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Abstract

We compute useful upper and lower bounds on the expected maximum
of up to a few hundred correlated Normal variables with arbitrary means
and variances. Two types of bounding processes are used: perfectly de-
pendent Normal variables, and independent Normal variables, both with
arbitrary mean values. The expected maxirum for the perfectly depen-
dent variables can be evaluated in closed form; for the independent vari-
ables, a single numerical integration is required. Higher moments are also
available. We use mathematical programming to find parameters for the
processes, so they will give bounds on the expected maximum, rather
than approximations of unknown accuracy. Our original application is
to the maximum number of people on-line simultaneously during the day
in an infinite-server queue with a time-varying arrival rate. The upper
and lower bounds are tighter than previous bounds, and in many of our
examples are within 5 percent of each other,

Subject Classifications: Probability: bounds. Queues: Nonstationary.

1 Introduction

There are many cases where one wants an idea of the maximum load on a system
over a period of time. Applications occur in structural engineering to withstand
wind, wave, flood, or earthquake forces. Similar problems occur in surge sup-
pression for electronic systems, and in designing power grids that should be able
to handle the peak load. Maximum values are also important in applications
other than load-determination. For example, critical paths in project schedul-
ing can depend on how long the longest sequence of jobs takes until it is done.
Circuit designs depend on how long it takes signals to propagate through a net-
work of gates. Similarly, the lifetime of a system in reliability theory is related
to the maximum of certain sums of component lifetimes. Also, factory capacity

decisions depend on the maximum expected demand for a portfolio of products,
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Both variables will have variance d}i, and covariances o xi;.

2 Previous Literature

Jensen’s inequality gives us our first bound, since the “max” function is convex.
This gives us an easily obtained but not very tight lower bound on the expected
maximum:

E [méax}zi] > m?xE [X.L] = miaxmé

Tippett (1925) gives tables for the expected value and variance of the max-
imum of IID Normals for n = 2,5, 10, 20, 60, 100, 200, 500, 1000. He also gives
tables for the CDF of the maximum. Most of the paper is concerned with the
distribution of the range, though. Teichroew (1956) gives more detailed tables
for n = 2...20 for all Normal order statistics, along with their products. Again,
this is for the IID case only. Clark and Williams (1958) consider the distribution
of the order statistics for IID variables, but start by assuming that the CDF
inverse is a polynomial. Thus, their method in this form is invalid for Normals.
However, they extend it to require only differentiability. Bose and Gupta {1959)
also consider the IID Normal case.

Owen and Steck (1962) considers the DID (Dependent but Identically Dis-
tributed} case, with standard Normals and all equal correlations. This is done
by starting with n + 1 11D Normals, and transforming them to n DID variables.
They then consider multinomial distributions with equal cell probabilities.

Clark (1961) gives exact formulas for the first four moments of the maximum
of two Normals in the DDD case. We summarize the formula for the expected
maximum here: first, define

o \/0“3(1 + 0%y — 20x12 (1)
and
o= (my —my)/e (2)
Then L
E [max{Xl, Xg)] =my - B(c) +ma - B(—a) +a - ¢(cx) (3)

where ¢ and ® are the Standard Normal density and cumulative distribution
functions. He also provides a recursive approximation of the moments of the
maximum for three, four, or more Normals, and shows some evidence that the
approximation is fairly accurate. The approximation is to treat two of the vari-
ables first, and suppose that their maximum also has a Normal distribution,
then combine that Normal with the third, etc. We will return to this approx-
imation in Section 6.4. He points out that the completion time of a PERT
network (Malcolm et al., 1959} can be represented as the maximum of all paths
from start to finish, but that there are often too many paths to consider all of
them explicitly. He then develops an approximation method not unlike Dijk-
stra’s algorithm, where the time that each node occurs is updated based on its



equal-variances condition of Slepian’s inequality, but then loses the stochastic
dominance condition. At that point, it can only guarantee that the expected
values of the maxima are ordered. Still, it applies only to zero-mean variables.

Our main method for establishing upper and lower bounds on our DDD
variables X; involves a theorem from Vitale (2000), which we state here in a
slightly modified version. Let W;, X;, and ¥;, for i = 1... N, be zero-mean
DDD Normal random variables such that, for all ¢, 7,

E[(W: - W)} <E[(X: - X;)’] <E[(Fi - ))°] (6)
Then for arbitrary constants m;,
E [max Wi + mg] <E [max)?i + mi] <E [m&xf’ﬁ- 4 mz] (7)
2 + 2
We have chosen to also use m; as the mean of X;, so that we can write
5 [m;ja,x Vi"f,} <E [mzax Xg] <E [m?xﬁ] (8)

It is not too difficult to use simulation to estimate the expected value of the
maximum, The multivariate Normal is simulated by using a vector of indepen-
dent standard Normal values, and multiplying by the Cholesky decomposition of
the covariance matrix, then adding the vector of means. This technique is sum-
marized in Chapter 8.1.4 of Tong (1990} and was used in Ross {2001). However,
as mentioned above, using simulation introduces noise into the results, which
can make optimization more difficult. '

A variety of papers have appeared that consider maximum values for queue-
ing systems. Their techniques usually are particular to queueing systems, rather
than applying to a wide class of processes (DDD Normal processes). Further-
more, they are typically confined to queueing systems with constant arrival
rates, rather than allowing rates to vary with the time of day.

In the next two sections, we compute the expected maximum for two special
covariance structures.

3 The Perfectly Dependent Case

It is the arbitrary structure of the covariance matrix that makes the expected
maximum hard to compute. By imposing more structure on the covariances, we
can obtain a process whose expected maximum is more amenable to computa-
tion. Our first simplification is the case when all the components of the process
are perfectly correlated. That is, the correlations coefficients can only be +1
or -1, In the situation with identical distributions, perfect correlation makes

all but the first variable redundant, so E [max X}] =my =...=my. When

the distributions are not the same, the situation is more complicated, but still
relatively friendly.



Next, we discuss a second way to restrict the covariance structure that makes
the expected maximum computable. The random variables will be independent,
but might have different distributions (the IDD case).

4 The Independent, Different Distributions Case

Suppose that we have a collection of independent random variables W; for
i = 1...N; they may have different means and variances. The cumulative
distribution function (CDF) of their maximum value is

Pr {m?xﬁf,; < w} = ﬁPr{Wi < w} (10)
gl

We could obtain the density by taking the derivative, using the product rule.
However, we end up with a sum of products that takes roughly NV times longer
to evaluate than the CDF. Instead, we will use the CDF directly. It is well
known that for any non-negative random variable R, the mean value of R may
be computed using

E[R]z/;mPr{R>r}dr (11)

A somewhat less common formula from David (1981), among other places, ex-
tends this to the case where the variable may take any value, positive or negative

B[X] = /ﬂ T (Pr{X > 2} ~ Pr{X < —z})dz (12)

Combining Eqn. 10 with Eqn. 12, we get

j:q (1wﬁPr{W¢Sw}—:ﬁgPr{ﬁfi<—w}) dw (13)

Performing numerical integration gives us a relatively easy way to compute the
expected maximum in the IDD case. Even though the integral has an infinite
domain, the integrand approaches 0 very rapidly after a while, so not much
is lost by stopping the integration then. In particular, we stopped integrating
when the integrand underflowed using floating point arithmetic, That is, when
the product terms come within roughly 10726 of 1, then 1~ [] evaluates to zero.

This formulation can easily accommodate some of the variables having a
fixed value {a variance of zero}. Such distributions can easily arise in appli-
cations, and in the bounding technigue we will discuss below. Suppose that
variable 10 has the largest mean of all the zero-variance distributions, and that
mao = 0. Then, we may start the numerical integration from mqg instead of

from 0, because on the interval [0, mi0) we will have Pr Wie < w} = ) =

Pr {Ww < ~w}. Thus, on that interval, the integrand is exactly 1, which does



where b;; comes from Egn. 15. Our objective function is shown in parentheses
because finding an optimal solution is not vital: any feasible solution establishes
a bound. The inequalities for an upper bound are similar:

(minimize B [maxi }7;])
8.t. Vz,j . (81; - 8j)2 > b?‘,j (17)
Wi:  s; is unrestricted in sign

Here, we are using ¥; as the PDDD variables for the upper bound; hopefully
this will not cause confusion with the IDD case, below.

These two programs have nonlinear (quadratic) constraints. For the lower
bound, we can convert {s; — §;)* < b;; into two simultaneous linear inequalities:

(81 ~ 853 < /bis and —(8i — 85) < /by

However, the feasible region for the upper bound program is not convex, so when
we linearize the constraints we end up with & disjunctive condition: (s; —s;)% >
bi; becomes

(S@ - Sj) > \/bij or - (83' - sj) > \/bij

This makes the problem much harder to solve for the upper bound than it is
for the lower bound. However, we can at least find a starting feasible solution
of the form s; = i - maxv/b, though this is probably gives results far from
the true expected value. Another initial feasible solution is sy == 0 and s; ==
maxXi=1.. j-1(8: + 1/bi;). Either of these may be done with any ordering to the
variables.

Because any feasible solution to the constraints gives a bound, it is not
necessarily important to truly minimize or maximize the nonlinear objective
function. We suggest starting with a linear objective function, whose weights
are chosen heuristically. In the PDDD case, large expected maxima are obtained
when two variables with large means have a large difference in their s; values.
For example, if s4 is large and positive, and s5 is large and negative, then
regardless of the value of Z, at least one of the variables Vy, V3 will be large and
posttive. From this reasoning, two obvious weight functions are [~1, +1,~1,.. ]
and [0,0,...,0,+1,—1,0,...,0], where the two nonzero components are near the
maximum value of m;. In some of our experiments, these two objective functions
gave different values of &, but the same h(z) function and therefore the same
final value of E[max]. In other experiments, the resulting h(z) functions were
only shightly different, and gave the same bounds to within 5 digits. When we
used the true non-linear objective function on small problems, no change in the
final value of E [max] was obtained.

It is interesting to note that if § is a feasible solution to either of these
programs {upper or lower bound), then §4 6 - 1 is also a feasible solution.
Fortunately, as noted above, the objective function value is the same. The
extra degree of freedom makes the feasible region unbounded in a way that can



Whether we use the standard deviations or variances as our decision vari-
able, it takes IV integrations to compute the gradient, whether done by taking
the derivative symbolically, or by finite differences. Again, because any feasible
solution gives us a bound, we suggest starting by using a linear objective func-
tion. If the bounds it gives are not satisfactory, then further effort can be put
into solving the NLP, perhaps using the LP solution as a starting point. The
program has one constraint for each pair of variables, which leads to a constraint
matrix that is tall and thin, rather than short and wide. Thus, we have seen
much faster solution times when solving the dual rather than the primal.

In using a linear program to find the bounds, we must choose an objective
function. A few heuristics suggest themselves:

1. Emphasize just one variance
2. Emphasize the two or three variables with the highest means
3. Weight all variables using some function of their means

We have found that the final values of the bounds are not very different in our
examples. For that reason, we have used the simple objective of equal weight
on all variables.

We note briefly that our upper and lower bounds are equal in the 2-variable
case, and therefore give the same answer that Eqn. 3 gives. This is because we
may let 0%y, = 0%, + 0%, — ox12 and ofyy = 0 to get the same value of a (in
Eqn.1) as the Xy, X, variables give.

6 A Queueing Demonstration

In some sectors of the dial-up Internet access industry, one company will rent its
modem banks to another company. The bill is based on the maximum number
of simultaneous sessions seen in the system during the day. We will assume that
the system has plenty of capacity, so that we can treat it as an M;/G /oo system.
This can be justified for modem banks that were built during the peak of the
economic boom, but whose traffic has not risen to meet expectations. It is not
uncommon to leave such a facility as it is, rather than canceling the phone lines,
to avoid the trouble of rebuilding it later. Ross {2001) explored the optimal way
to split the traffic between a company that uses this peak-based billing and one
that bills on an hourly basis. Here, we use our upper and lower bounds on the
expected maximum to get a good estimate of the expected peak of the day.
We ignore the usual vartation in average service durations throughout the day,
though it is not difficult to include.

We will start by assuming that we know the arrival rate function, A(£), of
a non-homogeneous Poisson process. Let Q(f) be the number in the system at
time t; it has a Poisson distribution with mean

ma(t) = f_ CAWGC( — wdu (20)
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Figure 2: Standard deviations from the original and lower-bound processes
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orderings 1... 144 and 144. .. 1 produced essentially equal bounds. The orderings
from largest to smallest mean (and vice versa) gave worse results (but equal to
each other). Random orderings gave the worst results.

In Figure 4, we go back to R4 = 0.8 but change the number of samples
during the day. We might do this to get a better idea of the continnous-time
maximum by sampling more often, or to see how a proposed change in the
agreed-upon sampling interval would affect costs. As the samples become closer
together, their correlations rise, and this makes the lower bounds from the
LP not as tight. This is because the right-hand side vaiues by; (from Eqn. 15)
decrease as the covariances increase. The errorbars shown are at plus and minus
2 standard errors from the mean. The relative distance between the upper and
lower bounds from the IDD processes is 0.01 percent for 60-minute samples, and
increases to 6.5 percent for 2-minute samples.

In Figure 5, we go back to 144 samples per day, but change the average
service duration. This is because different Internet service providers see different
customer behavior. Here, we have taken special care to keep the mean values
the same for different service durations. This is done by computing the damping
coefficient as in Eick, Massey, and Whitt (1993a), and increasing the relative
amplitude to compensate for the damping, so that the resulting mean-value
curve has a relative amplitude of 0.8 in all cases. As the service durations get
longer, the correlation between sample points goes up (people who were on-
line at 1:10pm are more likely to still be on-line at 1:20pm, so the samples are
less independent). Again, this affects the lower bounds from the mathematical
programs through the right-hand side values. For a mean service of 120 minutes,
the relative distance between the bounds is 4.9 percent, but it decreases to 0.48
percent when the mean service is 5 minutes.

Interestingly, the optimal solution for the upper bound LP is not very differ-



ent than the original variances of the X;, and so the value of the upper bound
is practically the same as if we had chosen 0%, = o%, (as we mentioned in
Section 5, since all covariances are positive) and not run the LP. However, we
will see a case (below) where they are substantially different.

We mentioned that, in the IDD case, we can calculate higher moments of
max W; and max ¥; using Eqn. 14. However, there is no reason that they will
be bounds on the higher moments of max X;. We found that, empirically,

Var (max Wi) < Var (max 17;) < Var (max Xi)

in every case for the situations from: Figures 3-5. In somne senge, this is surprising—

we might expect ¥; to produce an upper bound on the variance rather than a
lower bound, because it gives an upper bound on the expected value. However,
since the variabies Y; are IDD, where X; are DDD, we might expect that the
positive correlations of the X; would increase the variance of the maximum,
much as they would increase the variance if we were to take the sum.

6.2 Uncertainty in the Arrival Rate Function

In practical applications, we never know exactly what the non-homogeneous
Poisson arrival rate A(f) is going to be, It is affected by weather, breaking news,
and other unexpected events. The variation we see in arrival rates is much more
than predicted by a Poisson process. For example, if we forecast an arrival rate
of 100 calls for a particular hour next week, a Poisson model would say that we
should see 100 plus or minus 10 calls (one standard deviation). However, from
real data sets we see a standard deviation more on the scale of 20 or 30 calls.
For this reason, we will model the arrival rate itself as being uncertain. See
the monograph by Grandell (1997) for a general view of these types of models,
which are sometimes called Cox processes, after Cox (1955).

There are many ways to model the uncertainty, but we will consider a very
simple one. We will suppose that we know the shape of the arrival rate precisely,
but its scale is subject to some forecast error. That is, for a particular known
shape function £(t), the arrival rate is

Alt) = 8- £(2)

where S is a random variable, and we have a prior distribution for it. We would
typically take E{S] = 1, but will leave it general for now. Let the prior CDF
be Fg(s). The multiplier is chosen once, just before the start of the day, rather
than continuously changing as the day goes on. There is some evidence for this
simple model being appropriate, as discussed in Thompson (1999), Henderson
and Chen (2000), and Brown et al. (2002).

To comprite the mean and variance at each sample point, and the covariance
between sample points, we condition on the value of § and then uncondition:

ms(t) = BEm(®) S]] = f f HW)GO (¢ — w)du dFs(s)
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Figure 6: Bound behavior as the forecast uncertainty changes

solution to the IDD mathematical program in the case when all covariances are
positive, suggested in Section 5. In the case where the arrival rate function
was known exactly, this solution was similar to the solution of the LP for the
IDD variables, but now in the uncertain-scale case it is substantially different.
The relative distance between the upper and lower bounds from the LP in this
case is not as good as in the previous examples: it is roughly equal to the
coefficient of variation of the scale factor. That is, the bounds are within 4.5
percent of each other when the variation coefficient is 5 percent, and they are
within 29.89 percent of each other when the variation coefficient is 30 percent.
Nonetheless, they are still much closer together than the LRR bound and the
Jensen's inequality bound.

Figure 7 is analogous to Figure 2: it shows the standard deviations from our
two bounding processes, along with those from the original process. Now, the
upper bound process is substantially different from the original. We still see the
zigzagging in the lower bound process, but again not in the upper bounds.

Figure 8 shows the optimal solutions for the PDDD lower bound, for two
different objective functions. The first uses the weights [~1,+1,-1,..], and
the second uses [0,0,...,0,+1,-1,0,...,0]. For the first weighting function,
the values of s; zig-zag, alternating small and large. For the second, the values
are essentially constant except for the two variables that had non-zero weights.
We have adjusted the values of & in each case so that the smallest is zero; in this
way, they may be thought of as standard deviations, and compared to Figure 7.
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6.3 Bound Quality and Pairwise Correlations

In Figures 4-6, we changed the system parameters in a way that affected the
correlations between sample points. Now, we explore the effect of correlations
more directly. Instead of graphing against the changing system parameters,
as before, we will use the same data but look at the correlation between the
two adjacent samples at the peak time of day. This is neither the highest
nor the lowest correlation between adjacent points during the day—+those occur
during the lulls in the arrival rate (in the evening and the morning, respectively).
Indeed, the correlation at peak is roughly the average of the entire day’s adjacent
correlations. '

Figures 9-11 use this correlation at peak as the horizontal axis, and are
analogous to Figures 4-6.  We see that, as we anticipated from the earlier
figures, the bounds move farther apart as the correlation changes, but there is
little else that we can generalize.

6.4 Clark’s Approximation

As mentioned in the literature survey, Clark {1961) proposed an approximation
in the DDD case that uses the two-variable DDD results repeatedly. For exam-
ple, starting with the 144 variables in our central case, we would pick two of
them, create a new variable that is the maximum of the two, and assume that

21



varizble is normal. That is,

E maxffl,---,X142,X143,X144]
=E|max X,,..., X143, max( X143, 2144)]
~ IS maxXl,...,X14g,N1]

where Ny is a two-moment Normal approximation to max(f{';@,}”fw;). The
mean is computed via Eqn. 3; for the variance, see Clark (1961). New correla-
fions are computed between N; and the other variables, and the procedure is
repeated until two variables are left. The final expected value is then computed
via Eqn. 3.

We have not seen in the literature a discussion of what order is best for the
reduction. Several options are:

1. From 1 to N,

2. From N to 1,

3. From minm; to max i,

4, From maxm; to minm;, or
5. Random permutation.

One might also consider the variances along with the means when deciding the
order, but we have not done so.

To evaluate the effects of the ordering, we have tried each of the above
suggestions on some of our previous experiments. Figure 12 shows the results
of the five orderings as we vary the average service rate (analogous to Figure 5).
The 1...144 and 144...1 results are practically the same, and are closer to
the resuits of the simulation than the min ...max, max .,.min, and random-
permutation results, which are themselves nearly indistinguishable.

However, we see different results for the various orderings in Figure 13,
which varies the coefficient of variation in the forecast uncertainty (analogous
to Figure 6). The 1...144 and 144 ...1 results are still very close. However, the
min ...max ordering seems very accurate compared to the simulation, while
the max ...min ordering is now worse, and the random ordering is the least
accurate.

In all but one case here, we see that as the random variables become more
correlated, the accuracy of the Clark approximation decreases.

7 Conclusions and Further Directions

We have demonstrated two ways to calculate lower bounds, and one way to com-
pute upper bounds, that give tighter bounds than previously available results.
While we have used surrogate objective functions, the results can only improve

23



in the future by using the true non-linear objective function. Our results do not
require choosing an ordering for the random variables, as Clark’s approximation
does. While the IDD lower bound was always better than the PDDD bound,
there may be applications where the PDDD bound is superior. It does have the
advantages of a closed-form way to evaluate the objective function and gradient.

Out of curiosity, it would be nice to have a proof (or counterexample) about
the convexity of Elmax] in the standard deviations (IDD case} or s; values
(PDDD case). However, it would probably not dramatically affect the usefulness
of the bounds. It would also be reassuring to have & more quantitative way to
express the apparent fact that the bound values do not vary much when we
change the weights in the LP.

It would also be nice to have an intuitive explanation of why, in the PDDD
case, the expected value of the maximum is insensitive to adding & - T to the
value of § The current proof uses only elementary methods, but does not add
probabilistic insight.

It might be possible to get better bounds with the currently IDD variables
by allowing some W; variables to be correlated. For example, we could make
the covariance between W) and W, a decision variable, but have them be in-
dependent of all the other random variables. The same would apply for Wa
and Wy, etc. Then, instead of computing the expected maximum of (say) 144
IDD Normals, we would compute the expected maximum of 72 IDD Bivariate-
Normals. This would require computing the CDFs for the bivariate Normals,
.which is possible but not as easy as it is for univariate Normals.

A The LRR Bound in the Normal case

The LRR bound in Eqgns. 4 and 5 is valid for any distribution, but requires
integration of the tail CD¥ function. Fortunately, for Normal random variables,
we can manipulate the integral to get an expression that does not involve in-

tegration (other than the Normal CDF}. We write Pr {X} > w} as an integral,

then reverse the order of integration of the resulting double integral. In the
Normal case, we can then re-write the formula using the CDF and PDF of each
variable.

First, we change the order of integration. Let fi(t) be the PDF for the
random variable X;. We have

o0

foo Pr {X’i > a:} de = /t_ tfi(t)dt — cPr {X’, > c}

] =

This is true for Normal, Gamma, and many other common distributions.
Next, assuming a Normal distribution, we get (after integrating by parts)

UgXi’fi(C) + 1 'Pr{)h‘ > C} —c-Pr{X’i > c} =
ok~ File) + (mi— ) - Pr{ X > c}
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