without any friction with the customer. However a recent survey of US manufacturing
practices in make-to-order companies by Wisner and Siferd (1995) reveals that in over 60% of
the cases customers' specifications and preferences are the main determinant in due-date
quotation. The due-date setting problems are typically studied using centralized and monolithic
models where the decision regarding due dates is considered in conjunction with decisions such
as capacity utilization, sequencing and scheduling, pricing etc. Some of the recent work includes
Wein (1991), Duenyas and Hopp (1995), Zijm and Buitenhek (1996), Spearman and Zhang
(1999) and Weng (1999). Chatterjee et. al. (2002) provide a broad survey of recent papers on the
subject.

Lawrence (1994) finds flowtime distribution estimations as the most important factor in
achieving competitive due-date quotation among manufacturing, marketing and the customers.
He acknowledges that flowtime distributions allow the construction of managerially useful
tradeoff curves contrasting order completion probabilities and expected tardiness costs with order
lead times. Van der Maijden et al. (1994) underlines the importance of setting goals as a result
of negotiation between departments especially under demand uncertainty. Elhafsi and Rolland
(1999) propose a due-date quotation model based on the congestion level of the manufacturing
shop floor and the operating cost. Easton and Moodie (1999) discuss a procedure where the



manufacturer bids the price and lead time for the customer, and the customer may accept, reject
or modify the terms. As a hedging strategy, the manufacturer may bid on other projects. In case
more customers accept the bid, some orders will be delayed. Thus, the hedging strategy must
balance potential profits with the tardiness penalty. Tang and Tang (2002) study price discounts
offered to customers in a build-to-order environment for extended lead times. They show that
with customers sensitive to delivery times, discounts can in fact result in higher revenues. While
the authors concentrate on the interaction between buyers and sellers, we investigate the price
discounts in the context of cross-functional operations in an engineer-to-order environment.

Weng (1999) studies the impact of quoted due dates and order acceptance rates on
expected profit. His results apply to cases where the flowtime follows a general phase-type
distribution function of the order acceptance rate. Palaka et al. (1998) and So and Song (1998)
consider customers who are sensitive to quoted due-dates and prices. They propose nonlinear
optimization models to find the "jointly" optimal due-date, capacity utilization, and price that
maximize the firm's profit.

Competitive due-date quotation has been investigated to a limited extent in the literature.
Lederer and Li (1997) investigates the competitive equilibrium among multiple buyers
(customers) and suppliers (firms) over selecting prices, production rates, and scheduling policies.
Lead time (thus due date) represents a function of production rate and scheduling policy, which
specifies how arriving jobs are sequenced. In this seiting, firms differ in operation costs, mean
processing times and processing time variability, while customers are differentiated based on
their delay costs. A competitive equilibrium is found when the Kuhn-Tucker conditions for the
firm's optimization problem and the market clearing condition are simultaneously satisfied.

Customers who carry delay costs are also considered by Ha (1998). In this setting a
G1/G1/1 service queue is assumed where the customers choose the service rates and linear delay
costs while the firm sets a price for each customer served. It is shown that when customers
choose the service rates based on their local cost structure, the resulting system service rate and
arrival rate are always smaller than the optimum due to externalities. The author proposes
incentive-compatible pricing consisting of a fixed admission fee and a variable fee that is
proportional to the actual service time. Grout (1996) proposes an incentive-inducing contract
between a buyer and a supplier aiming at the timely delivery of orders. In his setting, the buyer
dominates the supplier and moves first by selecting an incentive scheme that consists of an on-
time delivery bonus and a tardiness penalty. The optimal probability for on-time delivery can be
ensured if the supplier responds to the incentive scheme by selecting a flowtime allowance that
would minimize his own expected cost.

In the following section, we describe our model in detail and state related assumptions. In
Section 3, we present the global optimal model from the firm's point of view. We then present



the marketing and the engineering models and provide equilibrium analysis in Section 4. Section
5 describes the mechanism that achieves coordination between the two departments and follows
with an examination of our approach assuming quadratic costs and Weibull flowtime distribution
in Section 6. Last section concludes the paper.

2. Delivery-Date Quotation in an Internal Market: Model Description

We consider a cost minimization model for the delivery-date quotation process between the
decision makers of marketing and engineering divisions in an ETO company. Our focus is on the
cross-functional operations within the firm, and thus the customer incentives are assumed to be
exogenous. By design, decisions regarding due-date quotation and capacity utilization are closely
related. While the due dates quoted for customers hinge on the capacity utilized by engineering,
engineering is encouraged to make capacity adjustments based on a target delivery performance
shaped by customer preferences. Suppose that each customer has a preferred delivery date cd for
his orders, and he states ¢d truthfully. We assume that the customer is always willing to accept a
later delivery date, dd, which is quoted by marketing, in return for a price discount that is
proportional to the difference between dd and cd. The price discount offered to the customer is
referred to as due date extension cost and represented by D([dd — cd]*), where z™ denotes
max(0, ). Clearly, such cost occurs only when dd>cd.

There is a tardiness penalty in case the completion time of the job exceeds the quoted due
date dd. We denote this cost function by 7 ([c — dd]*), where ¢ is the realized completion time.
The job completion time follows a publicly known flowtime distribution, which is a continuous
probabilistic density function, f(c|6), where f represents the capacity provided for the order. The
capacity level 0 is a variate of f(c|@), and it is a decision variable for the engineering division.
Suppose, without the loss of generality, that at the time of order arrival the engineering division
has a nominal, fixed-cost capacity given by 6,. Let F'(c|@) be the cdf of the flowtime distribution
and we assume that F(c|6) increases in 6. Consequently, for any 8 > 6,, F(c|f) > F(c|8,). We
will refer to this as the stochastic ordering assumption, that is, the random numbers drawn from
F'(¥|6) stochastically dominate those from F'(x|fg)in both first and second orders (Shaked and
Shantikumar 1994). We represent the cost function of improving capacity from g, to & by
Z(]6 — 6,]%). We assume that capacity increment is achieved by adding temporary work force,
subcontracting, or outsourcing, and a certain capacity level can be directly associated with
(charged to) a particular order, which are common practices in ETO environments (Hicks et. al.
2000). This assumption allows us to analyze due-date quotation for each order independently.
Later in the paper, we will discuss how our analysis can be generalized to cases where multiple
jobs share the common capacity.



As summarized above, there are three main cost components in the studied system: D, Z,
and 7. To streamline the analysis, we adopt the following assumptions regarding the cost
functions:

Assumption 1. D([dd — cd]*) and Z([8 — 0,]*) are continuous and differentiable functions,
where D is twice differentiable over dd, and Z twice differentiable over 6.

Assumption 2. T {[c — dd]*) is continuous and differentiable over dd. In addition, T (y) is 0 for
all y < 0, and is convex increasing in y for all y > 0.

Note that we do not require convexity for functions D and Z. The second assumption
states that the tardiness cost function is convex in lateness, [¢ — dd]*. We have two additional

assumptions regarding the due-date extension and capacity costs, which are intuitive.
Assumption 3. D(dd — cd) = 0 for all dd < cd and increases in dd otherwise.
Assumption 4. Z(0 — 0,) = 0 for all 8 < 8, and increases in § otherwise.

The sequence of events for due-date quotation is as follows: (1) the customer places an
order with a preferred delivery-date cd ; (2) based on their local utilities, marketing announces
the quoted due-date, dd, and engineering announces the capacity level to be committed for this
order, 8; (3) if dd > cd, marketing must offer a discount to the customer proportional to the
difference between dd and cd; (4) production occurs, the order is filled at time ¢ and tardiness
costs are charged based on the difference between ¢ and dd. Since tardiness is not only a function
of the due date quoted by marketing, but also the capacity level allocated by engineering, both
divisions are responsible for the tardiness cost. Otherwise, marketing would have no incentives
to deviate from the customer preferred delivery date, and engineering would have no incentive to
improve the capacity level. We consider a setting where the tardiness cost is split between
marketing and engineering according to a parameter v, where 0 < v < 1, Le., given that ¢ > dd,
marketing pays 77 (¢ — dd) while engineering pays {1~ )7 (c — dd). We assume perfect
information where all parties can observe all system parameters. For the rest of the analysis let
F(z) denote the tail distribution for the completion time and E(z) be the expected value of z.
For any function U, U is 8U /8x and U = 82U /(Dzdy).

3. The System (Firm's) Optimization Model



At the time of due-date quotation, the firm's objective is to minimize the total transaction costs
due to the due-date concession, capacity adjustments, and the expected tardiness costs due to
flowtime uncertainty. The system cost function is given as follows;

G, = D([dd — cd]*) + Z(8 — 6,]) + E[T ([c ~ dd]")]
where

BT (fc - dd}")] = | jf(:c — dd)f(zl6)da M

Note that v does not influence the system's model since it defines an internal transfer
between marketing and engineering. The system optimal due date quotation and capacity
extension strategy must minimize G,. In order to analyze the system optimal behavior we first
offer the following observation:

LEMMA 1. If F(x|6) is an increasing function of 0, then the expected tardiness cost is
decreasing in 8.

Proof. See the appendix.

The foregoing result shows that by improving capacity, engineering decreases the
probability for the system to pay a higher tardiness penalties. Suppose dde® and #° are the due date
and capacity values that minimize the system cost, G,. Lemma 1 leads us to the following
conclusions.

THEOREM 1. dd° > cd and 8° > 0,.

Proof. From Assumption 3, the due date extension cost is O for dd > cd whereas from
Assumption 2, tardiness cost decreases in dd. Consequently, for dd < cd, the system optimal
cost strictly decreases in dd. Hence, dd° > cd must hold. Similarly for 6° < 6,, the system does
not incur any capacity cost (Assumption 4), and from Lemma 1 we know that tardiness cost
decreases in f. Consequently, for 6° < 6,, the system optimal cost strictly decreases in #. Hence,
8° > B, must be true. [

Since we do not assume convexity or unimodularity, G, may have multiple local optima.
Clearly, at any stationary point (dﬁ,@) the following conditions must hold:

D(dd)(ddo _ Cd) + f T(dd} (:L‘ _ dd”)f(mwo)dﬂ? == ) (2)
dd®
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20 (9° ~ 6,) + fd T @) (g — dd*)F? (2|6°)dz = 0 3)

Theorem 1 implies that at least one of the stationary points in the system cost function
must be a local minimum. Finding the optimal values may not be trivial for the general case.
However, in case of unimodularity, a simple recursive search can be employed to approximate
the optimal solution in a reasonable time even if the optimality conditions are not in closed form.
Without the loss of generality, we assume that there is no constraint-enforcing upper bounds on
due-date dd and capacity 8.

4, The Due-Date Quotation Game
We now define a Nash game corresponding to the due-date quotation procedure described in
Section 2. The game, €, consists of marketing and engineering decision makers as independent
players who act simultaneously and choose their strategies. The strategy space for marketing, oy,
has a lower bound, cd and has no upper bound. Hence, dd € oy, = [cd, My} where M is a large
arbitrary constant that will never constrain marketing in its decision. Likewise, the strategy space
for engineering, o, is bounded by 6,, ie., 8 € g, = [6,, M. Both players have complete
information about each others' cost functions, and thus all parameters in the model are common
knowledge. The flowtime distribution is public (e.g., computed from historic information) and
therefore identical for both players. In this model, the central management can be seen as an
information intermediary that can observe the actions of both sides and make sure the
information is fully shared across divisions.

Let H;(dd,6) denote the player j's expected cost when players adopt the joint strategy of
(dd, 8). Let j be m for marketing and e for engineering. The best response mapping for player j
is a set-valued function corresponding to each strategy of player k (k # 7), with a subset of o
and formally defined as follows for each player in this game;

rm(8) = {dd € om | Hm(dd, 0) = mﬁgymﬂm(m, 9)}

re(dd) = {9 € o, | He(dd,0) = mﬂngaeﬂe(dd,m)}

In this setting, a pure strategy Nash equilibrium is a pair of due date and capacity level,
(dd4,67), such that each player chooses a best response to the other player's equilibrium
decision, i.e., dd? € r,(07) and 69 € r.(dd?).



4.1. Decision Models for the Players

As described earlier, marketing is charged for the deviation between the quoted due date (dd) and
the customer preferred due date (cd), and engineering pays for capacity expansion. The tardiness
penalty is shared by the two divisions (specified by parameter ). We define the expected cost
function of marketing as follows:

Hn(dd, 6) = D([dd — cd]*) + ¥E[T (e — dd]*)]
Similarly, the expected cost function of the engineering division is as follows:
Ha(dd, 6) = Z(10 = 0,1*) + (1 — )BT (lc — dd]")]

Based on the local cost structures we may derive the following generalization regarding the
players' behaviors.

THEOREM 2. It is a dominant strategy for marketing to quote a due date dd, such that dd > cd,
and for engineering to increase its capacity € beyond 8.

The proof follows directly from Theorem 1. Both players pay a portion of the tardiness
penalty, and the expected tardiness penalty decreases in both dd and 8. Regardless of its
opponent's action, the player's total cost is decreasing for any decision variable value below its
lower bound in the strategy space. Therefore, one must look for the equilibria in the dominant
strategy space of each player. This is examined in the following section.

4.2, Analysis of Equilibria

We establish the existence of equilibrium based on a result regarding supermodular games. A
function g(z,z) is said to be supermodular in (z1,%0) if for all (Z1,%2) 2 (%1, Tq) the
inequality of g(%1,%2) + g(Z1, T2) = g(1,T2) + g{T1,T2) holds. Observe that supermodularity
does not require convexity, and it is a somewhat relaxed condition. In a supermodular game each
player's best response mapping increases in the other player's strategy. With such monotonicity
on best response functions, the equilibrium is straightforward to establish due to the conclusions
of Topkis (1979): if the strategy space of a game is a complete lattice, the joint payoff function is
upper semicontinuous, and each player's payoff function is supermodular, then there exists a pure
strategy Nash equilibrium. A comprehensive discussion on supermodular games can be found in
Sundaram (1996) and Topkis (1998). See Lippman and McCardle (1997) and Cachon (2001) for
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examples of game theoretical applications that utilize the theory of supermodularity. The
following theorem shows that the due date quotation game between marketing and engineering
satisfies the conditions for supermodular games.

THEOREM 3. 4 pure-strategy Nash equilibrium exists for the due-date quotation game Q.

Proof. Assumptions 1 and 2 assert that the joint payoff function is upper-semicontinuous. Let's
first focus on marketing cost function, H,. For supermodularity we need to show that
Hm(ddl,gl) - Hm(dd2,91) > Hm(ddl,gz) - Hm(ddg,gg) for all ddl Z ddg and 91 Z 92.
Notice that the inequality holds when Hi,(ddy,6) — Hn(ddy,8) is nondecreasing in § for all
ddy > dd,. This property implies increasing differences that are, in fact, a consequence of
supermodularity. We can check whether the difference increases in 9 or not by simply taking the
first derivative. First observe that

OHy(ddy,8) © (8T (z ~ dd) OF(z|f)
e D T = HO(dd) = - d
a0 m @) =7/ bz a6 )"

From our assumption related to stochastic ordering of flowtime distributions it is straightforward
to see that the foregoing function is always negative. As pointed out above, increasing
differences are guaranteed when H,E? )(ddl) - Hr(r? }(ddg) is non-negative. To see that this
condition is satisfied it is sufficient to show that SH.L) /8dd > 0 since ddy > ddy.

Soadd = T 'ded Fr PR K “)

We know from Lemma 1 that 7 (¢ ~ dd) = 8T /8y where y = = — dd. Then from chain rule

8T (xz — dd)
Jxddd

oy BT _ PTG _,

The right hand side relation above is from Assumption 2. Consequently, the right hand side of (4)
is non-negative. implying that Hy,(ddy, 61) ~ Hy(dd, 01) > Hn{ddy, 02) — Hu(ddy, 82) for all
dd; > ddy and 6, > 8. Therefore H,, is supermodular in dd and 6. With a similar approach, we
can show that Hédd’g) ={1—7)/v ngf d’g), and thus it is non-negative as well since v < 1
Hence, H, is also supermodular in dd and #. As a result, we can conclude that Qisa
supermodular game and thus equilibrium exists. E]
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Although the foregoing theorem establishes the existence of Nash equilibrium it does not
establish its uniqueness. Depending on the flowtime distribution and the cost structure, there
might be multiple Nash equilibria. We can make several observations about the characteristics of
the equilibria. Based on the implicit function theorem, the derivatives r;(f ) and ’T‘&dd) can be given

as follows;

— BT (e — dd] )]
@ _ _ (pridad) prldddd)y _ A ESINT (e
Tm' = (Hm /Hm ) T pldd,dd) + ’;/E'Wd@d} [T([c - dd]*“)]

Gy (praad) s eteey .~ (L= NEYIIT ([c — dd]*)]
= = (EHET) = 26 (- BT (e - il

Observe that if the due date extension cost is convex in dd then r;(f ) < ( for all dd and 6.
Similarly if the engineering cost function is convex in 6, then ré‘“} < 0. Under the assumption of

convexity we may conclude the following.

LEMMA 2. dssume that both marketing and engineering cost functions are convex, if, for all dd
and 8,

1')7“,(,?) > -1 andrgdd) > —lor;
i) ?"5,?) < — 1 and r{(fd) < -1

then the pure strategy Nash equilibrium is unigue.
Proof. See the appendix.
To derive general conclusions, we may utilize the properties of supermodularity.

LEMMA 3. Let (dd,67) and (dd§, 63} are any two equilibrium points in Q. If dd} > ddj then
g7 < 65

Proof. See the appendix.

Lemma 3 implies that there exists an equilibrium where engineering chooses a higher level
capacity (higher 0) and marketing quotes a lower due date than in any other equilibrium whereas
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in another equilibrium @ is lower and dd is higher than in any equilibrium. We call the former
equilibrium the highest (lowest) equilibrium and the latter one as the lowest (highest) equilibrium
for engineering (marketing). Next, using envelop theorem we can deduce the following

conclusion:

LEMMA 4. The highest equilibrium for a division incurs the worst financial outcome for that
division while providing the best financial outcome for the opposing division among all existing

equilibria.
Proof. See the appendix.

Note that the foregoing observations imply that if the highest and the lowest equilibrium
points coincide then the equilibrium must be unique. Whether these points are the same or not
can be determined by applying a process known as iterated deletion of dominated strategies. A
detailed description of the process is given in the appendix. In essence, to find the Jowest
(highest) equilibrium for marketing (engineering), we start with dd = cd and find the best
response of engineering,@. Given 8, we calculate the best response of marketing. We continue in
the same fashion until the best response functions converge to an equilibrium peint (The proof is
detailed in the appendix). We start with strategy ¢ = 6, for engineering and repeat the same
procedure to find the smallest (highest) equilibrium for engineering (marketing). If both
equilibrium points are identical then we can conclude that the equilibrium is unique. Although
we cannot guarantee the uniqueness of Nash equilibrium under the general case of
supermodularity, we could still conclude that none of the equilibria coincides with the system
optimum. This is shown in the following theorem.

THEOREM 4. System's optimal solution is never a Nash equilibrium in {).
Proof. Optimal due date and capacity decisions satisfy first order optimality conditions of the

integrated system given in (2) and (3). First derivative of marketing cost function with respect to
dd at system optimal capacity, 87, is

HED(dd, 6°) = D99(dd — ed) + /yf T (g — dd) f(z|0°)da (5)
dd

Observe from (2) and Assumption 2 that for v < 1, the foregoing function is positive at
dd = dd° implying that the system optimal due date cannot be a best response to 6° for the

13



marketing division. On the other hand, for optimal due date dd°, first derivative of engineering
cost function with respect to f is

HOAd,0) = ZO(6 - 6,) + (1 — ) [ "I (o - dd) O (@) de ©)
dd

Clearly, for v > 0, the expected cost function of the engineering division is increasing at #° for
dd = dd®. Therefore, 0° cannot be a best response to dd° for engineering. This completes the
proof. 1

A straightforward analysis of (5) will reveal that if the marketing cost function is
unimodular, any equilibrium due-date decision is strictly smaller than dd’. Likewise, under
unimodularity, (6) indicates that engineering will always keep its capacity below #°. To
encourage both divisions to improve their efforts, incentive compatible mechanisms are needed.

5. Coordinating Marketing and Engineering Decisions

In Theorem 4, we show that the marketing-engineering competition degrades system efficiency in
the due-date quotation game. A coordination mechanism that gives proper incentives for the
players to coordinate could lead to higher overall efficiency. Several different coordination
schemes have been proposed in the literature. For instance, Porteus and Wang (1991) and
Kouvelis and Lariviere (2000) propose cross-functional coordination schemes where the central
management subsidizes the divisions in such a way that the induced local cost functions lead to
an equilibrium that coincides with the system optimum. In this setting, the firm could make a
payment to marketing that is linear in the due date extension cost and the (marketing's) tardiness
penalty, while making a payment to engineering that is linear in the capacity expansion cost and
(engineering’s) tardiness penalty. Although this method is straightforward to implement, it deos
not guarantee budget balanceness. In other words, the central management may need extra funds
to subsidize the trade. Alternatively, Lee and Whang (1999) and Cachon and Zipkin (1999)
propose schemes using transfer payments between the divisions. In essence, the transfer payment
imposes a cost sharing scheme for the divisions based on their local utilities. Using the transfer
payment, it is possible to align the divisional cost margins with those of the system's. Since the
transfers are paid by one division to the other, the firm does not need to subsidize. In this paper,
we propose a coordination mechanism that employs the transfer payment scheme. The transfer
payments between divisions are devised based on due date extension, capacity expansion, and
realized completion times. Our mechanism employs only cost parameters that are independent of
the flowtime distribution; thus, the central management does not need to know the optimal
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solution in advance to coordinate the decisions. However, it might need to act as the information
intermediary to verify and broadcast the quoted due dates and capacity arrangements across

divisions.

5.1. Coordination via Transfer Payments

Suppose a transfer payment is established between the marketing and engineering divisions based
on constant parameters and realized values of all cost components. Specifically, let T denote the
transfer amount from marketing to engineering and define the parameters 8, J; and 35 such that

T = BD([dd — ed]") + 52T ([c — dd]) + B Z((0 — 6]") Q)

Clearly, the payment is proportional to due date extension cost, realized tardiness penalty, and
capacity expansion cost. It should be noted that no sign restrictions are set for the coefficients. A
negative value for a coefficient represents a payment in the reverse direction, that is, from
engineering to marketing. The goal is to determine the set of contracts, (i.e., the value ranges for
the coefficients in T°) such that the Nash equilibrium solution coincides with the optimal
solution.

In application, the introduced transfer payment can be designed as part of a revenue
sharing scheme. Suppose the firm distributes a certain proportion of the revenue across divisions.
Specifically, let Ly, — T and Le + 1" be the share of marketing and engineering divisions in
revenues respectively where Ly, and L, are fixed fractions of the revenue (before the discount
given to the customer as a result of due date extension). Since L, and L, are constants the
analysis will not be affected by what proportion of the total revenue they constitute. While the
final value of T' is realized after job completion, Ly, and L. are known a priori.

With the transfer payments, expected cost functions of the players will be
Ty = Hu + E[T] and T, = H, ~ E[T]. In devising T, first, we determine the allotments in
which dd° satisfies marketing's optimality conditions for 6°, and 6° satisfies engineering's
optimality conditions for dd°. Afterwards, we need to identify the subset of these allotments that
also satisfies the conditions for supermodularity. We write the first order conditions for the
players' cost functions after the transfer payments. Then we compute the coefficient values with
which the first order conditions are met at dd® and 6°. That is,

8T, (dd®, 6°) = (1+ 51)D(dd}(dd° —ed) + (,Y_!_)@z)/oof]‘(dd)(m — dd°) f(x|6°)dz
add dde
+ B ZU0 (07 ~ 05) = 0 ®
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OT,(dd°,6°)

d BPOE — cd) + (1= ) [ T(@ = dd*) O (elo)d

+ (1= Be) ZO(@° — 6,) = 0 2
Solving (2), (3), (7) and (8) for new cost coefficients yields the following equations:

#H  B=F~(1-7) (10)

(i1)  Bz= Lo+ (In

As a last step we need to ensure that the coordinating game, (7, with the new cost
functions is still supermodular and {dd®, #°) incur global optimal solutions for both player cost
functions. This is accomplished by imposing further restrictions on the value range of the
foregoing coefficients as specified in the next theorem.

THEOREM 5. Assuming equations (10) and (11) hold, there exists a pure strategy Nash
equilibrium corresponding to the system optimal solution with the new cost settings if and only if

—y < fp<l—1

Proof. In order to see that the coordinating game is supermodular it is sufficient to show that both
8T, /(8ddOP) and *T, /(5ddO8) axe positive. Observe that

PTm _ (Y4 8) T _ piaas) +
8ddos — (1—y— () 0ddO6 pET e adl)

is positive from Theorem 3 if —« < By < 1 — . Hence, the game is supermodular implying
that there exists a pure strategy Nash equilibrium. Observe from (8)-(11) that

(14 B2) (D(dd><dd° ~ed)+ [T dd")f(a:!f?")dw) 0

(-7 ) ( [ 7 a0y yin + 200 - %)) =0

indicating that the first order optimality conditions for marketing and engineering divisions, as
well as the second order optimality conditions, are satisfied at (dd°, 6°). Consequently, since the
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pair (dd?, §°) is optimal for G,, they are optimal for both divisions. At this point, neither parties
have the incentive to deviate, and thus it is an equilibrium. [

Although the system optimal solution is now guaranteed to be an equilibrium point under
the new setting, there might be other equilibria. Since supermodularity is preserved, the results of
Lemmas 2 and 3 can be applied to 02°. In the case of multiple equilibria, there are maximum and
minimum equilibrium points as in 2. These equilibrium points can be computed using the
iterative deletion of dominant strategies introduced in the previous section. However, under the
new scheme, the maximum and minimum equilibrium points may not correspond to the players'
financially best (or worst) outcomes; this is due to the envelop theorem, which does not lead us
to the same conclusions as in £, i.e., Lemma 4 is not valid for the coordination contract. In fact,
the best outcome for each division is given by the system optimal solution, which is not
necessarily the highest or lowest equilibrium for any particular division. In essence, with the
transfer payments, the two parties share all the costs incurred by their decisions, and they are
responsible for a constant portion of the total system costs as specified by Jy. Therefore, no other
equilibrium strategy can incur less costs for both parties, implying that (dd®,8°) Pareto
dominates the other equilibrium strategies. Although players do not necessarily select the Pareto
dominant equilibrium (Huyck e, al. 1991), it has been empirically observed that they tend to do
so if they are aware of such option before playing (Cachon and Camere 1996).

The main implication of the coordination contracts, as pointed out above, is that both
parties share the overall cost. Since (3, cannot be equal to -y or 1 — v (hence, 0, # Qor 1land
Bs# —lor 0) no cost entry is charged to only one division. Marketing shares the cost of
capacity expansion with engineering whereas the latter becomes responsible for a certain
proportion of the due date extension cost. Notice that the equations in (10) and (11) imply that
B3 — B; = 1. Subsequently it is straightforward to see that the proportions of the due date
extension cost, tardiness penalty and the capacity expansion cost that are allocated to a division
will be equal. Moreover, if F, = 1/2~ v, cost for each entry i¢ equally shared by the
departments. Moreover, if L; = Lythen the revenue is also shared evenly and as a result
departments make the same profit at equilibrium. As J;increases, marketing's share in cost
increases whereas the opposite occurs for increasing values of Fs.

As pointed out by Theorem 5, the coordination contracts stipulate direct payments
between divisions and result in supermodular games with an equilibrium corresponding to the
system optimal solution. An alternative interpretation and implementation of the payments can
lead to the same (optimal) solution but a slightly different game. Suppose that the central
management gives the engineering division the freedom of choosing its own due date. Thus,
engineering becomes responsible for the due date, say dd,, rather than what has been quoted by
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marketing, ddy, to the customer. However, engineering must pay a due date extension cost to
marketing that is equal to the amount B,D(ldd, — cd}*) where B, = — (. Additionally, even
though engineering pays for tardiness with respect to dde, its share increases to 1 -— v+ ﬁg
(ﬁ2 = — f3,) which is directly paid to marketing. On the other hand, marketing buys capacity
(expansion) from engineering by paying F32([6 — 8,]*). While the price is set by the central
management, the amount to be purchased (expanded) is determined by engineering. All decisions
are made simultaneously. At the end, the expected cost functions for marketing and engineering
is as follows:

By = D([ddy — cd]™) + 81 D([dde — cd]™) + OOT($ — ddp) f(2|6)dz
dd,,

—(L=y-B) /d jT(m — dd)f(@l6)d + G2 (6 — 0]

B, = — 8.D([dds — cdit) + (1 — v~ B2) fd :O'T(a: — ddo) f(x]8)dz + (1 — B3)Z([0 — 8,]")

First observe that engineering's due date decision is independent of ddy. Moreover, assuming
that equations (10-11) hold, it is straightforward to see that H,= (1 —v— B2)G, (from (1))
implying that dd, = dd® and § = 6” is a dominant strategy for engineering. Consequently, since
dd,,, becomes independent of dde, ddwn = dd® is the best response of marketing to capacity level
§°. Hence the equilibrium coincides with system optimality. Notice that if the optimal solution to
G, is unique then the equilibrium is also unique.

5.2, Additional Implementation Issues

Since our study focuses on ETO firms, capacity expansion is typically considered in the context
of a particular project in the forms of outsourcing and/or temporary increase in capacity
(overtime, subcontracts, temporary hiring etc.). In this context, each project and each customer is
handled separately and independently. In a more generalized case, the capacity adjustment for a
particular project may have an impact to capacity allocations for other existing projects, e.g., an
increased expected tardiness penalty for existing projects. Assume the case where once set, the
promised delivery date (or the associated due date expansion cost) cannot be renegotiated. Then,
engineering capacity expansion cost function, Z, has a component that represents the cost
incurred due to shift in capacity allocation. Observe that even in this situation, as long as Z is
continuous in @, the above cost sharing mechanism could achieve the system optimal solution in
equilibrium. However, since the incurred cost is now depending on the tardiness penalty for other
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projects, marketing might end up sharing this cost in the uncoordinated setting as well. Suppose
marketing's share is determined by parameter ¥ where 0 < % < 1 such that

Hy(dd,8) = D(dd — cd]*) +vE[T ([e — dd]")] +72(]0 — 6.]")
He(dd,8) = (1~ NZ([0 ~ ]") + (1 = ME[T ([e — dd]7)]

Then using the same approach presented earlier and from Theorem 5, one can easily see that the
transfer payment where ) = B — (1 — ) and f3 = B2 + — 7 will coordinate the system if
and only if —~7% < f3 < 1 —#. Clearly, the continuity for Z is a strong assumption since the
decisions regarding reallocation of capacity involve choosing how much capacity to shift from
what project to the project under consideration; this brings combinatorics into the picture.
Nonetheless, the cost sharing contract with transfer payments can still work. Consider the case
where the system cost function is continuous in dd but not in 6, but there exists a unique optimal
solution to the global problem. Note that with the transfer payments the cost functions of both
divisions are components of the overall system cost, and their margins are aligned with the firm's.
Thus, for the optimal capacity 6° the marketing's best response after the transfer will be dd® for
which the best response of the engineering will be to choose 67, since there is a unique optimal
solution for the system. Neither party would have incentives to deviate, implying an equilibrium
point coincides with system optimality. Clearly, the analysis of £ will become more complex.

Our proposed due-date coordination scheme can also be useful on a more aggregate level
for production systems with steady state characteristics. Consider a job shop that serves
customers with similar preferences and job requirements. The divisions need to decide on long-
term capacity and lead- time policies which are uniform across customers. The sojourn time
which consists of the waiting and service times in such environments can be approximated by an
M/M/1 queuing system (Karmarkar, 1993 and So, 2000) with arrival rate of A and service rate of
. See also Palaka et al. (1998) and So and Song (1998) for similar approximations. In this case,
the capacity expansion can be modeled simply by an increase in the service rate, L.e., j1 = 8. Note
that the cdf of the sojourn time in the system is

Flz]g) =1—e 0= (12)
and the first derivative with respect to 4 is

FO(z]g) = ze~0-Ne >0 (13)
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implying that F(z!f) increases in §. Clearly, this satisfies our assumption regarding the
stochastic ordering. Consequently, if the assumptions 1-4 hold for costs related to lead-time
extension, tardiness and service rate increase, our results for both {2 and €1 are still valid.

6. A Case Study: Quadratic Cost Functions with Weibull(c,A) Distribution
for Flowtimes

To illustrate our approach and gain further insights, we investigate a case study where each cost
component is modeled by a quadratic function. In this model, the due date extension cost,
tardiness penalty and capacity expansion cost are defined as g(dd — cd)?, t{c —dd)* and
v(f ~ 8,)? respectively where g, t and v are constant coefficients. The quadratic cost function for
due date extension and tardiness can be justified by the fact that in may situations the
dissatisfaction of a customer due to late deliveries mounts with an increasing slope. The
quadratic capacity cost function represents the increased margins in cost of capacity expansion.

We consider general Weibull distribution with a shape parameter & (o > 1) and a scale
patameter A to model the flowtime distribution F. In practice, capturing the flowtime
distribution may be difficult especially in complex production and/or service environments.
Forecasting method may be employed and it can be as straightforward as calculating the mean
and some higher moments based on the estimations provided by seasoned production managers,
or schedulers. In such cases, the flowtimes can be fit to well-known distributions such as Normal,
Lognormal, Erlang, Weibull, etc. We believe that employing Weibull function can provide
insights for broader cases. First, it includes the Exponential and the Rayleigh distributions as
special cases. Second, for the shape parameter in the neighborhood of 3.6, it is similar in shape to
a Normal distribution, and with the shape parameter greater than that with some skewness value
ranges it closely resembles Pearson Type VI and lognormal distributions (Johnson et. al. 1994).
We model the capacity decision, § as the inverse of the scale parameter so that

F(z|f) =1 - et=o0" (14)
Clearly, the cdf is increasing in 6 in this representation. Thus, higher values of ¢ imply higher
capacity and our stochastic ordering assumption holds. Since all cost components are continuous

functions of dd and @, Assumptions 1-4 hold as well. Consequently we can conclude that
equilibrium exists for both () and Q.
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LEMMA 5. dssuming quadratic cost functions, Weibull flowtimes and — v < 8, <1 — both
Q2 and  are supermodular games and thus there exists at least one equilibrium for each.
Moreover, the equilibrivum is unique in both games if g/t 2 w7y and v /tZ /iy

Proof. See the appendix. o

Note that I" is the Gamma function and for o > 1, f(—f‘m < 1 implying that the

equilibrium is unique for relatively higher values of g and v with respect to the marginal tardiness
penalty ¢. It should be underlined that this is a sufficient condition and does not imply multiple
equilibria for other cases. Lemma 5 indicates that all the results of previous sections are valid
under this setting, which will be further investigated using numerical results next.

6.1. Numerical Analysis

Since the capacity decision is modeled as a variate of the flowtime distribution, it is very difficult
if not impossible to generate closed form solutions in equilibrium analysis for even distributions
that are simple in structure. For this reason we cannot observe and measure the impact of certain
system parameters on equilibrium behaviors and system efficiency analytically. We conduct a
numerical analysis that employs quadratic cost functions and Weibull flowtime distribution to
generate insights that we could not obtain from the theoretical analysis. For the numerical
analysis, we consider two special cases of Weibull Belief Function which are namely,
Exponential (o = 1) and Rayleigh (o = 2) distributions. Following parameter value ranges are
employed for each case.

cd = {0.2, 1} tho = 1
~=1{0,0.1,0.3,0.5,0.7,0.9,1} ¢ ={0.25,0.5,1,2}
92{1:2:438} U={1,2,4,8}

where i, denotes the expected completion time of the project based on nominal capacity, f,
observed a priori. For Weibull distribution our capacity model implies the following relation

between 4 and # in general:
= 2(1/a)
=0

Based on the foregoing equality, for =1 and a =2, 6, is 1 and 1.57 respectively.
Notice that the coefficient of variation for a given shape parameter is constant and decreases in
in Weibull distributions. Therefore an increase in capacity parameter @ results in decrease in both
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mean and standard deviation. Specifically, in our examples note that the coefficient of variation
for Exponential distribution (c = 1) is almost four times larger than Raleigh Distribution
(o = 2). We consider two different values for ¢d. The smaller value represents the case with
tight customer preferences (1/5 of the mean) while the larger one is for relatively loose due date
cases (equal to mean).

Our numerical analysis is composed of 1762 problems that encompass all combinations
of the foregoing parameter values. For each problem we compute the equilibrium decisions using
the lterated Deletion of Dominated Strategies Algorithm. We measure the gap between
competitive and coordinated system via dividing the difference between the equilibrium outcome
of the pre-coordination game and the system optimal solution by the system optimal solution.
Table 1 gives the summary statistics for all solutions.

cd =102 cd=1
« 10th Percentile Median 90th Percent.  Max 10th Percent. Median 90th Percent. Max
a=1 0 1.96% 7.39% 25.03% 43.59% 0.80% 3.11% 11.47% 21.14%
0.1 1.79% 6.19% 18.58% 29.91% 0.76% 2.89% 9.39% 16.63%
0.3 1.76% 4.50% 10.04% 14.02% 1.13% 2.70% 6.15% 9.39%
0.5 2.87% 5.27% 7.79% 8.54% 2.25% 4.60% 6.88% 7.76%
0.7 4.27% 9.14% 14.11% 16.03% 3.67% 9.05% 15.28% 17.91%
0.9 7.17% 18.78% 37.23% 46.87% 6.32% 17.98% 40.04% 52.81%
1 19.27% 27.83% 71.52% 110.13% 8.20% 25.81% 72.31% 116.19%
a=2 0 3.81% 14.15% 49.85% 89.67% 1.02% 2.65% 7.64% 8.81%
0.1 2.80% 10.89% 34.63% 55.20% 0.61% 1.99% 7.32% 8.53%
0.3 1.75% 6.18% 16.26% 22.22% 0.44% 1.21% 3.97% 6.47%
0.5 1.04% 3.35% 7.24% 8.65% 0.20% 0.77% 2.44% 6.47%
0.7 0.74% 2,23% 4.98% 7.29% 0.05% 0.44% 237% 4.76%
0.9 0.49% 1.97% 7.36% 13.55% 0.02% 0.44% 1.25% 4.58%
1 0.59% 2.35% 9.82% 18.78% 0.02% 0.33% 1.78% 3.40%

Table 1 Percentage gap between equilibrium outcome and system optimal

Our results indicate that the gap between the competitive and optimal solution is higher
for lower values of « and cd suggesting that the degrading impact of competition on system
efficiency is more prevalent for tight due dates and high uncertainty. These are the circumstances
where a coordination mechanism is especially beneficial. It is clear from the results that the
difference in deviations drops significantly for relatively loose delivery constraints for o = 2,
whereas the impact is not obvious for the exponential distribution case. We attribute this
observation to the fact that exponential distribution has a constant failure rate while Raleigh is an
increasing failure rate (IFR) distribution!. Basically in the latter case, a more relaxed delivery
constraint will decrease the relative impact of the expected tardiness penalty on the overall costs

1For any IFR distribution, the ratio f{z}/F(z) (known as the failure rate) increases in .
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more significantly, Consequently, once the tardiness penalty becomes less relevant, there is no
reason to expect a significant deviation from optimal solution since the division costs primarily
differ from the integrated cost function over their margins on tardiness penalties in the pre-
coordination game.

The relation between «y and the size of the gap is context specific. For the exponential
case, the percentage deviation increases as the distance between -y and 1/2 grows. Moreover, it is
more substantial for higher values of v where the responsibility for the tardiness penalty is higher
for marketing. Interestingly, the reverse occurs for the Raleigh distribution where the gap
decreases in + in general. We suspect that this phenomenon is also related to the level of
uncertainty implied by the flowtime distribution. Marginal increase in capacity for the
exponential case means a higher rate of decrease in variation with respect to the o = 2 case. In
this situation the system efficiency is more sensitive to efforts of engineering rather than
marketing. Clearly for higher v, engineering will have less incentives to provide the much needed
efforts to improve capacity. The results suggest that the merits of coordination are more obvious
when marketing carries the much of the burden related to tardiness under flowtimes with high
variations that can be reduced by improvements in capacity. When the improvement in capacity
do not contribute significant reductions to variation then efforts of marketing become relatively
more weighty and thus the coordination is more needed if engineering has the higher
responsibility on the tardiness in the decentralized environment,

The numerical results show that the gap between competitive and coordinated systems
increases in t. Clearly, this implies that the system degradation will be more obvious as the
relative weight of the tardiness penalty increases. Specifically, we have empirically deduced that,
for a given -, the gap decreases in general (not monotonically) in the value of the following
function for all cases:

o= ((r-09)(2-152) - a0-1):

Figure 1 illustrates this pattern. Notice that for v > 0.5, ® decreases in g and increases in v. The
reverse is true for v < 0.5. The underlying intuition is that for high values of -y and small values
of g, the tardiness component becomes more influential on the decisions of marketing while its
margin is not aligned with the firm's. Eventually the gap grows. Similar analogy applies to
engineering under lower -y and v. In general the gap is more sensitive to these parameters for
values of -y closer to O and 1.
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Figure 1. Change in the gap between equilibrium pre-coordinated and post-coordinated system costs

Since the expected division costs in pre-coordination game are positive and their total is
always less than the optimal system cost, the firm can always devise a contract that is acceptable
for both parties given that § < v < 1. Notice that for s = 1 — -y all system costs are directed to
marketing whereas engineering pays for everything when f; = . Minimum (maximum) 5, that
marketing (engineering) voluntarily accepts depends on the cost parameters along with the
division's share on the tardiness penalty. The relation between the minimum acceptable 3y for
marketing and ¢ is illustrated in Figure 2 for both flowtime distributions and v = 0.1,0.9.
Observe from Theorem 5 that for v=01, —-01<f <09 and for v=09,
— 0.9 < 5 < 0.1. Since the marketing's share in system cost increases in Jp, a higher minimum
acceptable 3, implies that marketing will expect a lower share in system costs in the coordinating
contract, Clearly higher ~ will lead to higher ;. The graph in Figure 2 indicates that it is
relatively easier to motivate marketing for coordination in the exponential distribution case when
~y is large. Reverse is true for v < 0.5. We have observed the opposite for engineering and its
maximum acceptable S (Figure 3). This observation is consistent with data in Table 1 indicating
that for large (small) values of ~, in the Exponential (Raleigh) distribution case, the pre-
coordination game outcome deviates from the optimal significantly while much of the burden is
bore by marketing (engineering).
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Figure 2. Minimum acceptable 3y values for marketing
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Figure 3. Maximum acceptable 3, values for engineering

7. Conclusions

In this paper, we propose an incentive scheme to coordinate the due-date quotation decision in an
internal market with players representing the marketing and engineering divisions of an
engineering-to-order company. We consider divisional cost structure that satisfies a few mild
assumptions. We first analyze the centralized model where the due-date quotation and the
capacity utilization decisions are jointly given. We then investigate the decentralized case, in
which the engineering and marketing divisions are considered as independent decision makers;
marketing decides what due date to quote to the customer while engineering sets the capacity.
Both parties are responsible for the late-delivery penalties. We model due-date quotation as a
Nash game in which the players announce their own decisions simultaneously based on their
local cost structures. We observe that the Nash equilibrium decisions never optimize the firm's
problem due to externalities. We propose a set of coordination schemes regulating the allotment
of the revenue that are composed of transfer payments based on cost elements within the system.
By employing these transfer payments, it is possible to achieve the coordinated solution as the
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incentives to deviate from the system optimal are eliminated, and thus, the system optimal
solution coincides with the Nash equilibrium.

In our analysis, the existence of Nash equilibrium is established due to supermodularity.
Our analysis shows that supermodularity is guaranteed as long as the players' cost functions are
continuous, and the capacity adjustment/flowtimes satisfy the stochastic ordering property. In
order to establish the uniqueness of the equilibrium, a specific cost structure and flowtime
distribution must be considered. We illustrate our approach by a case study using quadratic costs
and Weibull-distributed flowtime. We deduce conditions for the existence of equilibrium and its
uniqueness under this setting. We investigate the relation among various system parameters, and
the level of degradation due to marketing-engineering competition. Our numerical analysis
reveals that while the competition degrades the system efficiency, however, the extent of the
efficiency loss is context specific.

The transfer payment that coordinates the due date and capacity decisions essentially
defines a cost-sharing scheme. As the transfer payment is defined quite generally and it only need
to satisfy rather mild conditions (Theorem 5), it allows for an infinite number of coordinating
schemes between the divisions. We discuss extensions of our approach to more general settings
to handle make-to-order systems with steady-state characteristics.

APPENDIX

The appendix include the proofs for all lemmas introduced in the paper. The description of the
algorithm for iterated deletion of dominated strategies mentioned in Section 4.2 is presented at
the end.

PROOF OF LEMMA 1. From integration by partition we can rewrite the expected tardiness cost
in (1) as follows:

E[T (¢ — dd]")] = /d :07“(3: — dd) f(z|f)dz = fd jgz%m@?(xw)dm

and thus,
OE[T([c—dd]*)]  [* (x) OF (z|6)
ET] =/ TN dd)—m—-nag dx

From Assumption 1, we know that the tardiness cost increases in the amount of lateness. Since
the lateness itself increases in the job completion time, from the chain rule in differentiation
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Oy 0T (y)

TNz — dd) = e By

where y = x — dd. From Assumption 2, 87 (y)/0y > 0 . Also observe that dy/dz =1
indicating that 7®)(z — dd) > 0. Note that, the stochastic dominance rule requires that
OF(z|6)/08 < 0. Hence, the right hand side in the foregoing equation is but an integral of all
negative numbers and therefore it must return a negative value for all dd > 0 implying that

expected tardiness cost decreases in 6. (]

PROOF OF LEMMA 2, First assume that Let (dd], 67) be the strategy pair at any equilibrium for
$rand (ddf, 6%) another strategy pair at another equilibrium for the same game. Without loss of
generality suppose dd? > ddi. Then, since the cost functions are convex, we know that P& <o
and i) < 0 and thus 67 < 62,

i) When 7™ > — 1, dd? — ddf > 9% — 6%. However, since 7Y > — 1, dd? — ddf < 6% — 7
must also be true. Clearly, this is a contradiction. Hence, the equilibrium must be unique.

i) When v < — 1, ddf — dd? < 6% — 6%, However, since 7! < — 1, dd? — dd? > 67 — 67

must also be true. Clearly, this is a confradiction. Hence, the equilibrium must be unique. [

PROOF OF LEMMA 3. Suppose ddf > ddi then 67 > 63. We know from Theorem 3 that Q2 is a
supermodular game. In this case, the supermodularity implies that the following inequality must
hold

Hy(dd?, 07 + Hum(ddl, %) > Hn(dd?, 6%) -+ Hy(ddi, 6%)

To see that the foregoing equality cannot hold observe that dd and ddg are best responses of
marketing to 0 and 0%, Therefore Hpn(dd{,6]) < Hn(dd{,0]) and Hy(dd3,63) < Hyu{dd],f])
must hold. This contradicts with the foregoing inequality. Therefore, if dd{ > ddf then 67 < 6.
In this case, from supermodularity

Hin(dd}, 0) + Hin(dd, 69) > Hin(dd?, 69) + Ho(dd, 69)

which is indeed true because of the same reason explained above. C

27



PROOF OF LEMMA 4. Let H, and H, denote the optimal expected costs and dd* and ¢* the
optimal decisions for marketing and engineering given @ and dd respectively. From envelop
theorem

+*

oH, _ f T@ (g — ddVF? (2]0)dz
d

ot e
Oy _ T (g — dd) FO(z|0)da
89 dde

We know from Theorem 1 that both foregoing functions return a negative value implying that
optimal cost for a player decreases in the decision variable of the other player. Since in the
highest equilibrium for a player the other player's decision is smallest, its expected cost must be
highest. This completes the proof. J

PROOF OF LEMMA 5. To see that both games are supermodular, it is sufficient to establish that
Y0 pladd) plddd) ang 799 are all positive. With the quadratic cost and Weibull
distribution, in

Héldd,e):mjmﬂéddﬁ)zg tfm»af» z|Ndz
L [ % )

Clearly fory < 1, ngfd’e) and He(dd’g) are positive. In Q

+ B2 “z
pldds) .. 7 TEE) o O~y 4= Bo)E / — flz|)dz
5 p— (7 + B2) y Qf(|)

The equalities indicate that for v < 1 and —~ < fo < 1— , T840 and 74949 are positive.
Also observe that in 2

0 " §f@0dz gy — (1= P[22 f(2|8)da
" g+ vtF(ddig) ¢ v (L= Ntd [ (2z ~ dd) (F(z|0) + = f(z0)) dw

First notice that both right hand sides return negative values. It is straightforward to see that
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/ L talf)dz < © fordd > 0.
ad 0 8

From (14), 1/0 = (1/e)T'( 1/a) implying that if both g/t and v/t are greater than or equal to
(/e 1/a), —1< i <0and ~1< 0 < 0. Finally, from Lemma 2 we can conclude
that equilibrium in € is unique. With straightforward analysis we can show that in £,

s~ t B2)t f o 5 1 (2160)dz
" g+ (v + B)tF(dd|6)

+{dd) ~(1—7~ ﬁz)tf$§ﬂ$39)d$
¢ v+ (1 =y — Bt [ (22 — dd) (F(zl8) + zf(=]0)) dw

Obviously for —« < 83 <1~ both right hand sides return a value in ( — 1,0). Hence
equilibrium in £2 must be unique as well. O

Iterated Deletion of Dominated Strategies:
We first present the process and then make the necessary proofs showing that it converges to

highest and smallest equilibrium point(s).

Step 1. Start with dd; = cd as the marketing strategy and compute the best response for
engineering. Let 8, denote the best response for engineering (EBR) to cd. Update the engineering
strategy space as (90,?5;) and delete all other possibilities. Next, compute dd, which is
marketing's best response (MBR) to ;. Update marketing strategy space with (dd;, M) by
deleting all other possibilities. Continue with this fashion until the computations converge to an
equilibrium point, say, (ddi,8%). This is the smallest (highest) equilibrium for marketing
(engineering). In other words, there can be no other equilibrium with smaller dd and higher 6.
Consequently, at the end of this stage, the strategy spaces for marketing and engineering are
(8,,87) and (dd{, M.,) respectively.

Step 2. Repeat the same procedure described in step 1 and delete dominated strategies, this time
starting with # = £, and computing the MBR first. If, at any iteration, the current MBR is less
than or equal to ddf, or the current EBR is greater than or equal to 6 go to Step 4. Otherwise,
continue until the iteration converges to {ddz, #2). This is the highest (smallest) equilibrium for
marketing {engineering).
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Step 3. If (ddi,07) = (dd3, 02) then go to Step 4. Otherwise, there are at least two equilibrium
points and thus the equilibrium is not unique. STOP.

Step 4. The equilibrium, (dd?, 67), is unique. STOP.

Next we show that Steps 1 and 2 converge fo smallest and highest equilibria. First
consider Step 1. Suppose we are at the nth iteration in Step 1. At this stage, 0, is EBR to dd,,.
Let danﬂ be the MBR to @n. To prove that Step 1 converges to (ddf, 9{{), it is sufficient {o show
that 1) ddpst > ddy, and @m—l <, and, 2) there cannot exist an equilibrium, (dd?,87) where
ddyp1 > dd? > dd, and Gnp1 < 89 <6, forall n.

First assume that dd,_; < dd, and G,_y > Gn. Suppose now ddn; < dd,,. Recall that
dd 41 is the MBR to 6,. From supermodularity, the following inequality must hold:

Hm(danaan——l) + Hm(d/d\n+11/§n) 2 -Hm(dan:/én) + Hm(dan-i—lyan—l)

However since dan and d’d‘m are MBR. to @nml and @n respectively, the foregoing
inequality cannot be true implying that ddyy; must be greater than dd,,. Next suppose that
@n+1 > @n. Supermodularity requires that

Ho(ddn, 8n) + Heo(ddni1, Bnr1) = Helddn, Onsr) + He(ddns1,6)

Since ?n and §n+} are EBR to d/(;ln and dE’nH, the foregoing inequality cannot hold either
implying that @ml < @n. Consequently, we conclude that if d&n,_l < dan and @nwl > @n then
dd, < d&nﬂ and 6, > §n+1- Observe that dd; = cd and from Theorem 2, §; > 6,. Once again,
from Theorem 2, dag > dal since da; = ¢d. From supermodularity we can conclude that 32,
which is the EBR to dag, 1s less than @1. Finally, since dEl < dﬂg and @1 > @2, the conditions
given in part 1 must be true for all following iterations, i.e., d&n+1 > d&n and /9\77,.4_1 < @n for all
n.

To complete the proof for the second part, first observe that there camnot be an
equilibrium capacity level that is greater than 9y since the following cannot be true for cd < dd?

He(cd,8;) + Heo(dd?,6%) > He(cd,67) + He(dd?, ;)
Subsequently a property of supermodularity is violated. Then, from the results of part 1 and
supermodularity, dd? cannot be smaller than ddy which implies that 67 cannot be greater than B,

as well. Continuing in this fashion, we conclude that there cannot exist any equilibrium point
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(dd?,07) where dd¥ < dd! and 67 > 6. The proof for Step 2 can be carried out in similar
fashion. O
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