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Abstract

The optimal solution o the infinite horizon equipment replacement problem with stationary
costs is to continually replace an asset at its economic life. The economic life is the age which
minimizes equivalent annual capital and operating costs (EAC), including purchase, operating
and maintenance costs less salvage values. The finite horizon problem requires a sequence of
asset service lives such that the total service equals the horizon. We explore whether applying
the infinite horizon solution to a finite horizon problem is justified, as we conjecture this may
oceur often in practice. With our presenfed integer knapsack approach, we can define a bound
on the minimum number of times an asset is utilized at its economic life in a finite horizon
problem. The bound can be derived from any feasible solution, although we provide closed
form solutions for the case of convex EAC values. Finally, we illustrate that the bound is useful
for reducing the computation of the associated dynamic program (for a positive interest rate)
and often helps in solving the associated integer program (for an interest rate of zero). As the
integer program’s constraint defines a cyclic group problem, the bound may prove useful in other
applications.

Subject classifications: Facilities/equipment planning: replacement. Dynamic programming:
deterministic. Integer Programming.

1 Introduction

Capital equipment typically wears with age, defined by increasing operating and maintenance
(O&M) costs and decreasing salvage values. If service is required for a number of periods, it may be
economical to periodically replace the equipment. This paper examines the equipment replacement
problem over a finite horizon under the agsumption of stationary costs.

Specifically, the equipment replacement problem requires a sequence of keep or replace decisions
for a single asset over a given horizon T, which may be infinite. Alternatively, the solution can
be defined as a sequence of asset service lives, or ages, which an asset should be retained with the
total service equating T periods. An asset must be salvaged on or before its maximum service life
N. Under the assumption of stationary costs, an asset is replaced with the purchase of a new,
identical asset. For a finite horizon problem, the asset is salvaged at the end of the study period.
The objective is to minimize discounted purchase and O&M costs less salvage values. We refer to
this problem as REFP.



Bellman (1955) provided the first solution to REP which did not require that assets be retained
for the same length of time over a finite or infinite horizon. His dynamic programming formulation
defines the state space as the age of an asset with the decision to keep or replace the asset in each
period. If an asset can be retained for N periods, the maximum number of states in & period is N.
For a T period problem, this translates to solving the problem in O(2NT), or O(NT), time.

Wagner (1975) presented an alternative dynamic programming formulation in which the time
period is the state of the system and the decisions are to keep the asset for 1,2,..., N periods.
This is similar to the Wagner-Whitin approach for economic lot sizing in which complete lots are
produced (Wagner and Whitin 1958). With the maximum number of states in a given period
being 1, a maximum of N decisions per state, and a total of T periods, this dynamic programming
formulation can also be solved in O(NT) time. The Wagner formulation has been extended by
researchers to deal with realities such as technological change and multiple challengers (see, for
example, Oakford, Lohmann and Salazar 1984, Bean, Lohmann and Smith 1985, 1994).

We present an alternative formulation for the finite horizon REP with stationary costs which
can be described as an integer knapsack problem with an equality constraint or as a knapsack-
partitioning problem (Johnson 1980b). For the case when the interest rate is zero, it can be
modeled as a cyclic group problem (Gomory 1965) and soived with integer programming. However,
for interest rates greater than zero, the nonlinearity of the objective function is more easily captured
with dynamic programming. In our formulation, the space in the knapsack is time. Items to be
placed in the knapsack are asset service lives with their size defined by the length of service. The
size of the knapsack is defined by the length of the horizon.

Clearly, our motivation in this paper is not to present a method for computational purposes, as
those previously defined in the literature are more than adequate. Additionally, we do not claim
that this model is more adept at handling different modeling nuances, such as technological change,
as Wagner’s model has shown to be over time.

Rather, this paper is motivated by the relationship between the optimal solution to REP over
a finite and an infinite horizon for the case of stationary costs. The optimal solution to the infinite
horizon problem is to repeatedly replace an asset at its economic life. The economic life of an asset
is the age which minimizes the equivalent annual costs (EAC) of owning and operating the asset
(Thuesen and Fabrycky 1994). These costs include the purchase and O&M costs less salvage values.
In general, O&M costs rise with age while salvage values decline. Thus, the optimal solution trades
off the high cost of replacement (purchase less salvage) versus increasing Q&M costs over time.
The economic life of an asset is typically computed by calculating the EAC of retaining an asset
for each of its possible service lives, ages 1 through N, as an integer solution is generally required.
The minimum is then chosen from this set,

The optimal solution of replacing an asset at its economic life is only valid under the assumptions
of an infinite horizon and stationary costs. However, many situations oceur in practice where an
asset is required for a finite length of service, especially if it is acquired to meet the needs of a given
contract.

Engineering economy textbooks, such as Eschenbach (1995), Fleischer (1994}, Park (1997) and



Thuesen and Fabrycky (1994), illustrate how to determine the economic life of an asset, but few
address finding an optimal solution to the equipment replacement problem over & finite horizon,
such as Park and Sharp-Bette (1990). While we have no literature to reference, we suspect this is
because the finite horizon problem requires the solution of a dynamic program or a network flow
formulation, which are techniques not learned by all engineers or financial managers. Thus, it is
reasonable to assume that in practice, the infinite horizon solution may be applied to the finite
horizon problen.

In this paper, we are interested in examining the validity of applying the infinite horizon solution
{replacing an asset at its economic life) to the finite horizon problem. Assuming the solution to
REP is defined by a sequence of asset service iives, we are specifically interested in developing a
bound on the minimum number of times an asset is retained for its economic life in a given finite
horizon solution. This bound is useful for two reasons: (1) Due to its familiarity and computational
ease, practitioners may apply the infinite horizon solution to the fnite horizon problem. This bound
will provide some information on the validity of that decision. Furthermore, we explore conditions
under which the bound will be at least one, including the case of convex EAC values. Determining
whether at least one asset is retained for its economic life is critical as this is the decision to be
implemented at time zero. (2) The bound may also be used to reduce the computational burden of
sotving the associated dynamic or integer program (for the case in which the interest rate is %Ero)
for REP. Again, previous solutions to the equipment replacement problem are computationally
efficient, so our mobivation is more closely aligned with (1) above. However, the bound may prove
useful in solving other integer knapsack or cyclic group problems.

The paper is divided into analyses assuming a positive interest rate and an interest rate equal
to zero. Sections 2 through 6 examine the dynamic programming formulation, for the case of a
positive interest rate, and its associated bounds on the minimum number of assets retained for
their economic life, both analytically with convex costs (Section 5) and empirically (Section 6).
The following sections analyze the case where the interest rate is zero with the use of integer
programming. In addition to analytical (Section 8) and empirical (Section 9) tests of the bound,
experiments on how the bound aids in solving the IP are presented in Section 10. We conclude in
Section 11.

2 The Positive Interest Rate Case: Dynamic Programming

We model REP as an integer knapsack problem with an equality constraint. As we do not
place explicit bounds on the number of times an asset is utilized for & given length of time, this
translates to the integer, unbounded knapsack problem. The problem can be solved as a traditional
knapsack probiem (inequality constraint) with dynamic programming if the solutions in which the
capacity constraint does not hold at equality are ignored. The traditional approach (Gilmore and
Gomory 1966) to solving this problem with dynamic programming defines the state of the system
as the amount of filled capacity in the knapsack. The decisions entail placing items in the knapsack,
which reduce the space remaining. The approach is known to be solvable in pseudo-polynomial



time, O(nK), where n is the number of items and K is the size of the knapsack. (The state
space moves from 0 to K in each stage and can evaluate each item n in each stage.) A number of
enhancements have been published to speed up the algorithm in practice {(see Andonov, Poirriez
and Rajopadhye 2000 and the references thereinj.

We present a different solution approach in order to solve REP. The alterations are motivated
by our desire to bound the number of times an asset is utilized at its economic life in a finite horizon
problem. They are also motivated by the fact that solving a knapsack problem does not provide
the sequence of decisions required for REP. We first describe the method and then discuss how a
sequence can be defined such that a solution to REP is produced.

In our dynamic programming formulation, each stage of the problem represents the opportunity
to utilize an asset of service life n. As the maximum service life for an asset is N, there are NV
stages in our approach. At each stage, the decision is whether to purchase 0,1,2, ..., [T/n] assets
of age n. We solve the dynamic program forwards with the state of the system defined as the tofal
number of periods of service that have been accumulated through the current stage. The solution
entails a number of assets and their respective service lives.

As noted earlier, the solution to REP requires a sequence of asset service lives. This is ac-
complished by ordering the stages of our dynamic program according to non-decreasing equivalent
annual costs (EAC) of owning and operating an asset. Thus, the first stage examines the number of
assets to be retained at their economic life, as this length of time corresponds to an asset operating
at its minimum EAC. The second stage examines the number of assets with the next lowest EAC
to be retained, etc. Note that in defining the stages in this manner, we define & sequence in which
the knapsack is filled. This is eritical for discounting purposes and ensures an optimal solution to
REP. Consider the following theorem.

Theorem 1 Asswming an interest rate r > 0 and given o set of assets and their respective service
lives, the minimum net present value cost sequence is that which orders the assets according to
non-decreasing FAC values.

Proof. Given a sequence of b asset lives n1,ng, ..., n, the cash flow diagram for the sequence
is defined in Figure 1, where ¢, is the EAC of using an asset for n; periods. In the figure, the cn,
vaines occur in periods one through ny while the ¢,, values occur in periods ny + 1 through ny +ng.
The final asset’s cash flows occur in periods 7' — np, + 1 through 7'

The net present value, p, of the cash flow sequence, assurning a positive, periodic interest rate
r for discounting, can be calculated as:

by
i3 (;r!,é,

ie-1
i=11=1 {1 + T)t+zf=1nj

This merely discounts each cash flow to time zero as the sequence defines the number of periods in
the future that a cash flow occurs.

This is a proof by contradiction and construction. Assume the minimum net preseat value cost
sequence is defined such that the assets are not ordered according to non-decreasing EAC, such as
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Figure 1: Cashfiow diagram for a sequence of assets.

that depicted in Figure 1. (It is assumed that the drawing is to scale such that the length of the
arrows represent the magnitude of the EAC values.)
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Figure 2: Cashflow diagram for re-sequenced assets.

Coonstruct a new sequence of cash flows, as in Figure 2, such that the positions of the c,, cash
flows and cn, cash flows are reversed. As r > 0, the new sequence will clearly have a lower net
present value and by contradiction, the sequence not ordered by non-decreasing EAC cannot be
optimal. Further, as any sequence not ordered according to non-decreasing EAC values can be
replaced by a lower net present value cost sequence that is ordered accordingly (by switching their
positions, as in our example), only a sequence ordered according to non-decreasing EAC values can

be optimal. O

Theorem 1 defines the optimal sequence for utilizing assets over a finite horizon, given the length
of time each asset is $0 be in service. This is critical to our dynamic programming model which
analyzes asset service lives in each stage according to non-decreasing EAC values.

One final modification for the dynamic program, when compared to the traditional integer
knapsack approach, is required due to discounting. If, for example, a solution entails keeping two
assets for three periods each, then the net present value of the cost of using the assets are different as
the second asset is purchased three periods later than the first asset. If the interest rate is positive,
the purchase of two assets for three periods each is not equivalent, in terms of the net present



value costs, to twice the cost of purchasing one asset for three periods. The cost of purchasing
an additional asset of the same type must be discounted. Note that all assets in the sequence are
discounted accordingly.

"This can be easily handled with dynamic programming as the costs of purchasing 1,2, ..., {T/n]
assets are explicitly modeled. As each stage is defined by the length of time an asset is in service and
the dynamic program tracks the number of periods of service accumulated thus far, this discounting
can be handled straightforwardly. However, note that this would lead to a non-linear objective
function if it were to be modeled as an infeger program.

Given these changes to the traditional approach for the integer knapsack problem, our dynamic
program, DP, can be formulated. Define the functional equation as follows:

fi(£) = minimum net present value of costs of owning and operating assets with service lives
of n§,n, ..., n] periods through time period #.

Recall that we sequence asset lives according to non-decreasing BAC values. This sequence
must be mapped to the stage i such that the first stage i = 1 corresponds to the number of times
an asset is retained for its economic life n% and the second stage corresponds to the number of
times an asset is retained for n}, the length of time resulting in the second lowest EAC, etc. With
p(n¥) referring to the net present value of an asset’s EAC values (at the time of occurrence) and «
the single period discount factor, the recursion is defined as:

filty=_ min {of'm“?‘Za@"””?pmz‘)+fi_1(t*~mn:>},tzl,z,...,T (1)

i t—mni 20 jnt
The recursion is solved over stages ¢ = 1,2,..., N, corresponding to the IV possible service lives
ordered according to non-decreasing EAC values ni,n3,..., 7N In each stage, the decision is to

determine the number of copies m of an asset with service life nj to incorporate into the solution.
As we solve the DP forwards, the initial condition of fo(0) = 0 is required. Also, if no copies of an
asset are chosen in a given stage, it follows that fi(t) = fi-1(2).

There are N stages, corresponding to the maximum service life of an asset and & maximum
of T + 1 states in a stage, corresponding to the cumulative service acquired through stage 4. For
each state in a stage, there are a maximum of |T/n]+ 1 possible decisions, where n represents the
service life being examined in the stage. This maximizes ab T'-+ 1. This all corresponds to a worsi
case run time of O(N (T + 1)%).

Theorem 2 DP solves the finite horizon REP with stationary costs.

Proof. As defined, DP finds the minimum net present value cost sequence of assets to be used
over the fnite horizon T. According to Theorem 1, the stages are ordered such that the mini-
mum net present value cost sequence is defined for any feasible replacement schedule. As the DP
identifies the minimum net present value sequence over all feasible schedules, DP finds the optimal
solution to REP. O



In the next section we pictorially examine this formulation and compare it o previous dynamie
programming approaches. These differences provide our motivation for developing DP.

3 Networks for Dynamic Programming Approaches to REP

Figure 3 illustrates the representative networks for the dynamic programming approaches of
Beliman (a) and Wagner (b) for the finite horizon REF. In Bellman’s network, Figure 3(a), a node
represents the age of the asset and is the state of the system, as labeled in the figure. Each arc
represents either a keep or replace decision. Keeping the asset is denoted by an arc connecting
nodes i and i 4+ 1 while replacing the asset connects nodes ¢ and 1.

{2) (k)

Figure 3: Dynamic programming networks for (a) Bellman and (b) Wagner approaches. Both are
acyclic networks with flow from left to right.

In Wagner’s network, Figure 3(b), 2 node represents the period and each arc represents the
length of time to retain the asset. An arc connecting nodes ¢ and £+ represents retaining an asset
for n periods. A stage represents one period of time in both the Bellman and Wagner formulations.

The network associated with DP is given in Figure 4. The nodes represent the cumulative service
time that has been “placed” in the knapsack with the arcs representing the number of “copies”
of an asset service life that is placed in the knapsack. In the first stage, either 0,1,2,..., {T/¢]
copies of an asset with service life ¢ can be placed in the knapsack. Each ensuing stage examines a
new item (length of service life) to place in the knapsack, assuming the capacity constraint is not
violated, resulting in a maximum of N stages.

These different networks illustrate the benefits of solving the associated dynamic programs.
Wagner’s network is the easiest to solve and can handle a variety of extensions, including techno-
logical change and multiple challengers. Bellman’s network is slightly more difficult to solve and
does not have the Aexibility of Wagner’s, but is easy to understand from a decision point of view
as most managers determine whether to keep or replace an asset in a given period, not whether to
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Figure 4: Dynamic programming networks for DP.

retain an asset for an ensuing two or three periods.

The benefit of the knapsack formulation is that one can readily determine the number of copies
that the best asset will be used. Recall that in the optimal solution to REP with an infinite horizon
under stationary costs, the asset is continuously replaced at its economic life. A natural question
for the Anite horizon problem is how many, if any, times do we replace an asset at its economic life?
This is not easily answered using Bellman’s or Wagner’s formulation, unless the complete solution is
found. However, this question can be asked in the first stage of the knapsack formulation approach.
We specifically address this question in the next section.

4 Bounds on Assets Retained for their Economic Life

By definition, dynamic programs do not determine a feasible solution (and thus an upper bound
to & minimization problem) until the final stage has been reached. This is in contrast to branch
and bound approaches which generaily solve relaxations to produce bounds in order to fathom
branches. Morin and Marsten (1976), influenced by the applications of others, illustrated that sim-
ple bounding techniques can be used to fathom branches in dynamic programming networks. Their
presentation was in the context of reducing the memory requirements of dynamic programs which
can be extensive due to the curse of dimensionality (Bellman 1957) common to most appiications.

Our motivation to implement simple bounding in DP is to determine a iower bound on the value
of mny, where nj represents the economic life of an asset (service life where EAC is minimized)
and m represents the number of copies used in the optimal solution to DP. Given a finite horizon
T, a feasible solution to REP can be constructed easily by setting mipy = |T'/n} ], its upper bound,
and taking T — |T'/n}] copies of an asset retained for a single period. Another easily constructed
solution is to combine the maximum number of assets retained at their economic lives with a single



asset retained for T — |T/nf] periods. One could be more clever in constructing the solution to
the remaining T' — |T'/nt]| periods. For instance, a first-fit-decreasing (FFD) algorithm could be
used. Regardless of how this is (easily) constructed, it represents a feasible solution with objective
function value UB. (Note that the sequence of the assets is also important due to discounting.)

Examining the network of DP for the knapsack problem in Figure 4, we see that the first stage
decisions are whether to place 0,1,2,...,|T/n}] copies of the economic life asset into the knapsack.
Following each of these arcs and subsequent paths determines a feasible solution, or solutions, in
which there are 0,1,2,...,|T/n}! copies of the minimum cost asset, respectively. If the optimal
solution is unique, only one of these paths will define the minimum cost solution. A path can be
fathomed (eliminated from consideration), as fitustrated by Morin and Marsten (1976), if a lower
bound produced on the branch exceeds any known upper bound. Given that the first stage decision
s the number of copies of the minimum cost asset (assumed here), the best possible bound is to
fill the remaining capacity of the knapsack with the next minimum cost asset. This asset has a life
of length ng.

Given m copies of the minimum cost asset, we can fit (T — mn3)/né copies of the second
minimum cost asset. We are not concerned with integrality here as we only desire a lower bound to
the problem. If the combination of the m copies of the economic life of the asset and the remaining
space filled with the second best assef results in a lower bound that is greater than UB, then we
can fathom the branch. The LB is increasing for decreasing m. Thus, if our LB exceeds the UB
for a given value of m, the optimal solution must have greater than m copies of the minimum cost
asset. This can be used to develop a lower bound on s, the number of copies of the economic
life asset in the optimal solution. Specifically, we want to determine the minimum m such that the
lower bound is less than our upper bound, or:

e (PTAT) 1 g (PIATTT) < U, @

(1+r)m™
The term (F/A7t) = ((1+7)" — 1)/(r(1 + 7)*) is the present worth factor for an equal payment
series (Thuesen and Fabrycky 1994) which merely reduces a periodic series of equal cash fows to
a single net present value assuming discrete compounding at the interest rate r. The other asset’s
cash flows must be discounted to time zero, hence the 1/(1 + FY™ term.

Note that we require the minimum value of m such that Equation (2) is true. For any value less
than the minimum value of m, the lower bound exceeds the upper bound and the branch can be
fathorred. This says that there must be at least m copies of the economic Hife asset in the optimal
solution.

Writing out the factor, we can rewrite (2) as:

(1 +r)mi —1 ey (Lr)Iommi -1
Cnj * Y Pt - UB
Lop(l4ry™h (L4 o)™ {1 47) 1
En Cny Cny Eng
i B - b ;- < UB
P T I L S ()
Cny — Cny Cny Cny
(14 7)™ (1l +r)T 7
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Solving for m results in:

n - M -
T(UB+m%TW";L)
m 2z - (3)
ni{In{l +r))

We seek the minimum value of m such that Equation (3) is true, noting that m must be integer.

Thus, the minimum number of times an asset is utilized at its econoraic life in a finite horizon
equipment replacement problem with stationary costs is:

In i e S
(o)1 |
ni(In{l + 7)) ’

(4)

mn; == TNAX

Once the minimum value of mps is determined, the ares which explore values of mpx less than
the minimum can be removed. This is equivalent to shortening the horizon 7" as the minimum
number of assets utilized at their economic life is bounded. While this computational advantage is
of interest, we focus on the likelihood of mpy 2 1 because it defines the decision to be implemented
immediately. We analyze the case of convex costs in the following section and empirically explore
the value of myy in the Section 6. We refer 1o myy as m in the following sections.

5 Convex Cost Analysis

As O&M costs generally rise (non-decreasing} and salvage values decline (non-increasing) with
age, it is often assumed that the EAC of an asset are convex, or quasiconvex, with respect to service
life. (Note that these conditions on O&M costs and salvage values are not sufficient for EAC values
to be convex.} In the convex cost case, BAC costs are monotonically decreasing for asset service iives
1,2,...,n} and monotonically increasing for asset service lives n} 4+ 1,n% +2,..., N. If quasiconvex
costs are assumed, the costs are non-increasing followed by non-decreasing.

In the convex cost case, construction of an upper bound which includes the maximum copies of
an asset Tetained at its economic life is straightforward, as the best solution is to fill the remaining
periods with an asset having a life equal to that number of periods. This is because any life greater
than this age is infeasible and any life less than this age has a higher cost (convex cost assumption).

For simplicity, define M = |T/n}] and the EAC of retaining an asset for T — Mn] periods as
epy. Noting our UB, we can write Equation (2) as:

(Pl Armng . PlArT-muly « p PjArMny . PJA T M)
cﬂl( }+ (1+?‘)mﬂzcn2( ) _.,.c?’tl( )+(1+T)Mn‘{cn3{ )
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Sotving for m as in the previous section results in:

Cpx —Cp ¥
11'1 . 2 1

% —‘G,nﬂl Cn* —an

s W

ni{ln(l 4+ r))

In order for us to guarantee that at least one asset is retained at its economic life, then m must be

(3)

mz

greater than or equal to 1. We are interested in this case as it is the decision to be implemented
immediately and replacement decisions are generally revisited in the future. This translates to
Equation (5) being positive (due to rounding up to the nearest integer) such that:

Cop 6 ™ Lop 6
In b RS
cnx« =T an G e

(™" Ty

i 0n(l + 1)

which means that: o e —
CTL* — * == Cp¥
O > 3 1 s 2 S
oy T T W )MAn T (1) ©

For the quasiconvex cost case, we know that 0 < cpt < Cng < g From this, we can examine the

two extremes of the value ¢y, For the case where gy — Cn1, Equation (8) becomes:

Crnf — Cnj Cng — Cry,

0> ;-
(L4+mMri (14T

As T' > Mm}, the right hand side will never be less than zero if » > 0. So in this situation, we
cannot guarantee that there is even one asset retained at its economic life in this solution. Given
our UB assumption, this should not come as a great surprise, as cpy — Cni, the lower bound is as
low as possible given that there is an infeger number of assets retained at their economic life.
The other extreme is the case where ez — Cug. in this situation, Equation {6) becomes:
ot — Cae > T
3 LT 4 )M

which is true for any positive r value. Thus, in this case, we are guaranteed to have at least one
asset retained at its economic life in the optimal solution $o the finite horizon problem. This would
be re-assuring to a decision-maker with costs of this structure.

6 Empirical Testing of Bound

We performed a number of experiments in order to determine whether the bound produced in
(4) can be “useful.” That is, will the value of m generally be at least 1. Clearly, the value of m
is dependent on the quality of UB. For the following experiments, we compute a number of upper
bounds. For all of the upper bounds, we assume that the maximum number of assets retained at
their economic lives (age n¥) are used in the solution. The remaining required periods of service,
T — |T'/n}], are completed as follows: '

11



UBL: T — |T'/n}] assets utilized for one period each.

UB2: asset of service life T — |T'/nj] utilized once.

UB3: two asset combinations, including 7' — |T/n}] ~ 1 service life with an asset for one period,
T — |T/n%] - 2 service life with an asset for two periods, etc.

UB4: FFD solution for remaining T — |1'/n]] periods.

The following two sections empirically analyze the cases where costs are random and convex. For
the random cost case, all of the above upper bounds were calculated while UB2 was utilized for the

convex cosh case, as it dominates the others.

6.1 Varying T and Random Costs

In our first experiment, we examine the impact of both costs and the horizon length on the
rinimum value of m. For horizons T = 20 through 100, we generated random BEAC values ac-
cording to U[1,100], U[1,1000] and U[1,10000] for an asset with a maximum age of N = 20. For
each combination of costs and horizon, we generated 100 instances of costs and an interest rate
(U[0.05,.0.20}). For each instance, we computed each UB and m as defined in (4).

Table 1: Experimental results for ¢ > 0 with varying T and random EAC values.

Cost T nf m T —mnt |T/nf] m>=1 maf/T m/|T/n]]
100 26 932 3.4 5.89 3.75 84.00% 70.55%  80.83%
1000 20 10.19  2.94 7.23 3.58 76.00%  63.85% 71.83%

10000 20 975 342 7.54 3.99 76.00% 62.30%  TL.67%
100 40 1042 6.61 5.44 6.9 96.00% 86.40%  92.31%
1000 40 11.65 5.6 7.31 6.12 94.00% 81.73% 89.03%

10000 40 1033 6.66 5.07 6.86 98.00% 87.33%  94.52%
100 60 10.53 1038 6.27 10.67  99.00%  89.55% 93.79%
1000 60 10.81 10.49 5.52 1075 98.00% 90.80%  94.48%

10000 60 10.7 8.54 5.54 8.74 08.00% 90.77%  95.40%
100 80 10.88 12.08 6.98 12.6 100.00% 91.28% 95.29%
1000 80 10.78 10.i4 8.77 1078 99.00% 89.04%  92.95%
10000 8C 1143 8.8 12.18 9.92 98.00%  84.78% 88.80%
100 100 11.01 16.56 5.61 16.87  100.00% 94.39%  97.47%
1000 100 10.13 201 7.31 20.63  100.00% 92.69% 95.47%
10000 100 1118 15.17 9.58 1572 99.00% 90.42%  93.71%

In Table 1, the first two columns (Cost and T) define the experiment. From the 100 trials,
the average economic life ni, average minimum m, and average resulting new horizon T"—mn] are
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defined. The value of |T/n}| defines the maximum number times an asset can be retained at its
economic life.

The final three columns summarize the results. The seventh column defines the percentage
of the 100 probiems in which m > 1. Thus, this is the percentage of problems in which at least
one asset is retained at its economic life. As seen by the column, this value is over 70% for the
small horizon problems and approaches 100% for the long horizon problems. This leads to average
reductions in the horizon of over 60% te over 90%. The final column is an average of the ratio of
m over |T/n}t] for each trial, or the percentage of possible economic lives guaranteed to be in the
optimal sclution.

This data reveals a few facts. First, the number of copies m of the economic life asset grows
with respect to the horizon. This is expected as a larger horizon approximates an infinite horizon.
Second, unexpectedly, the spread of costs has little impact on m. It was expected that higher vaiues
of m would result with a larger spread of costs as there would not be a concentration of possible
near-optimal solutions.

Given the resulés of this experiment, it appears that a manager can feel fairly confident in using
the first asset in a sequence of replacements at its economic life. We examine the convex cost case

next.

6.2 Varying Economic Life and Convex Costs

Our second experiment assumes that EAC values are convex in the age of the asset. For this
experiment, we defined the economic life of the asset and then generated a seb of convex costs
under the assumption that costs between ages were differentiated according to U{1,1000]. Note
that we altered the spread of the costs, as in the previous experiment, but did not see any significant
variation ir results. For each economic life, we generated a randorm horizon U120,100] and solved
for the value of m as before. The interest rate was generated as previously. For each possible
economic life between 2 and 20, inclusive, we generated 100 trials.

Table 2 summarizes our results in the same format as the previous experiment. As expected,
an increase in the economic life of an asset led to a decrease in the possibility that it would be in
the optimal solution to the finite horizon probiem. However, the percentage of time that m > 1is
over T9% for all situations, which is much greater than the random cost case.

7 The Zero Interest Rate Case: Integer Programming

Consider the case of the interest rate being zero. This assumption is justified when interest
rates are Jow and/or the time horizon is short. In this situation, we are not concerned with the
time value of money and the sequencing of assets is not required in REP because any sequence of
the same assets results in the same net present value of costs. Thus, to golve REP, we only need to
find the combination of assets that results in minimum costs while ignoring their sequence. This
eliminates the need to discount and thus eliminates the non-linearity of the problem. We can model
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Table 2: Experimental results for ¢ > 0 with varying ng and convex EAC values.

T 9w m T-mni [T/ni] m21 mnt /T m/{T/n)
59.44 2 20.28 0.88 29.48  100.00% 98.08%  99.00%
60.11 3 1914 2.69 19.69  100.00% 95.28% 97.43%
60.33 4 13.93 4.61 4.7 100.00% 91L.78%  94.62%
60.62 5 11.22 4.42 1172 100.00% 91.38% 94.79%
50,01 6 8.44 8.37 9.42 98.00% 85.35%  90.05%
5599 7 696 .27 7.57 99.00% 85.19%  90.95%
55.86 & 549 11.94 6.52 95.00% 75.52%  82.12%
61.83 9 576 9.79 6.39 97.00% 80.07%  87.24%
59.87 10 4.6 13.87 5.52 93.00% 73.83%  80.23%
57.27 11 3.83 15.14 4.79 92.00% 70.89% 77.84%
62.49 12 3.97 14.85 4.73 95.00% 72.11% 81.21%
58.66 13 335 15.11 4.1 91.00% 68.58%  75.61%
59.06 14 2.84 18.3 3.68 87.00% 606.53%  71.30%
59.41 15 2.6 2041 3.45 87.00% 60.61%  69.95%
58.07 16 237 20.15 3.14 84.00% 59.64%  71.20%
61.58 17 222 23.84 3.16 79.00% 55.66%  63.75%

53.6 18 247 21.34 2.79 79.00%  57.76% 68.53%
60.33 19 2.04 21.57 2.74 86.00% 60.60%  71.62%
57.17 20 1.86 19.97 2.39 80.00% 59.71%  71.83%
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this situation with integer programming.

Define 7" as the length of the horizon and the variable z; as the number of times an asset is
kept in service for i consecutive periods within T'. Further define ¢; as the EAC for retaining the
asset for ¢ periods, with IV being the maximum number of periods that an asset can be retained.
With these definitions, the formulation IP follows:

N
minz'iciwi
izl
subject to:
N
S = T (7)
g==1
T, & {O,l,...,N} (8)

The formulation above goes by a number of names in the literature, including the equality
knapsack problem {Lee 1997) and knapsack-partitioning problem (Johnson 1980b). The objective
function minimizes the costs of using a number of assets for their respective service lives i with the
total required service of T' defined in Constraint (7). The coefficients in Constraint (7) define the
master-partitioning problem (Johnson 1980b) or the cyclic group problem {Gomory 1965, Johnson
1980a). As illustrated in Johnson (1980a), the group problem is interesting because as the value
of the right hand side is increased, the solution is ¢yclic. This cyclic nature is of interest heve as it
relates to the infinite horizon solution.

As T — 00, the solution is obvious in that the variable z; with the lowest annual cost ic;/t = ¢; is
set to infinity. In the equipment replacement literature, this corresponds directly with the economic
life of an asset. In an infinite horizon problem, the solution is to repeatedly replace an asset at its
economic life, or the age which minimizes annual equivalent costs, ¢;. We have previously defined
ming ¢; == - _

In the finite horizon problem, the linear programming relaxation of IP mimics the economic life
solution in that the variable @, with minimum value of Cny, 18 setb tO its maximum value. Clearly,

e[

such that the linear programming relaxation will set z,s to {T/ni]. The remaining amount T -

we can add the following upper bounds:

|T/ny] is taken by zny with the next lowest value ¢; vaiue, cpy. This continues until the knapsack
is “filled” and can result in a non-integer solution (although only one variable will be non-integer).

In the context of this paper, we are interested in the lower bound on z,y. Following our reasoning
from Section 4, we can define an UB to IP with any feasible solution. Again, we construct a feasible
solution by setting znx = [T/ni], its upper bound, and taking T — |T'/n}] copies of x1, an asset
retained for a single period, or one copy of an asset refained for T — |T/n}] periods. Other UBs
can be constructed as before.
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We define the lower bound here as we did with DP, in that 0,1,...,|T/n]] copies of zpy are
utilized, with the remaining periods “filled” with the second best asset. Determining the minimum
number of copies of Ty is the minimum m such that:

mnicns + (T — mnl)epy S UB. (9)

Solving for m results in:
UB—Tepy:
m > 2

- n{ (Cn*l - cn-%)

As there may be non-integer and negative values, we formally define m as:

m = max{(w-l,ﬁ} (10)

7 {Cney — Cng

As the denominator in (10) is negative, by definition, the value of m is improved with the quality
of UB. Furthermore, large values of 7' and small values of nj improve the bound. We specifically
analyze m in the following section under the assumption of convex costs.

8 Convex Cost Analysis

Assuming convex costs , the lowest upper bound solution that can be created when the maximum
copies of the asset retained at its economic life is to purchase an asset with service life T —~ Mnj,
where M = |T/n}]. Noting this, we can re-examine Equation (9) such that:

mnicpr + (T —mnj)eny < Mnjeny + (T — Mnj)en;

Solving for m results in:
M1} (Cng — Cng) +T(Cag — cny)
ni{en; ~ Cny)

(11)

m >

As any value of m can be rounded up to the next integer, we know that in order to guarantee that
at least one asset is retained at its economic life, then:

Mni (cn*{ - Cng) + T(Cn§ - Cng}

n5(eny = ng)

>0

such that:
T < Cn}y — Cng

mn]  Cny ~ Cny

(12)

With quasiconvex costs, we know that 0 < cpy < cnp = Cng. For the case where cps — Cny, then

Equation (12} becomes:
T

*
mn,

<1

As T > Mnj, the left hand side will always be greater than or equal to one. So, as the case with
discounting, we cannot guarantee that there is even one asset retained at its economic life in the

optimal solution.
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For the case where cpz — Cny, Equation {12) becomes:

T < Cry — Cng

= 00,
MmN} Ca ™Gy Cnd ~ Cny

In this case, we can guarantee than at least one asset will be retained at its economic life in the
optimal solution to the finite horizon probiem. Thus, ¥ the economic life of an asset is “unique” In
that cny does not approach ¢y, then we should be confident in our initial decision to purchase an

asset and retain it for its economic life.

9 Empirical Testing of Bound

We repeat the experiments presented in Section 6 assuming the interest rate is zero. The value
of m is calculated using (10) for the random cost case and the integer value of (11) for the convex
cost case. Upper bounds were determined similarly as in the previous experiments.

9.1 Varying T and Random Costs

Our first experiment with the interest rate being zero follows that of the first experiment in
Section 6. The results are given in Table 3. One would expect the results to be worse for the
case of no interest, as discounting lessens the effect of the costs of agsets utilized at the end of the
horizon. For our upper bound, this entails the final T~ Mnj periods.

Table 3: Experimental results for r = 0 with varying T and random EAC values.

Cost T 7 m T-mnd |[T/ni] m=1 mni/T m/|T/n]]

100 20 1013 2.92 7.17 3.4 75.00% 64.15%  73.33%
1000 20 1044 3.22 7.58 373 71.00% 62.10%  69.17%
10000 20 102 2.8 9 341  67.00% 55.00%  64.00%

160 40 1034 6.58 10.65 7.49  88.00% 73.38%  79.55%
1006 40 106 4.94 11.57 585  83.00% 71.08%  78.24%
10000 40 9.52  6.66 12.48 7.64 81.00% 68.80%  74.62%
100 60 10.76 9.37 10.63 1001 92.00% 82.28%  86.58%
1000 60 11.38 7.49 11.62 8.67  91.00% 80.63%  84.71%
10000 60 89 13.68 10.35 14.38  91.00% 82.75%  84.93%
100 80 105 1184 15.71 13.12  91.00% 80.36%  82.83%
1000 80 10.64 13.05 18.12 1474 87.00% 77.35%  80.83%
10000 80 10.08 14.27 16.01 15.52  88.00% 79.99%  82.27%
100 100 108 13 17.96 14.49  95.00% 82.04%  85.05%
1000 100 11.64 1038  22.23 12.38  91.00% 77.77%  80.09%
10060 100 10.01 19.05 16.89 2046  95.00% 83.11%  85.76%
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While this is true, as seen in the Table 3, the difference is not as dramatic as expected as the
percentage of time that m > 1 lies in the range of B7% to 95% for each the problem data sets. As
with the discounted cost case, it would appear that the decision o keep an asset for ifs economic
life {at least once) still appears valid. Additionally, 647 was the lowest percentage of economic life
assets utilized (among possible) in the optimal solution. This should give further reassurances %o
the decision maker. The other results, including an increase in the value of m with the horizon

time T followed as in the previous experiment.

9.2 Varying Economic Life and Convex Costs

For the convex cost case, the results are summarized in Table 4. As we can see with these

results, there is a drastic deterioration in the percentage of time that we can guarantee an assel is

retained at its economic life if the economic life is closer to the horizon. This is dramatically worse

than the case where the interest rate is positive.

Table 4: Experimental results for r = 0 with varying n] and convex EAC values.

T o m T-mni |T/ny] m>=1 mni/T m/|T/ni]
54.83 2 26,65 1.53 27.18  99.00% 96.91% 97.78%
5399 3 1894 3.17 19.68  99.00% 93.46% 95.21%
61.11 4 13.84 5.75 14.88  97.00% 89.78%  92.64%
59.56 5 10.07 9.21 11.56  93.00% 82.8%% 85.59%
5698 6 7.58 11.5 8.12 90.00% 77.75% 81.24%
58396 7 6.31 14.79 8.01 86.00% 70.88%  74.71%
54.92 8 443 19.48 6.43  84.00% 62.76% 67.61%
6049 9 4.67 18.46 6.35 82.00% 64.22% 68.16%
55.25 10 3.13 23.95 5.06 77.00% 54.13% 59.39%

553 11 2.58 26.92 4.56  70.00% 45.62% 52.44%
60.71 12 2.42 31.67 4.6 62.00% 42.72%  47.93%
5799 13 1.82 34.33 4.03 59.00% 37.63% 41.45%
58.02 14 1.64 35.06 3.72  48.00% 33.81% 37.00%
57.54 15 1.21 39.39 3.837  40.00% 25.07%  27.23%
59.04 16 1.07 41.92 3.18 37.00% 24.72% 28.83%
62.68 17 0.89 47.55 3.18 35.00% 20.74% 24.50%
57.27 18 0.71 44.49 2.71 34.00% 20.18%  24.28%
59.46 19 043 51.29 2.65 22.00% 12.66% 15.38%
56.88 20 0.78 41.28 2,33 39.00% 22.86% 27.83%
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10 Computational Testing of IP with Bound

We noted in the introduction that the goal of this paper was not to present a new computational
approach to the problem, as there are already viable approaches available. However, there may be
some computational benefit to computing the value of m and reducing the search space. We have
already described how the value of m can fathom branches in the DP network. Here, we analyze
the ability to reduce the computational effort of solving the IP.

We performed two sets of experiments. For the case of random costs, we generated costs for
asset ages one through 20 assuming U[l,50]. Note that as we are testing the benefits for 1P, the
costs are not discounted, For each of 100 instances, we computed the value of m using our upper
bounds as described earlier. If the value of m was greater than zero, we calculated the new horizon
T as T —mnt. We generated an integer program for the original 7" value and the new value of 7" and
solved it using LINDO 6.1 (1985) on a Silicon Graphics Octane Workstation. For each instance, we
recorded the number of simplex iterations and branches evaluated in the branch and bound tree,
as reported by LINDO.

We repeated the 100 trial test under the assumption of convex costs. The economic life was
randomly generated and then convex costs, with random intervals of U [1,50], were generated. The
results of both experiments are given in Table 5.

For the random cost dats instances, the average number of simplex iterations required to solve
a problem was 29.18 with 6.29 branches. After computing m, the average number of iterations
was reduced to 17.40 while the average number of branches decreased to 2.51. The first section of
Tabie 5 shows a breakdown of the 100 instances. Of the 100 random data instances, the number
of simplex iterations was reduced in 76 of the problems, while it increased for 9 and remained the
same for 15. When examining branch reduction, 40 of the problems were reduced while none got
WOrse.

For the convex cost data, the average number of iterations was 68.91 and 15.35 branches. These
figures reduced to 62.68 and 12.96, respectively, after computing m. For these 100 problems, 53
instances showed a reduction in the number of iterations while 23 saw & reduction in the number
of branches. Nine instances saw an increase in the number of iterations and three had an increase
in the number of branches evaluated.

The remaining data in Table 5 provides the reduction (for improved instances) or increase (for
worse cases) in the number of iterations and branches, respectively, as a percentage of those in the
original problem (original value of T'). For each of these cases, the average value of m was computed
in addition to the average value of m/|T/nf], as this is the percentage of the maximum nurmber
of economic lives that are included in the optimal solution. There is clearly a correlation between
this percentage and whether there was an improvement in the computation. Thus, while we were
interested in determining whether m > 1 for decision-making purposes, achieving computational
benefits requires that m — |T'/n%]. This would probably require the use of more sophisticated
upper bounding procedures than the ones utilized in this paper.

Unfortunately, the bound did not prove as useful as desired for the convex cost case, which is
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Table 5: Results (simplex iterations and branches in the branch and bound tree) from solving 100

instances of IP with m assuming random and convex costs.

Random
Iterations Instances Avg. Reduction Avg. m m/|[T/ni]
Improved 76 71.9% 7.26 93.8%
Worse 9 (56.0%) 7.11 65.9%
Same 15 - 4.33 28.4%
Branches
Improved 40 47.7% 6.3 50.5%
Worse 9 - - -
Same 60 - 7.15 75.5%
Convex
Iterations Instances Avg. Reduction Avg. m m/|T/ni]
Improved 53 77.8% 13.88 89.9%
Worse 9 (30.4%) 5.55 59.2%
Same 38 - 0.73 0.06%
Branches
Improved 23 81.7% 10.26 74.8%
Worse 3 (58.4%) 3 45.6%
Same 74 - 7.69 49.0%
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clearly the more challenging case to be solved with integer programming. For the convex cost case,
30 instances required more than 10 branches t0 be evaluated when compared to only 15 cases for
the random data. The bound reduced the number of branches to evaluate in 11 of the 30 convex
problems and 11 of the 15 random cost preblems.

While the statistics are not overly impressive, more than half of the problem instances show
computational improvements, for both the random and convex cost cases, when the bound on m
was utilized. Furthermore, the amount of improvement in these cases is substantial. It is noted
that the computation of m is not included in these resuits. However, for the convex cost case, the
value is defined in closed form while computing the upper bounds for the random case is quite
straightforward.

11 Conclusions and Directions for Future Research

This paper has presented a new dynamic programming approach to the finite horizon equipment
replacement problem with stationary costs. Although the problem has been solved previously
with formulations by Bellman and Wagner, this model was introduced in order to examine the
relationship between the infinite horizon solution (fo replace an asset continuously at its economic
life) and the finite horizon solution. The presented integer knapsack approach, with a non-linear
objective function to capture discounting and the sequencing of assets, was used to bound the
minimum number of times an asset would be utilized at its economic life in the finite horizon
solution.

This bound is useful for a number of reasons. First, determining the bound provides some
insight as to whether an infinite horizon solution can be applied in a finite horizon setting. Second,
if the bound is shown to be at least one, then the optimal time zero decision is known as the
decision to keep an asset at its economic life is implemented immediately. Third, the bound may
be used to reduce the computational burden of solving the associated dynamic program. Although
the bound can be constructed using any upper bound te the problem, we provide a closed form
solution under the assumption of convex costs and analyze it, providing conditions where we can
guarantee that at least one asset is retained at its economic life in the optimal solution of the finite
horizon problem.

For the case where the interest rate is zero, we illustrate that the model can be solved asg an
integer program with the constraint defined as that of a group problem. Here, the bound carries
the same insight as with the dynamic program and is shown to improve the computation of the IP
in a number of generated instances. Again, the bound can be produced from any feasible solution
and we provide and analyze a closed form solution for the bound under the assumption of convex
costs.

Previous work of Wagner {1975) has been shown to be extremely efficient in handling various,
important modeling nuances in replacement analysis, such as multiple challengers and technological
change. It is unclear as to whether this formulation can handle these nuances as sequencing asset
service lives would not be trivial. Regardless, it is believed that the work here may be useful

21



for other types of integer knapsack models which exhibit non-linear returns, suck as models with
econamies of scale where additional items of the same type cost less than the previous item.
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