Balancing U-Shaped Assembly
Lines with Parallel Stations

Louis J. Plebani
Lehigh University

Sihua Chen
Binney & Smith, Inc.

Report No. 04T-003



Balancing U-shaped Assembly Lines
with Parallel Stations

Louis Plebani! and Sihua Chen?

IDepartment of Industrial and Systems Engineering, Harold S. Mohler Laboratory,
200 West Packer Avenue, Bethlehem, PA 18015-1582

2 Manufacturing Development Manager, Binney & Smith, Inc., 1100 Church
Lane, P.O. Box 431, Easton, Pennsylvania. 18044-0431

Abstract

The straight lice assembly problem was introduced in 1955. Pressures of im-
proved throughput and just-in-time manufacturing motivated development of models
for straight lines with parallel stations in 1967 and U-shaped assembly lines in 1994.
In this paper, we present a model for an assembly line balancing problem for U-shaped
assembly lines where parallel stations are permitted and a best first branch and bound
solver. The model incorporates the practical constraint that parallel stations are al-
lowed only when necessary to accommodate a task with processing time greater than
the cycle time. The solver includes a heuristic finishing procedure for cases were the
solution time exceeds a maximum user specified timeout. We provide computational
results on standard benchmark networks.

1. Introduction

The simple assembly line balancing problem type 1, consists of a finite set of tasks having
fixed processing time T = {t1,%s,...,%n}, and a set of precedence relations P = {{z,y)}
specifying task x must be completed before tasky. The goal is to assign the tasks to an
ordered sequence of workstations such that the precedence relations are satisfied, the sum
of the processing times at each station does not exceed the station cycle time, and the

total number of stations in the line is minimized. The straight line assembly line balancing



problem was introduced by Salveson (1955) . In order to obtain increases in line efficiency,
flexibility in assigning tasks into stations, and higher production rates, Freeman & Jucker
(1967) suggested straight line balancing with parallel workstations. Buxey (1974) studied the
practical aspects of parallel stations including costs of duplicated equipment and difficulties
of layout and transportation. He concluded that parallel stations detract from the essential
benefits of just-in-time flow line production and they should only be used to fit longer
elements into demanded cycle time. Largely due to pressures of JIT, Miltenburg & Wijngaard
(1994) introduced U-shaped line balancing and a heuristic solver. Sparling (1997) and Scholl
& Klein (1999) developed branch and bound solvers for balancing single station U-shaped
lines. This paper presents a best first branch and bound solver for a U-shaped assembly
line balancing problem where parallel stations are permitted. In order to always provide
a feasible solution, the solver provides the option of a heuristic finishing procedure if the

solution time of the optimum solver exceeds a maximum user specified timeout.

2. Parallel station model

A U-shaped assembly line with parallel stations can be viewed as a U-shaped line of stages
where any stage can be a single workstation or a group of two or more identical workstations
operating in parallel. The effective cycle time for the workstation(s) in the &™ stage is ¢ C,
where ¢ is the number of workstations in the stage and C' is the system cycle time. The
parallel station model can be obtained from Miit:enburg & Wijngaard’s (1994) model by

introducing the variables g, and changing the objective function to

Minimize Z 0k, (1)
k



changing the station capacity constraints to

z ti < qrC, (2)

teSy

and by constraining the number of stations in a stage to reflect Buxey’s practical constraint
that parallel stations should only be used to accommodate tasks whose task time is larger
than the cycle time

t*
Q= [é—“—_‘ , where #j = max £. (3)

Plebani & Chen (2003) created a heuristic solver called HUP for this problem.

3. Branch and bound solver

POBUL (Parallel Optimal Balancing for U-shaped Line) is a best first branch and bound
solver having the general flow shown in figure 1. The major data structure is a priority
queue of partial solutions. The partial solution represents the accumulation of tasks that
have been assigned to some number of initial stages in the U-line. Each partial solution has
an associated lower bound which is calculated considering the effects of the tasks already
assigned. High priority in the queue is determined by smaller lower bound first, larger
number of stations second, and smaller total slack third. Lower bound calculations use the
well known bin packing lower bound LB = > {/C, which depends only on the cycle time
C and the total task time > ¢;. The initial upper bound is calculated using Plebani and
Chen’s HUP algorithm.

3.1 Branching algorithm

The branching algorithm operates on a partial solution which has been popped from the

priority queue. The popped solution is discarded if its lower bound is greater than or equal

3



POBUL

¥
While priority queue not empty
pop highest priority partial solution

I

Branch and puash
new partial solutions as appropriate

i >

Y

Heuristic finishing procedure

Figure 1: Basic POBUL Flow

to the current upper bound. The branching algorithm:

o determines all loads, i.e., combinations of the feasible tasks, which would fill a new

stage,
e cxpands the new stage, if required, by adding parallel stations,
¢ adds all new partial solutions, which pass the fathoming checks, to the priority queue.

The procedure for determining loads is a U-shaped line adaptation of the backtracking
procedure originally used by Hoffmann (1963) for his straight line heuristic algorithm. A
vector of tasks av is used to store all tasks available for assignment to the present stage.
A task is available if it has no unassigned predecessors and/or no unassigned successors.
The vector av is sequentially searched for a task that can fit into the current stage, based
upon slack time remaining. Special processing, as described below, is done if the task time

is greater than the cycle time. When a task is found, it is assigned to the current load.

4~



POBUL branching

fook for new
combinatien of 1asks
{0 {ill station

push emte priotity
Guene

Figure 2: POBUL Branching

Its immediate predecessors and its immediate successors are checked for availability. If any
have become available they are appended to av. When the end of av is reached, a load has
been constructed which is then submitted to the fathoming checks. Additional loads are
determined by backing up the search to the last task assigned. The task is removed from the
current load and marked as being unavailable. The search continues from that point. All
loads for the current stage have been determined when all tasks in av have been marked as
unavailable. The maximum load rule discards any load that has labeled any task unavailable
which could fit in the remaining slack for the load.

Special processing is done if a task time ¢ is greater than the cycle time C. The task
necessarily requires that its containing stage consist of parallel stations. The immediate
decision is whether the current stage represented by the current load should be expanded
to accommodate the task or should the task be considered infeasible for the current load
and incorporated into later loads. The decision is made in the context of Buxey's (1974)
practical constraint that the stage be expanded only if the expansion results in no more than

g = [1/C] stations in the stage. If the task can be incorporated, the number of parallel

B



stations in the stage is set equal to ¢, the slack time is adjusted accordingly, and the search
to complete the load continues.

Each load that is incorporated into the current partial solution forms a new branch and
bound node. Before a new node can be added to the branch and bound tree, by pushing it
onto the priority queue, it must pass a series of fathoming checks.

The total slack rule compares the total slack of the partial solution to a test slack value
computed from the current upper bound solution. The test slack value is the maximum slack
that a solution could have and still result in one less station than the current upper bound.

It is computed as

t5m(nUB_—1)*CmZtk 4)

where nyp is the number of stations in the current upper bound solution. If the slack of the
current partial solution is greater than ts, the node is fathomed.

The equivalent solution rule avoids inclusion of equivalent partial solutions containing
the same set of tasks but differing in the sequence of task assignment. The current partial
solution is compared to the partial solutions already contained in the priority queue at the
same depth in the branch and bound tree. If a match is found, the solution is fathomed.

As a requirement for entry on the priority queue, a lower bound for the node is computed
by adding the bin packing lower bound calculated over the unassigned tasks to the stations
contained in the partial solution. If this lower bound is greater than or equal to the current

upper bound, the node is fathomed.

3.2 Heuristic Finishing Procedure

Because the assembly line balancing problem is NP-hard (Karp 1972), and to insure that the
solver always returns a feasible solution, POBUL provides for a heuristic finishing procedure

if the solution time exceeds a user specified timeout value. The heuristic procedure selects



nodes from the branch and bound tree and applies Plebani and Chen’s HUP heuristic to the

unassigned tasks in order to complete the solution. The best solution is reported.

4. Computational experiments

POBUL was coded using C++ and run on a 1 Ghz Pentium 111 PC. The benchmark prece-
dence networks of Talbot & Gehrlein (1986), Hoffmann (1992), and Scholl & Klein (1999)
were used for evaluation. These networks have been established as standard benchmarks in
the literature and have been used for testing and comparing solution procedures in aimost
all relevant assembly line balancing studies since the early nineties. The Talbot data set
is based on 12 precedence networks with 8111 tasks. The Hoffman data set uses a subset
of networks in the Talbot data set with 30-111 tasks. The Scholl data set is composed of
precedence networks unique from the Talbot and Hoffman data sets with 25-297 tasks. Full
descriptions of the precedence networks can be found in Scholl (1999)

To create the combined data set used for testing, the cycle time for each of the aforemen-
tioned precedence networks was varied from 20 percent of the maximum task time to one
less than the maximum task time, thus ensuring at least one parallel station in each solution.
All problem instances (with duplicates removed) form the combined data set with 12,161
instances. The timeout value was set to 10 minutes. If timeout occurs, the heuristic finishing
procedure provided an upper bound UB on the optimal number of stations. Average results

are summarized in table 1 which contains the following information:

# Instances:  number of problem instances for the dataset or precedence network;

# Optimum: number of instances for which an optimal solution is found;

Av.rel.dev.: average relative deviation for the data set (in parenthesis: average relative
deviation for those instances which timed out);

Av.Cpu(s): average computation time in seconds (includes time out of 600s).

The quality of the solutions provided by the heuristic finishing procedure was measured

7.



by the relative deviation (UB — LB)/LB of UB from the lower bound LB. Deviations
are computed from LB because there are no known solutions to the problems, beyond the

present work. Table 1 shows that POBUL found the optimal solution for 45 percent of all

Table 1: POBUL results for all problems

Data set  # Instances # Optimum  Av.Rel.Dev.  Av.cpu(s)

Combined 12161 5453 0.0369(0.0535)  342.7
Hoffman 7648 2415 0.0410(0.0580)  428.6
Talbot 7815 2582 0.0407(0.0580)  419.5
Scholl 4346 2871 0.0300(0.0376)  204.7

problem instances. This ignores any cases where the heuristic finishing procedure produced
an optimal solution not equal to LB. This percentage is a disproportionately influenced by
some networks because the number of problems solved for each network was significantly
different due to the manner in which the complete data set was constructed by varying the
cycle time over the upper 80 percent range of the largest task time. Table 2 contains the test
problem results for each of the networks. If each network is weighted equally, the percentage
of optimal solutions for the combined set is nearly 70 percent.

The results show that POBUL paraliels the performance of most reasonable algorithms
for NP-hard problems in that a large portion of problems are solved within acceptable
computational limits while others are somewhat computationally intractable in terms of
available computer resources. Measures of network complexity, in addition to problem size,
that have been proposed in the literature were examined as indicators of whether or not
optimum solution of a particular problem would be successful. These included order strength
{(Mastor 1970), time interval (£ /€, tmae /€], 20d the time variability ratio [tmee/tmin)- These
measures when combined with the number of tasks did not provide additional insight into

problem complexity, as measured by percent of optimum solutions, than the number of

-8



tasks alone. The major problem with these simple numerical measures is that each of them
measures only a part of the problem characteristics which may influence problem difficulty.
The interrelationships between the various elements of problem structure, in particular, the

task time distributions assigned to resulting stages in the solution are not considered.

5. Summary and Conclusions

This paper introduced a new topic in assembly line balancing, optimal solution of single
model U-shaped line balancing with parallel stations. A best first branch and bound opti-
mal solver was presented together with computational results on a standard assembly line
balancing test set. The solver was found the optimal solution approximately 70 percent of
the sample networks. 'Traditional simple measures of problem complexity could not signifi-
cant insight into computation difficulty. To estimate computational difficulty more complex
measures which incorporate the structure of the precedence network and the corresponding

time distributions of candidate tasks for each station are needed.

References

Buxey, G. M. (1974), ‘Assembly line balancing with multiple stations’, Management Science
20, 1010-1021.

Freeman, J. R. & J. V. Jucker (1967), “The line balancing problem’, Journal of Industrial
FEngineering 18, 361-364.

Hoffmann, T. (1963), ‘Assembly line balancing with a precedence matrix’, Management

Science 9(4), 551-562.



Hoffmann, T. (1992), ‘Bureka: a hybrid system for assembly line balancing’, Management
Science 38(1), 39-47.

Karp, R. M. (1972), ‘Reducibility among combinatorial problems.’, In Complezity of Com-
puter Computations, (Proc. Sympos. IBM Thomas J. Watson Res. Center, Yorktown
Heights, N.Y.).New York: Plenum, pp. 85-103.

Mastor, A.A. (1970}, ‘An experimental investigation and comparative evaluation of produc-

tion line balancing techniques’, Management Science 16, 728-745.

Miltenburg, G. J. & J. Wijngaard (1994), “The u-line balancing problem’, Management
Science 40(10), 1378-1388.

Plebani, L. & S. Chen (2003}, Hup: Heuristic for u-shaped parallel lines, Technical Report
03T-008, ISE Dept., Lehigh University, Bethiehem, PA.

Salveson, J. H. {1955}, ‘The assembly line balancing problem’; Journal of Industrial Engi-
neering 6(3), 18-25.

Scholl, A. (1999), Balancing and Sequencing of Assembly Lines, 2nd edn, Springer Verlag.

Scholl, A. & R. Klein {1999), ‘Ulino: Optimally balancing u-shaped jit assembly lines’,
International Journal of Production Research 37, 721-736.

Sparling, D. (1997), Topics in U-line Balancing, PhD thesis, McMaster University, Canada.

Talbot, F. Patterson, J. & W. Gehrlein (1986), ‘A comparative evaluation of heuristic line

balancing techniques’, Management Science 32(4), 430-454.

-10-



Table 2: POBUL results by network

Network  ##Tasks #fInstance %Opt.  Avrel.dev  Av.cpu(s)
Mertens 7 6 100.0 0.0820 < 0.1
Bowman 8 14 100.0 0.0746 < 0.1
Jaeschke 9 6 100.0 0.0750 < 0.1
Jackson 11 7 100.0 0.0243 < 0.1
Mansoor 11 37 100.0 0.0299 < 0.1
Mitchell 21 11 100.0 0.0301 < 0.1
Roszieg 25 12 100.0 0.0423 < 0.1
Heskiaof 28 86 100.0 0.0153 4.2
Buxey 29 21 100.0 0.0517 0.71
Sawyer 30 21 100.0 0.0476 3.57
Lutzl 32 1117 100.0 0.0552 < 0.1
Gunther 35 33 100.0 0.0273 0.55
Kilbridg 45 45 86.7  0.0054(0.0338) 86.0
Hahn 33 1411 100.0 0.0073 < 0.1
Warnecke 58 44 9.1  0.0655(0.0695) 562.2
Tonge 70 125 33.6  0.0286(0.0431) 404.2
Wee-Mag 75 23 0.0 0.2130(0.2130) 600.0
Arcusl 83 2929 25.4  0.0641(0.0820) 460.8
Lutz2 89 9 66.7  0.0246(0.0737) 252.7
Lutz3 89 61 70.5  0.0169(0.0368) 189.8
Mukherje 94 138 26.1  0.0229(0.0308) 451.4
Arcus2 111 4528 34.6  0.0267(0.0409) 413.8
Barthol2 148 67 0.0  0.0462(0.0462) 600.0
Barthold 148 303 60.4  0.0091(0.0231) 237.6
Scholl 297 1107 0.5  0.0342(0.0344) 598.9

~11-



