Fulfilling Customer Orders for Steel Plates
From Existing Inventory

Peter A. Huegler
Kutztown University

Joseph C. Hartman
Lehigh University

Report No. 04T-005

FULFILLING CUSTOMER ORDERS FOR STEEL PLATES
FROM EXISTING INVENTORY

Peter A. Huegler

Drepartment of Mathematics and Computer Science, Kutztown University, Kutztown, PA

Joseph C. Hartman
Industrial and Systems Engineering Department, Lehigh University, Bethishem, PA

This paper investigates the steel plate order fulfillment problem from existing inventory, which is
a generalization of one-dimensional cutting and packing problems. This problem is an integral
part of the day-to-day operations of steel plate manufacturing. A 0-1 integer programming
formulation is presented and two heuristics, based on single order formulations, are presented to
quickly generate lower and upper bounds. The bounds are improved using Lagrangian
Relaxation and Subgradient Optimization. The lower bound improvements reduce the gap over
30% and the upper bound improvements reduce the gap another 35%. The upper bound
improvements represent an actual savings over the current solution method of 2%, or $4 million
over a three-week period, for 17 real-world data sets analyzed. An economic interpretation of
the Lagrange multipliers is also discussed and shown to be useful for handling rush orders.

1. INTRODUCTION

The production of steel plates, which are used in many applications, including bridges, deep-sea
oilrigs, and construction equipment, at an integrated mill begins with the production of slabs
from liquid steel (processed from iron ore) on a continuous caster. These slabs represent semi-
finished inventory, as they are burned, heated, rolled, and sheared to fill customer orders for
plates, as shown in Figure 1, which specify required dimensions, quantities, steel properties, and
due dates. As slabs are produced in batches of 300 tons or more and customer orders are
generally for 20-40 tons, it is inevitable that excess slabs will be produced and added to the slab
inventory. Thus, an important problem faced in the industry is the assignment of slabs in

inventory to customer orders. These decisions are important because they impact all aspects of

the planning process from slab production, plate mill productivity, process yields, inventory

management, and customer service.

Mother Ordered
Slabs Plates _. Plates

Shearing

Return Scrap

Figure 1 — Plate Production Process from Semi-Finished Slab Inventory

This paper focuses on the problem of assigning inventory slabs to customer orders. The
burning step (and subsequent order fulfillment problem) appears as a classical one-dimensional
cutting stock problem (1CSP) in the slab length, as slabs can only be made shorter for quality
reasons. However, there are a number of differences between the order fulfillment problem and
the classical 1CSP, namely (1) slab inventory is heterogeneous, varying by weight and steel
properties; (2) only feasible slabs can be used to fulfill an order (slabs are feasible if the slab
properties meet or exceed the orders properties) and slabs that exceed an order’s properties can
be used at an additional cost; (3) unused slabs which meet minimum size requirements may be
returned to inventory; (4) economies of scale exist such that the production of multiple plates
from a single slab leads to a greater productivity and a reduction in waste (this can be seen in
Figure 1, as “end scraps” are eliminated with multiple plate production); (5) the objective

function in the assignment problem includes a variety of cost considerations, as noted in Table 1.

Table 1 — Order Fulfillment Costs

Cost Description
Slab Cost Cost of the raw materials (slab) per ton. Slabs with
better properties cost more than slabs with lesser
properties.
Rolling Cost Productivity costs, Cost to roll a slab into a mother
plate.
Holding Cost Cost of holding one ton of steel in the inventory for

Burning Cost

Customer Service Cost
New Production Cost

one time period.

Cost to burn a slab into two pieces. This includes
fixed setup cost and associated yield loss.

Cost of not completing an order in time.

Cost of having to order production from the caster
(and not filling order from inventory).

We define the steel plate order fulfillment problem (SPOF) as follows: A set of slabs exists in

inventory defined by size, weight and steel properties. Customer orders to be filled over a time

horizon are defined by the number, dimension, properties and due dates of the steel plates.

Orders that cannot be fulfilled through inventory are filled through new production at an

additional cost. The goal is to fulfill the customer orders at minimum cost.

We model SPOF using 0-1 integer programming formulation and solve it using Lagrangian

Relaxation and Subgradient Optimization. Two greedy heuristics based on single order

formulations are presented to quickly generate lower and upper bounds, which are shown to be

quite effective. The greedy upper bound heuristic is similar to the method used at the Burns

Harbor mill of the Bethlehem Steel Corporation before the company declared bankruptcy. We

present results on 17 real-world data sets, ranging in size from 1,500 to 5,000 orders and 4,000 to

11,000 slabs. Lagrangian Relaxation and Subgradient Optimization are used to improve the

Jower and upper bounds. The lower bound improvements reduce the gap by over 30%. The

upper bound improvements reduce the gap over 34%. The upper bound improvements represent

a savings of 2% compared to the greedy upper bound heuristic. Additionally, an economic

interpretation of the Lagrange multipliers is discussed and shown to be useful for handling rush
orders. Unfortunately, the improvements remain unimplemented due to the bankruptey of
Bethlehem Steel and subsequent purchase of its assets by International Steel Group.

The paper is organized as follows: Section 2 reviews the relevant literature. Section 3
contains the 0-1 integer programming formulation of the SPOF. Section 4 discusses the single
order problem, which is the basis of the bound and improvement methods. Section 5 presents
two greedy heuristics for generating lower and upper bounds. Section 6 discusses the
Lagrangian Relaxation and Subgradient Optimization bound improvements. Section 7 presents
the results and Section 8 discusses a using the generated Lagrangian multipliers to handle rush

orders.

2. LITERATURE REVIEW

There are a number of problems that arise in steel production that have similarities to SPOF.
One similar problem is the steel coil order fulfillment problem, where slabs rolled into steel coils
on a hot strip mill. This problem differs as customers generally place orders according to weight.
Cohen, et al. {1984) report on a system that applies slabs to coil orders using expert systeims.
Kalagnanam, et al.(2000) formulate the coil order fulfillment problem as a bicriteria multiple
knapsack problem with color constraints. The color constraints address the property
requirements. A transportation formulation is presented in Vasko, et al. (1994) for the coil order
fulfillment problem. This formulation assigns the orders to the sources and the slabs to the
destinations. For a recent review of hot strip mill planning and scheduling methods, refer to
Tang, et al. (2001Db).

An additional problem in coil production is packing customer coil widths into production

widths. Customers generally order coils in widths that are narrower than the maximum possible

production width. To increase productivity, several customer orders are packed into master coils
(Haessler (1978), Haessler and Vonderembse (1979), Vasko, et al. (1992), Vonderembse (1995),
and Vonderembse and Haessler (1982a, 1982b)).

Cne characteristic of the order fulfillment problem is the generalization of the cutting
stock problem objective function. Several papers related to the steel industry formulate and
propose solutions to generalize cutting stock problems. Antonio, et al. (1999), Chiotti and
Montagna (1998), Chu and Antonio (1999), and Vasko, et al. (1999) deal with the cutting of steel
bars into smaller pieces. Steel bars are produced significantly longer than the customer orders
and therefore are required to be cut into smaller pieces to fulfill the customer orders.

Several applications outside of the steel industry bear resemblance to SPOF. Both
Adelman and Nemhauser (1999) and Adelman, et al. (1999) report on a problem in fiber optic
cable manufacturing which is similar to the SPOF in that there are economies of scale as several
cable orders can be made from one mother cable and unused portions of the cable may be
returned to the inventory for future use. The problem differs in that smaller cables cannot be
joined to fulfill larger customer orders.

In Arbib, et al. (2002), a problem in the production of automobile gear belts is presented
where a rectangular piece of material is sewn into a sleeve and the sleeve is cut into individual
belts. Narrower belts can be sewn together to make wider belts. This is similar to the ability to
produce many plates from one slab in SPOF. The problem differs in that there are a limited
qumber of cuts available on a sleeve and a limited number of smaller belts that can be sewn
together to make the ordered belts. In SPOF, slabs can be cut an unlimited number of times and
the number of plates that can be rolled from one slab to fulfill and order is only limited by the

number of plates ordered.

3. INTEGER PROGRAMMING FORMULATION

The formulation of the order fulfillment problem is based on selecting and combining partial
burn patterns to complete the customer orders. Each partial burn pattern consists a set of
subitems for one order. A subitem is defined as the weight (mass) required to produce a number
of plates from a slab. (Note that while slabs are “burned”, the length dimension translates
directly to a weight dimension. Thus, we deal with tonnage as opposed to size for our
discussion.) For example, for a particular order, 26,000 Ibs is needed to roll 3 plates at one time,
17,000 bs is needed to roll 2 plates, and 8,600 Ibs is needed to roll 1 plate. Subitems are
generated for each order when the order is accepted. The available subitems are constrainted by
facility limitations and order size. Each subitem in a burn pattern represents one slab to be
rolled on the plate mill.

As an example of a partial burn pattern, consider an order for eight ordered plates with
three available subitems, including a 1-plate, 2-plate and 3-plate subitems. A possible partial
burn pattern is to burn two 3-plate subitems and one 2-plate subitem from a slab. This partial
burn pattern would complete the order by rolling three slabs on the plate mﬂl. The next section
discusses the enumeration of partial burn patterns and the following section presents the problem
formulation. The goal of the problem formulation is to combine partial burn patterns for

different orders into complete burn patterns for the inventory slabs at the lowest cost.

3.1. Partial Burn Pattern Enumeration

It is possible to efficiently enumerate partial burn patterns for feasible order and slab pairs using
the implicit enumeration algorithm in Figure 2. The algorithm enumerates the branches of a tree

representing all partial burn patterns for the order and slab pair. The algorithm is made efficient

by fathoming branches based on the number of ordered plates and the weight of the slab. The
number of plates produced from a partial burn pattern cannot exceed the number of plates
required for the order. Also, the required weight of a partial burn pattern cannot exceed the slab
weight. The following three partial burn patterns are equivalent, {4,4,3}, {4,3,4}, and {3,4,4}.
The algorithm only generates partial burn patterns where the remaining slots are filled with
subitems that are the same size or “smaller” than the subitem in the current slot. This
significantly reduces the number of partial burn patterns considered and significantly increases

the efficiency of the algorithm.

sort the subitems from heaviest to lightest
let m be the number of subitems
let p[i] be the plates produced from subitem
let w[i] be the required weight for subitem i
let s]i] be the subitem in the ith slot
let « be the used weight
let # be the number plates applied
let SW be the slab weight
let OP be the number of ordered plates
let / be the current slot
s[j]= 0 for all slots
j=1
repeat
if a subitem is in the current slot (s[j] > () then

U=u- w[s[j]]
t=1-plslill
end if
slil=slil+1
if s[j]<m then
= ut w[s[j]]
¢= 1+ pls(il]
if u<SW and t <OP then
j=j+1
sli}=sli-1]-1
if s[j]>0 then
u=u+ w[s[j]]
twt+pbb]
endif
endif
else

slil=0
save partial burn pattern
endif
until j:=0
Figure 2 — Implicit Enumeration Algorithm Psuedocode

There is a natural dominance between partial burn pattems that fulfill the same number of
ordered plates and the dominated partial burn patterns will never appear in an optimal solution of

SPOF. Consider the following two partial burn patterns, both producing 10 plates. Pattern 1

bumns a slab into 10 pieces with each piece rolled into one ordered plate. Pattern 2 burns a slab
into 3 pieces with one piece rolled into 4 order plates and two pieces rolled into 3 order plates.
Pattern 1 costs $13,332 and pattern 2 costs $10,183. Pattern 2 is cheaper because of the
economies of scale. If the solution calls for ten plates to be supplied from this slab, only the
lowest cost partial burn pattern is considered. Therefore, the other ten-plate partial burn patterns
are dominated by the lowest cost ten-plate pattern and are removed from the partial burn pattern

list.
In the worst case, the above algorithm executes in O(s -(i + 1)”) time with 7 being the

number of subitems, OP being the number of ordered plates, and s being the number of feasible
slabs. Plates are only produced in integer quantities. Therefore, the number of orders plates
(OP) and the number of plates produced from each subitem can only be integers. The smallest
number of plates that can be produced from a subitem is one. Hence, the maximum number of

slots for a partial burn pattern is OP. Bach slot can be filled with a subitem or nothing.
Therefore, there are i+1 choices for each slot and the worst-case complexity is O((i + 1)OP) or just
O(i or) for a single order and feasible slab pair. Therefore, for all feasible slabs, the complexity

is O(S S Nl) In practice, the algorithm executes efficiently.

3.2. Pattern-Based Problem Formulation

Variables for the formulation are presented in Table 2, parameters in

Table 3, and objective function in (1) and constraints in (4) through (10).

Table 2 — 0-1 Integer Partial Burn Pattern Based Formulation Variables

Variable Description

Zos,p 0-1 integer variable representing whether to use partial burn
pattern p from slab s for order o.

Ay 0-1 variable representing whether to fulfill order o from new
production

Us 0-1 variable representing whether the remaining weight of slab
5 is scrap or returns to inventory. 0 — remaining weight can be
returned to inventory, 1 - remaining weight is scrap

S Variable representing scrap weight from slab s.

¥s Variable representing weight from slab s being returned to the

inventory.

Table 3 — 0-1 Integer Partial Burn Pattern Based Formulation Constants

Constant Description

0 Set of orders

S Set of slabs

P, Set of partial burn patterns for order o and slab s

0P, Number of ordered plates for order o

PPysp Number of ordered plates produced from partial burn pattern p

PCosp Cost of using partial burn pattern p

PWosp Slab weight required for partial burn pattern p

HC, Cost of fulfilling order o from new production

SM, Minimum weight of slab s that can be returned to the inventory

SW, Slab weight of slab s

SC; Cost per pound of steel in slab s

IcC Cost of holding the entire inventory for the complete time

horizon

Min 33 S PC,., 205, + 2 HC, b+) SC, 5 +IC (1)
oe seS peF,; oc0 ses

st. > > PP, z,,,+OPF h =OF YoeO (2)
se§ pef,
Zzo’s,p <1 V(o,s)e OxS (3)
peb,;
S N PW,,, 2, 8, =S, VseS (4)
oeQ pel,
r,+ SW,u, <SW, VseS (5)

10

ro+SM -u, 2 SM, VseS ©6)

Y(o,s)e0OxS, (7
Zysp € {0,1}, integer (0,5) (N

Vpek,,
h, 40,1} YoeO (8)
u, € 0,1} VseS 9
s 20 VseS (10)

The objective function (Equation (1)) minimizes four costs. These costs include, in
order, (a) assigning a partial burn pattern to an order, including slab costs, burning costs, and
rolling costs; (b) assigning new production to an order, including a service cost due to likely
delay. This is achieved with “hypothetical” inventory slabs for assignment; (c) scrap costs; and
(d) a constant representing the cost to hold the entire inventory for the entire problem horizon.

This inventory holding cost is added because the pattern cost, PC,, ,,includes a reduction for

using a slab (or portion thereof) prior to the end of the problem horizon. Consider a fulfillment
problem with a horizon of 26 weeks. The cost for holding a slab for the 26 weeks is included in

IC . If the slab is feasible for an order with a due date in the 15" week of the problem, at least

one pattern will exist. The cost for this pattern, PC,, ,,is reduced by the cost of holding the

slab for the remaining 11 weeks of the problem. The net effect on the objective function is to
include the cost of holding the slab for 15 weeks. While IC does not affect the optimization, it
assures accurate costing for comparing methods.

The constraints can be broken into three subsets; order and pattern constraints, slab
constraints, and variable constraints. Equations (2) and (3) are the order and pattern constraints.
Equations (2) force the orders to be fulfilled either from existing inventory- or from new

production. The constraints in (3) limit the number of burn patterns from a slab for a specific

11

order to one. To illustrate, consider two partial burn patterns from the same slab. Pattern A
produces six ordered plates and pattern B produces five ordered plates. If a combination of
pattern A and pattern B is possible, there would exist another pattern producing eleven ordered
plates. By construction, the eleven plate pattern would cost the same or less than patterns A and
B. If no eleven-plate pattern were possible, then the selecting A and B would also be impossible.

These constraints enforce this restriction.

Equations (4) through (6) are the slab related constraints. The first equation balances
the slab weight used to the initial slab weight. The variables, 7, and s;, represent the slab weight
returned to the inventory and the amount of scrap respectively. Equations (5) and (6) control the
feasible values for r, using the 0-1 variable u;. If u=0, then remaining weight can be returned to
the inventory, as Bquations (5) and (6) define r, to be feasible, and s is economically driven to
zero. If u=1, then the remaining weight cannot be returned to the inventory, Equations (5) and
(6) force r; to zero and s, is the amount of scrap.

The remaining constraints, equations (7) through (10) are the variable constraints. These

constraints identify the variable types and allowable values.

12

Table 4 — Burn Pattern Counts
Data Set Order Count Slab Count Pattern Count

1 2,197 7,075 815,301
2 2,146 7,080 849,920
3 1,996 6,022 639,897
4 2,228 5,448 847,376
5 2,410 4,764 682,100
6 2,782 5,044 614,664
7 4,128 5,150 1,062,724
8 4,179 6,564 1,108,378
9 3,578 5,607 912,606
10 5,793 5,977 1,612,667
11 6,180 6,554 2,393,153
12 5,690 11,814 6,849,396
13 3,928 10,722 4,138,887
14 1,571 9,433 2,066,048
5 2,011 8,211 969,567
16 2,699 8,077 1,222,825
17 2,790 4,033 561,389

Table 4 presents a measure of the problem size for each data set. The “Pattern Count”
column is the number of partial burn patterns generated for each problem set. For each order, the
formulation contains one 0-1 integer variable and one constraint. For each slab, one 0-1 integer
variable, one linear variable and one constraint exists. For each order and slab pair, one
constraint is included in the formulation and for each pattern, one 0-1 integer variable exists.

The formulation for data set 1 contains 7,075 linear variables, 824,573 0-1 integer variables, and
17,991,875 constraints. The size of the data sets makes it impractical to solve the entire problem
at one time. Sections 4, 5, and 6 discuss solving the single order SPOF, present lower and upper
bounds to the SPOF based on the single order problem and improvements to the bounds based on

Lagrangian Relaxation and Subgradient Optimization.

13

4. SINGLE ORDER PROBLEM

The single order fulfillment problem is presented in this section because it can be solved quickly
in practice and is the basis of the solution methods presented later in this paper. Also, the single
order problem is the basis for the solution approach that was used at Bethlehem Steel. The next

two sections discuss the formulation and solution method of the single order fulfillment problem.

4.1. Single Order Problem Formuiation

Solving a single order problem consists of selecting the optimal combination of partial burn
patterns that fulfill the customer order. The following is the formulation of the problem using
the variables and constants presented in Table 5 and Table 6 respectively. -

Table 5 — Single Order Formulation Variables

Variable Description
P Set of partial burn patterns available to fulfill the order
(including the hypothetical patterns)
S Set of slabs form which all of the patterns in P are burned
Zp 0-1 integer variable representing whether to use pattern p to
fulfill the order

Table 6 — Single Order Formulation Constants

Constant Description
PC, Cost of using partial burmn pattern p to fulfiil the order
PP, Number of plates produced from partial burn pattern p
OP Number of plates required to fulfill the order
Clps 0-1 constant representing whether burn pattern p is burned
from slab s
Min > PC, -z, (11)
pel
st. D.PP,.z,=0P (12)
per

14

>a,-z,sLVseS (13)

peP

P is the set of partial burn patterns that can be used to fulfill the order. This set includes the
hypothetical pattern and therefore, a feasible solution exists for the problem. The set S is the set
of slabs from which the partial burn patterns in P are generated. Bquation (11) is the objective
function that is to minimize the cost of fulfilling the order. Equation (12) makes certain that the
order is fulfilled. It is possible (and probable) that several partial burn patterns in P will come
from the same slab. The Constraints (13) enforce that only one partial burn pattern from each
slab is used. There will be one constraint for each slab in the set S. Slab weight constraints are
not needed for the single order problem, as all partial burn patterns generated from the pattern
enumeration procedure are feasible.

Table 7 — Single Order Patterns

Pattern Slab Plates Cost
1 Hypothetical 6 $ 13,786
2 803X63890 07V 5 $ 1,693
3 801W00629 09A 5 $ 1,720
4 R01W00629 09V 5 $ 1,720
5 803X63890 07V 4 $ 1,462
6 01W00629 09A 4 $ 1,483
7 801W00629 09V 4 $ 1483
8 803X63890 06V 3 $ 1,219
9 801W00629 09A 3 $ 1,238
10 801WO00629 09V 3 $ 1,238
11 803X63890 07V 3 $ 1,520
12 803X63890 06V 2 $ 985
13 801W00629 09A 2 $ 992
14 801WO00629 09V 2 $ 992
15 801W00629 09A 1 $ 781
16 801W00629 09V 1 $ 781

A reduction exists for the single order problem based on the quantity of patterns
generated for each distinct number of plates. As an example, consider Table 7. In the table,

there are three possible patterns for five plates. The order quantity is six plates and, at most, only

15

one five-plate pattern will be included in any solution. Therefore, not all of the five-plate

patterns need to be considered and the lowest cost pattern dominates the remaining patterns. In

i

patterns need to be included in the solution space. This dominance can be used to reduce the

fact, only

problem and remove patierns 3,4,6,7,10,and 11.

4.2. Solving the Single Order Problem

An explicit enumeration algorithm based on traversing a tree of all the solutions is used to solve
the single order problem. This algorithm generates solutions in the form of (p,, .. p,) where
p; represents a partial burn pattern and the number plates from the patternslin the n-tuple are non-
increasing. In other words, PP, 2 PP, 2..2 PP, . Limiting the enumeration to solutions of
this structure guarantees an optimal solution all permutations of (pl s Daoeens p,,) are equivalent.

The algorithm is outlined in Figure 3.

16

sort the patterns by number of plates decreasing and increasing cost
let ¢ be a pointer to the current pattern in the pattern list
let uli] be a flag represent whether the slab for pattern I has been used

let p[z’] be the number of plates produced from pattern i

let OP be the number ordered plates

let SP be the number of plates produced by the current solution
let s be the number of patterns in the current solution

let s[i] be the ith pattern in the current solution

let n be the number of patterns

¢=1
repeat
// section 1 — generate the next solution
repeat
if u[c] is unused and SP + p[c]ﬁ OP
g=s5+1
s]= ¢
mark all other same-slab patterns as used
SP =8P+ plc]
end if
c=c+1

until SP=0FP orc>n
// section 2 — possibly save the solution
if current solution is better than the best then
save current solution as best
end if
// section 3 — backirack
repeat
¢ = s|s]
s=8-1
SP = SP- ple]
mark all other same-slab patterns as unused
1= ple]
repeat
c=c+l
until plc]#lorc>n
check for fathomed branch
until ¢ =0 or (¢ < » and branch is not fathomed)
until ¢ =0

Figure 3 - Psuedocode for Solution Enumeration.

17

The first section of the algorithm generates the next solution. This section runs through
the pattern list and adds available patterns to the current solution. The second section checks to
see if the current solution is better than the best solution and if true, saves the current solution as
the best. The final section executes when a branch is fathomed. The algorithm fathoms branches
in three ways: (1) there are no more patterns to add to the solution; (2) the number of plates
available in the unused patterns is less than required to complete the order; and (3) a beuristically
generated lower bound is larger than the best solution. Tables for the last two methods are
created prior to the enumeration.

The overall complexity of the algorithm includes building the tables for the fathoming
processes and the algorithm’s execution. The table for the plate-based fathoming can be

constructed in O(p) where p is the number of patterns. The construction of the lower bound cost

table requires a sort for each pattern and is constructed in O(p2 log p). Constructing a solution
in section one of the algorithm consists of traversing the pattern list once to select the patterns
and once to update the used flag for each pattern added to the solution. A solution will have no
more than OP patterns because the smallest pattern is for one plate. Therefore, the used flag will
only have to be updated OP times. Hence, a solution can be constructed in O(p +OP- p)or
O(OP- p). Saving the current solution as the best solution requires copying the current solution
that will have no more than OP patterns (because the smallest a pattern can be is for one plate).
Therefore, the copy can be completed in O(OP). The final section of the algorithm, the
backtrack section, requires a traverse of the pattern list for each pattern removed from the
solution. Again, at most, there are OP patterns in the solution and the section can be completed
in OlOP- p). The three internal sections of the algorithm are completed in O(OP : p) time.

There are at most OP patterns in the solution. There are p possible choices for the first pattern,

18

p-1 for the second, p-2 for the third, etc. Therefore there are a possible of p!/ OP! solutions for

OF

the single order problem. If p is larger than OP, then there are on the order of p® solutions and

the outer loop of the algorithm can be executed p® times. Therefore the overall complexity of

the algorithm is O(pop -OP- p) or O(pop) The construction of the fathoming tables is

dominated by the algorithm complexity. In practice, this algorithm executes quickly because of

the small size of OP and p and the fathoming on the branches.

5. BOUNDS

As previously stated, the single order problem is the basis for the two bounding methods
presented in this section. Both methods solve the single order problem for each order in the data
set. The lower bound method relaxes the slab weight constraint allowing overuse of slabs. The
upper bound method solves the orders in a priority sequence using a greedy method. Bolth

bounds are discussed below.

5.1. Greedy Lower Bound

The greedy lower bound algorithm, referred to as GreedyLB, is based upon the partial pattern
enumeration 0-1 integer programming formulation. The optimal solution to the single order
problem is found for each order using the entire inventory. In other words, there is no constraint

on overusing a slab. The basic outline of the algorithm is given in Figure 4.

repeat for each order
build a list of partial burn patterns
reduction of the partial burn patterns
solve single order problem
until all orders processed
Figure 4 - Outline of Greedy Lower Bound procedure.

19

The first step within the loop is to build the list of partial burn patterns for the current
order and the feasible slab ignoring any previous slab usage (Section 3.1). The next step is to
reduce the number of bumn patterns for the single order problem (Section 4.1). The final step is
to solve the single order problem (Section 4.2). This process is repeated fér each order.

The complexity of this algorithm is as follows. Building the partial burn patterns for an

order has the complexity of O(s o) where s is the number of slabs, 7 is the average number of

subitems per order, and OP is the average number of ordered plates. See section 3.1 fora
discussion of the complexity of enumerating partial burn patterns. Removing dominated patterns

requires a sort and therefore has a complexity of O(p log p). Finally, solving the single order
problem has a complexity of olp”) (see section 4.2). Bach of the loop steps is executed o
times. The overall complexity is stated as O(o .5i” +o-plogp+o-p%),

orOlo-(s-i% + plog p+ p° }). In practice, the entire algorithm executes quickly.
Y

5.2. Greedy Upper Bound

The upper bound algorithm, referred to as GreedyUB, is similar to the GreedyL.B algorithm
except that the slab usage is updated after each order is processed. This algorithm also
sequences the orders by priority and the probability of completion from the inventory and

processes the orders in this sequence. The basic outline of the algorithm is given in Figure 5.

build a list of feasible slabs for each order and update completion
probability
sort the orders by priority (schedule week) and completion probability
repeat for each order
build a list of partial burn patterns
reduction of the partial burn patterns
solve single order problem
update inventory with slab usage
until all orders processed
Figure 5 — Outline of Greedy Upper Bound Procedure

20

This algorithm is basically a greedy heuristic. The orders are sequenced by priority and
processed in that sequence. The priority is a combination of the due date and the completion
probability (based on the tons of feasible slabs in the inventory). Slabs are applied to the orders
using the single order problem. The first order has the entire inventory as possible applications.
The second order uses the remaining inventory after the applications to the first order. The third
order uses the remaining inventory after the applications to the first and second order, efc. As
such, this algorithm produces an upper bound to the order fulfillment problem.

The complexity of this algorithm is built up from the individual steps. Building the lists
of feasible slabs and updating the completion probability has a compiexity'of O(S . o) where s is
the number of slabs and ¢ is the number of orders. The sort of the orders has a complexity of
O(ologo). Enumerating the partial burn patterns for an order has the complexity of O(s %")
where i is the average number of subitems per order and OP is the average number of ordered
plates. See section 4.1 fora discussion of the complexity of enumerated partial burn patterns.

Removing dominated patterns requires a sort and therefore has a complexity of O(plog p).
Finally, solving the single order problem has a complexity of O(pop) (see section 4.2). Each of
the loop steps is executed o times. The overall complexity is stated as
O(s-o+oiogo+o-s-z‘0‘” +o'p10gp+0'pop), or O(o»(s+1ogo+s-io’” +p10gp+p0’p)).

As with GreedyLB, the algorithm executes quickly in practice. This is critical as it is

similar to the solution procedure that was used in day-to-day operations at Bethlehem Steel.

6. LAGRANGIAN RELAXATION

This section describes the application of Lagrangian relaxation and Subgradient Optimization to

improve the lower and upper bounds.

21

6.1. Subgradient Optimization Lower Bound

Lagrangian Relaxation and Subgradient Optimization are used to generate improved lower
bounds for SPOF. The constraints represented by equation (4) are added to the objective
function using Lagrangian Relaxation. Since there is a constraint for each slab s € §, there is a

multiplier for each s € §. Equations (14) to (21) present the Lagrangian Relaxation formulation.

S'S SUPC, ., ~(SC,~ A) PW, oy) 2o+ (14)

0e0 seS pefy

Min
S(SC, - 4,)-SW, =2 {SC, — A), +IC
ses ses

st. > 3PP, %, +OF h=OF, YoeO (13)
seS peb, ¢
> Z0p <1 V(o,s)eOxS (16)
pef, . ’
v+ SW, -u, <SW, Vse S (7
r,+SM-u, 2 SM, Vse S (18)

Y(o,5) € OxS, (19
z,,., € {01}, integer (0,9) (19)

vpek,,
h, {01} YoeO (20)
u, & {01} Vses 1)

The constraints represented by equation (4) tied together the original formulation. With

these constraints removed, the Lagrangian Relaxation formulation is separable by order. The

objective function also includes a constant expression, Z (sC. -2,)-SW, - IC .

ses

For each order o € O, the following is the formulation.

22

Min Y Y(PC,,, - (SC, “2)PW,,)z, (22)

5=5 peh,,
st. > >.PP,,2,,,+OP, h =OF, (23)
525 peh,,
Zzo_s’p <1 VseS (24)
pek,,
Zyep € {0,1} , integer :; Ge i;;s @)
h, e {0,1} YoeO (26)
The remaining weight formulation is as follows.
Min - >.(SC, -4,)7, - @D
ses
s.1. 4+ SW, -u, <SW, Vse S (28)
v+ SM,u, 2 SM, VselS (29)
u, € 10,1} VseS (30)

This problem can be solved by inspection. If SC, — A, > 0, then ; will attain its maximum
value, r, = SW, and u, =0. If SC, -4,<0, then r, will attain its minimum value, r, =0 and

u, =1.

This method follows the procedure outlined in Beasley (1993). The termination
parameter 7 is initialized to 2 and is halved after 10 subgradient iterations with no lower bound
improvement (the parameter N is set to 10). The procedure is terminated when 7z < 005. The

method is implemented with the relaxed constraints not being scaled (Subgrad) and scaled

{SubgradS).

23

6.2. Subgradient Optimization Based Upper Bound

During the programming of the greedy upper bound method, it was found that the sequence (sort
order) of the patterns is extremely important. For example, consider two partial bum patterns
with the same cost and producing the same number of ordered plates. The only difference
between the patierns is that they are burned from different slabs. When solving a single order
problem, both of these burn patterns are equivalent. When solving the entire problem using the
GreedyUB, the decision to use or not use a pattern affects future slab availability. Using the first
pattern may produce a higher cost solution than using the second pattern. The reason that the
solutions are different is because the patterns appear in a different sort order. The question
becomes, can better solutions be found by changing the sort order of the partial burn patterns?
The A’s from Subgradient Optimjzation can be used to adjust the cost and the sequence of
the burn patterns. The costs are adjusted using the burn pattern coefficient from the Lagrangian

Relaxation, PC,, , — (sC, - 2,). PW,, ,. The GreedyUB method is executed and a solution is

constructed using the adjusted pattern costs. The cost of the GreedyUB solution is then
generated using the original (unadjusted) pattern costs. The A’s change thé sort order of the
patterns in the single order problems. Therefore, the solution generated from the greedy upper
bound method is different for different A’s.

The Subgradient Optimization based upper bound method combines Subgradient
Optimization and GreedyUB. Each time an improved lower bound is found during the
Subgradient Optimization procedure, a new upper bound is calculated. First, the A°s are used to
adjust the costs of the partial burn patterns as described above. Next, GreedyUB is executed
using the adjusted costs and a new upper bound is generated. The solution is evaluated using the

original pattern costs and the best upper bound is updated if an improved bound is found. Since

24

the upper bound changes, this algorithm could also find improved lower bounds. Two versions
of this procedure are also used; (1) SubgradUB which does not scale the relaxed constraints and

(2) SubgradUBS which does scale the relaxed constraints.

7. COMPUATATIONAL RESULTS

7.1. Data Sets

Seventeen real world data sets, spanning several years, have been collected to test the algorithms.
Each data set is a snapshot of the slab inventory and the existing orders. The amount of time
between the snapshots ranges from one month to over one year. As such, individual orders and
slabs may appear in more than one data set.

Table § displays information on each data set. The “Order Count” column is the total
number of existing orders. The “Week Range” column is the number of weeks into the future in

which orders appear. The “Slab Count” column is the number of slabs in the inventory.

25

Table 8 — Data Set Counts
Data Set Week Range Order Count Slab Count

1 25 2,197 7,075
2 24 2,146 7,080
3 21 - 1,996 6,022
4 14 2,228 5,448
5 13 2,410 4,764
6 18 2,782 5,044
7 15 4,128 5,150
8 19 4,179 6,564
9 24 3,578 5,607
10 30 5,793 5,977
11 25 6,180 6,554
12 19 5,690 11,814
13 19 3,928 10,722
14 52 1,571 9,433
15 38 2,011 8,211
16 37 2,699 8,077
17 33 2,790 4,038

The individual data sets can be partitioned into smaller problems. Consider two orders, A
and B. If order A and slab 1 are a feasible pair and order B and slab 1 are a feasible pair, then
orders A and B have related properties and can be placed into the same partition. If there is no
intersection between the set of feasible slabs for order A and the set of feasible slabs for order B,
then the orders can be placed into separate partitions. By comparing each order’s set of feasible
slabs, the orders can be partitioned.

A real-world implementation of an algorithm for the SPOF must complete within several
hours, or overnight at worse, in order to be used for day-to-day operations. The expected
execution times of the solution methods (especially for the larger data sets, 11, 12 and 13) are
unreasonable for a real-world implementation. It is necessary to explore reductions to the
problem size and a natural reduction for this problem is to reduce the time horizon. (See Huegler
2003 for a review and selection of possible horizons.) The results presented below are for a

limited time horizon of three weeks into the future. Using this limitation coincides well with the

26

overall production scheduling process. Future orders (especially over three weeks into the
future) are rarely used in the day-to-day scheduling activities. Additionally, rolling plates prior
to due date can cause additional handling and storage issues. Table 9 contains the limited time
horizon information on each data set.

Table 9 — Limited Time Horizon Data Set Counts
Data Set ‘Week Range Order Count Slab Count

1 25 722 7,075
2 24 1,198 7,080
3 21 991 6,022
4 14 693 5,448
5 13 810 4,764
6 18 789 5,044
7 15 1,205 5,150
8 19 1,049 6,564
9 24 1,151 5,607
10 30 963 5,977
11 25 903 6,554
12 19 1,281 11,814
13 19 1,131 10,722
14 52 884 9,433
15 38 642 8,211
16 37 639 8,077
17 33 1,043 4,038

7.2. Problem Costs

Table 1 contains the six areas of costs considered for the SPOF. While actual costs were
unavailable for the SPOF, we generated costs to emulate their existing structure. This section
discusses the costs used for the results.

The slab cost is the cost of raw materials (steel) to make the mother plate which is
dependent on the steel properties. Steel produced to tighter restrictions or with extra properties
requires additional processing and therefore, costs more to produce. Slabs.are grouped into
families (called grades) based on their steel properties. The grade costs are randomly generated

based upon the frequency the grades appear in the slab inventory. The frequency of a grade

27

appearing in the inventory is generally inversely proportional to the production cost. High cost
steel is ordered less and therefore produced less than lower cost steel. The costs for the grades
appearing in the top third by frequency are uniformly selected from the cost range [$100, $200].
The costs for the grades appearing in the middle third by frequency are uniformly selected from
the cost range [$150, $250]. The costs for the remaining grades are uniformly selected from the
cost range [$200, $300]. Two modifiers representing tighter property restrictions and additional
processing increase the grade costs. The modifier costs are selected from the cost ranges [$15,
$50] and cost range [$5, $35] respectively. The slab cost per ton is calculated by adding the
grade and modifier costs.

The rolling cost is made up of two components: (1) slab heating costs and (2) the cost to
roll the slab on the plate mill. The cost to roll a slab is set at $450 with a $2/ton cost to heat the
slab with a $3/ton premium for oversized slabs (they require special handling).

The inventory holding cost represents the opportunity cost of cash tied up in inventory.
The cost used here is 11% per year or .212% per week. To calculate the holding cost of a slab
for one week, multiply the slab weight by the grade cost by .212%.

The burning cost is the cost associated with burning a slab into two pieces. There are two
components to the burning cost, setup cost and yield loss. The burning set.up cost is $50 per
burn with yield loss measured in weight and the cost calculated using the grade cost.

The customer service cost and the new production costs are fixed costs. The customer
service cost is incurred when an order cannot be completely fulfilled on time. The new
production cost is incurred when caster production is ordered. The customer service cost and

new production cost are $10,000 and $2,000 respectively.

28

7.3. Implementation

All of the algorithms are coded in C and C++ and compiled using the Microsoft Visual C++ 6.0
compiler. The single order linear programs in the Subgradient Optimizatibn based solution
methods are solved using the GNU Linear Programming Kit version 3.2.3. The data was
collected on a 900 MHz Pentium 4 PC with 384 megabytes of memory running Windows 2000
Professional.

Each algorithm executes the single order problem many times. Generally the single order
problem solution procedure executes efficiently but on occasion takes excessive time. Therefore,
the execution time is limited to 3 minutes for an individual problem. Also, the Subgradient

Optimization algorithms are limited to 2 hours of execution time per partition.

7.4. Resuits

Table 10 presents the gaps between the GreedyLB lower bound and the GfeedyUB upper bound
for each of the 17 data sets. The gap in this table is used to calculate the percent reductions in

Table 11 through Table 14.

29

Table 10 — Initial Gap

Data Set GreedyLB GreedyUB Gap
1 $ 70848801 $ 8019435 $ 170,634
2 $ 12,155,865 § 12,638,926 § 483,061
3 $ 11223497 $ 11,876,023 § 652,526
4 $ 7,104,387 $ 7,643,929 § 539,542
5 $ 9478161 $ 9819914 § 341,753
6 $ 8,817,151 $ 9479931 § 662,780
7 $ 14,035,253 $ 15,738,801 § 1,703,548
8 $ 12,757,340 $ 13,636,104 § 878,764
g $ 13,456,737 $ 14,276,855 $§ 820,118
10 $ 11,139,463 $ 12,013,858 § 874,395
11 $ 11,217,555 § 12,241,776 § 1,024,221
12 $ 17,038,781 $ 17,643,655 § 604,874
13 $ 12,163,659 $ 12,677,546 $§ 513,887
14 $ 9475945 § 9,722,681 § 246,736
15 $ 5214,654 $ 5498562 § 283,908
16 $ 6,558,847 $ 6,909,098 § 350,251
17 $ 10,541,097 § 11,658,410 § 1,117,313

Overall $ 180,227,193 $191,495,504 § 11,268,311

Table 11 displays the gap reduction for the Subgradient Optimization procedure without
scaling (Subgrad). In general, the gap is improved just over 30%. The “Reduction” column
contains the percent reduction and is the difference between the gap in this table and the gap in

Table 10 divided by the gap in Table 10.

30

Table 11 — SubgradUB Gap Improvement

Data Set Subgrad GreedyUB Gap Reduction
1 $ 7,899,878 $ 8,019435 § 119,557 29.93%
2 $ 12235387 § 12,638,926 § 403,539 16.46%
3 $ 11,382,946 § 11,876,023 § 493,077 24.44%
4 $ 7250616 $ 7,643,929 § 393313 27.10%
5 $ 9,562,936 $ 9819914 § 256,978 24.81%
6 $ 9,056,792 $ 9479931 § 423,139 36.16%
7 $ 14,704,604 $ 15,738,801 § 1,034,197 39.29%
8 $ 13,047,236 § 13,636,104 § 588,868 32.99%
9 $ 13,779,871 $ 14276855 § 496,934 39.40%
10 $ 11,501,654 $ 12,013,858 § 512,204 41.42%
11 $ 11,553,417 $ 12,241,776 § 688,359 32.79%
12 $ 17,213,287 § 17,643,655 § 430,368 28.85%
13 $ 12201493 $ 12,677,546 $ 476,053 7.36%
14 § 9497674 $ 9,722,681 § 225,007 8.81%
15 $ 57243299 § 5498562 § 255,263 10.09%
16 $ 6,672,983 § 6,909,098 § 236,115 32.59%
17 $ 10,898,841 $ 11,658,410 § 759,569 32.02%

Overall $ 183,702,914 $191,495,504 § 7,792,590 30.85%

Table 12 presents the gap improvement from the same algorithm with scaling

(SubgradS). Using scaling reduces the gap about another 1%.

31

Table 12 — SubgradUBS Gap Improvement

Data Set SubgradS GreedyUB Gap Reduction
1 $ 7,900,118 $ 8019435 § 119317 30.07%
2 $ 12,243,086 $ 12,638,926 $ 395,840 18.06%
3 $ 11,382,958 $ 11,876,023 $ 493,065 24.44%
4 $ 7,250,794 § 7,643,929 § 393,135 27.14%
5 $ 9563727 $ 9819914 § 256,187 25.04%
6 $ 0,056,956 $ 9,479,931 § 422975 36.18%
7 $ 14,701,867 § 15,738,801 $ 1,036,934 39.13%
8 $ 13,053,544 $ 13,636,104 $ 582,560 33.71%
9 $ 13,785,545 $ 14,276,855 § 491,310 40.09%
10 $ 11,491,324 § 12,013,858 $ 522,534 40.24%
11 $ 11,557,429 $ 12,241,776 § 684347 33.18%
12 $ 17217627 $ 17,643,655 § 426,028 29.57%
13 $ 12,211,155 $ 12,677,546 $ 466,391 9.24%
14 $ 9498561 § 9,722,681 $ 224,120 9.17%
15 $ 5253,185 § 5498562 § 245377. 13.57%
16 $ 6,673,331 $ 6,909,098 $ 235767 32.69%
17 $ 10,901,940 $ 11,658,410 $ 756,470 32.30%

Overall $ 183,743,147 $191,495,504 § 7,752,357 31.20%

Table 13 shows the improvement from the SubgradUB algorithm without scaling. This

32

method is comparable to Subgrad with an improvement of just over 30%.

Table 13 —~ SubgradUB Gap Improvement

Data Set SubgradUB GreedyUB Gap Reduction
1 § 7,900,164 § 8019435 § 119,271 30.10%
2 $ 12235849 § 12,638,926 § 403,077 16.56%
3 $ 11,388,169 $ 11,876,023 § 487,854 25.24%
4 $ 7251302 $ 7,643,929 § 392,627 27.23%
5 $ 9,563,831 $ 9819914 § 256,083 25.07%
6 $ 9057905 $ 9,479,931 $ 422,026 36.32%
7 $ 14,708,135 $ 15,738,801 § 1,030,666 39.50%
8 $ 13,042,829 $ 13,636,104 § 593,275 32.49%
9 $ 13,782,592 $ 14,276,855 § 494,263 39.73%
10 $ 11,501,932 § 12,013,858 § 511,926 41.45%
11 $ 11,555267 $ 12,241,776 $ 686,509 32.97%
12 $ 17214463 § 17,643,655 § 429,192 29.04%
13 § 12,201,720 $ 12,677,546 § 475826 7.41%
14 $ 9498465 § 9,722,681 $§ 224,216 9.13%
15 $ 5248,101 $ 5498562 § 250,461 11.78%
16 $ 6,634,637 $ 6,909,098 § 274,461 21.64%
17 $ 10,905,197 $ 11,658,410 § 753,213 32.59%

Overall § 183,690,558 §$191,495,504 $ 7,804,946 30.74%

Table 14 presents the results from the SubgradUB with scaling, or SubgradUBS. This

performs slightly better than SubgradS, with a gap reduction of 31.33%.

33

Table 14 — SubgradUBS Gap Improvement

Data Set SubgradUBS GreedyUB Gap Reduction
1 $ 7,9002i4 $ 8019435 § 119221 30.13%
2 $ 12,243,098 $ 12,638926 § 395828 18.06%
3 $ 11,386,060 $ 11,876,023 § 489,963 24.91%
4 $ 7,251,784 § 7,643,929 § 392,145 27.32%
5 $ 9,564,153 $ 9819914 § 255761 25.16%
6 $ 9058701 $ 9,479,931 § 421,230 36.44%
7 $ 14706451 § 15,738,801 § 1,032,350 39.40%
8 $ 13,054,073 $ 13,636,104 $ 582,031 33.77%
9 $ 13,787,461 § 14276855 § 489,394 40.33%
10 $ 11,492,536 $ 12,013,858 § 521,322 40.38%
11 $ 11,559,557 § 12,241,776 § 682,219 33.39%
12 $ 17,214,791 § 17,643,655 § 428,804 29.10%
13 $ 12,211,164 § 12,677,546 § 466,382 9.24%
14 $ 9,499,097 § 9,722,681 § 223,584 9.38%
15 $ 5255557 $ 5498562 § 243,005 14.41%
16 $ 6,667,754 S 6,909,098 § 241,344 31.09%
17 $ 10,904,639 $ 11,658,410 $ 753,771 32.54%
Overall $ 183,757,090 §$191,495504 § 7,738,414 31.33%

Table 15 presents the gap between the best lower bound and the GreedyUB upper bound.
The best lower bound, BestLB, is calculated from Subgrad, SubgradS, SubgradUB, and
SubgradUBS. The gap in this table is used to calculate the percent reduction in Table 16 and

Table 17.

34

Table 15 — BestLB Gap

Data Set BestLB GreedyUB Gap
1 $ 7,900,447 $ 8019435 $ 118988
2 $ 12,243,567 $ 12,638,926 § 395,359
3 $ 11,388,380 $ 11,876,023 § 487,643
4 $ 7251908 $ 7,643,929 § 392,021
5 $ 9,564,308 $§ 9819914 § 255,606
6 $ 9058992 $ 9479931 § 420,939
7 $ 14,709,134 $ 15,738,801 § 1,029,667
8 $ 13,054,527 $ 13,636,104 § 581,577
9 $ 13,787,678 $ 14,276,855 $ 489,177
10 $ 11,503,327 § 12,013,858 § 510,531
11 $ 11,559,759 $ 12,241,776 § 682,017
12 $ 17,218,573 § 17,643,655 § 425,082
13 $ 12,211,785 $ 12,677,546 § 465,761
14 $ 9499527 $ 9,722,681 § 223,154
15 $ 5255586 $ 5,498,562 $ 242,976
16 $ 6,673,999 $ 6,909,098 § 235,099
17 $ 10,905,504 $ 11,658,410 § 752,906

Overall $183,787,001 § 191,495,504 § 7,708,503

Table 16 contains the upper bound improvements from the SubgradUB without scaling.
Overall, the gap is improved close to 34%, which represents an actual savings of over the current
solution method of about $3.8 million over the three-week period, or an average of 2% for the 17

data sets.

35

Table 16 — SubgradUB Gap Improvement

Data Set BestLB SubgradUB Gap Reduction Savings
1 $ 7,900,447 § 7976994 § 76,547 24.87% 0.53%
2 $ 12,243,567 $ 12,508,095 § 264,528 27.08% 1.04%
3 $ 11,388,380 $ 11,666,330 § 277,950 32.14% 1.77%
4 $ 7.251,908 $ 7420661 § 168,753 41.38% 2.92%
5 $ 9,564,308 $ 9,727,599 $ 163,291 27.01% 0.94%
6 $ 9,058,992 $ 9,246,751 § 187,759 35.18% 2.46%
7 $ 14,709,134 $ 15,052,807 § 343,673 4027% 4.36%
8 $ 13,054,527 $ 13,321,359 § 266,832 35.82% 2.31%
9 $ 13,787,678 $ 14,024,464 § 236,786 30.77% 1.77%
10 $ 11,503,327 § 11,802,062 § 298,735 24.22% 1.76%
11 $ 11,559,759 §$ 11,815,166 §$ 255,407 41.65% 3.48%
12 $ 17,218,573 § 17,453,050 $ 234,477 31.51% 1.08%
13 $ 12,211,785 § 12460359 § 248,574 42.26% 1.71%
14 $ 9,499,527 $ 9,679,553 § 180,026 17.48% 0.44%
15 $ 5,255,586 $ 5466954 $ 211,368 11.13% 0.57%
16 $ 6,673,999 $ 6893330 § 219,331 450% 0.23%
17 $ 10,905,504 $ 11,155,013 § 249,509 45.05% 4.32%
Overall $ 183,787,001 § 187,670,547 § 3,883,546 33.94% 2.00%

Table 17 presents improvements from the SubgradUB with scaling. Overall, the gap is
improved over 35%. This represents an actual savings of close to $4.0 million or 2.07 % for the

17 data sets.

36

Table 17 — SubgradUBS Gap Improvement

Data Set BestLB SubgradUBS Gap Reduction Savings
1 $ 7,900,447 $ 7,976,262 $ 75,815 25.30% 0.54%
2 $ 12,243,567 § 12,493,374 § 249,807 30.13% 1.15%
3 $ 11,388,380 § 11,644942 § 256,562 3541% 1.95%
4 $ 7,251,908 § 7413756 § 161,848 42.66% 3.01%
5 $ 9,564,308 § 9,720,565 § 156,257 29.07% 1.01%
6 $ 9,058,992 $ 9,235691 § 176,699 36.85% 2.58%
7 $ 14,709,134 $§ 15,053,359 § 344,225 40.24% 4.36%
8 $ 13,054,527 $ 13,318,331 § 263,804 36.16% 2.33%
9 $ 13,787,678 $ 14,023,268 § 235,590 30.92% 1.78%
10 $ 11,503,327 § 11,800,577 § 297,250 24.39% 1.78%
11 $ 11,559,759 $ 11,789,884 § 230,125 44.12% 3.69%
12 $ 17,218,573 $ 17,439,308 § 220,735 33.78% 1.16%
13 $ 12,211,785 $ 12,458,409 § 246,624 42.64% 1.73%
14 $ 9499527 $ 9,677,403 § 177,876 18.35% 047%
15 $ 5,255,586 $ 5,455,175 $ 199,589 15.28% 0.79%
16 $ 6,673,999 $§ 6,881,741 § 207,742 7.81% 0.40%
17 $ 10,905,504 § 11,150,225 § 244,721 45.48% 4.36%
Overall $ 183,787,001 $ 187,532,270 § 3,745,269 35.17% 2.07%

Table 18 displays the average execution times for each algorithm. The times are

presented in seconds. Using scaling improves the execution times of the Subgradient based

methods. However, even with the limited time horizon, the Subgradient based algorithms

execute slowly on the larger data sets.

37

Table 18 — Average Execution Times (HH:MM:SS.5S)

Data
Set GreedyLB GreedyUB _ Subgrad SubgradS SubgradUB SubgradUBS
1 00:00:06.41 00:00:06.37 01:23:27.50 01:11:15.81 02:14:36.78 01:48:32.68
2 00:00:51.23 00:00:49.90 01:57:52.86 02:28:39.89 02:59:26.92 02:31:53.12
3 00:00:08.32 00:00:07.72 00:57:21.65 00:41:43.95 01:25:11.27 01:04:03.80
4 00:00:04.44 00:00:04.81 00:25:36.66 00:24:52.10 00:43:19.95 00:36:51.25
5 00:00:05.44 00:00:05.97 00:28:25.94 00:25:15.29 00:48:45.31 01:31:20.77
6 00:00:08.77 00:00:07.99 00:33:58.90 00:28:50.08 00:53:41.63 01:00:52.17
7 00:00:12.69 00:00:09.70 01:02:06.55 00:58:35.24 01:49:22.81 01:37:18.80
8 00:01:21.54 00:01:17.60 00:56:42.97 00:51:09.25 03:21:13.66 02:42:40.05
9 00:01:00.94 00:00:42.62 00:52:07.21 00:48:19.80 02:31:20.16 ~ 02:38:32.98
10 00:00:37.26 00:00:25.58 00:34:07.68 00:33:13.73 01:02:53.19 00:46:03.57
11 00:00:10.44 00:00:08.15 00:43:33.93 00:43:06.84 01:00:46.70 01:01:37.46
12 00:00:37.08 00:00:40.23 06:14:35.79 06:16:41.97 06:25:1541 06:24:08.33
13 00:00:26.41 00:00:27.39 04:57:56.17 04:45:57.68 05:27:45.00 05:20:21.33
14 00:03:25.05 00:03:28.04 03:24:10.74 03:17:28.13 04:53:03.76 04:15:49.53
15 00:00:09.81 00:00:08.16 01:09:00.97 00:53:12.24 02:16:11.97 01:52:51.65
16 00:00:12.33 00:00:11.40 01:12:22.31 01:02:31.70 02:16:13.22 02:16:23.11
17 00:00:09.13 00:00:06.39 00:39:57.85 00:46:03.44 00:58:27.88 01:15:30.08
Average 00:00:34.55 00:00:32.24 01:37:15.63 01:33:56.30 02:25:09.15 02:16:45.36

8. APPLICATION OF THE MULTIPLIERS

The execution of the SubgradUB solution method generates a multiplier value for each slab.

These multipliers are used by the GreedyUB solution to adjust the slab costs and generate an

improved solution. Figure 6 is a chart comparing the slab multipliers (lambdas) for partition

three of data set one. The x-axis is the partition slabs sorted by increasing lambda values. The

y-axis is a running percent of slabs in the solution. The graph is read in the following manner,

14.47% (y-axis) of the slabs in the SubgradUB solution have a Jambda value of .0518835 (x-

axis) or less. Approximately 80% of the slabs in the SubgradUB solution have a lambda value of

.12 or above. Larger multiplier values correspond to the desirability of an inventory slab.

38

100.00%
90.00%
80.00% -
70.00%
60.00% -
50.00%
40.00%
30.00%
20.00%
10.00% +

0.00% -

Cumulative Percent of Solution

0.0000000
0.0292016
0.0426574
0.0452408
0.0473978
0.0511181
0.0518835
0.0533022
0.0536753
0.0558388
0.0604152
0.0674880
0.0738229
0.0796501
0.1299780
0.1414650
0.1435690
0.1485410
0.1525260

Lambda Value

Figure 6 —- Cumulative Percent of Solution vs. Multiplier (Lambda) Value

The SubgradUB slab lambdas are useful if a new rush order appears. Rush orders occur
regularly and are generally caused by production mistakes. When a rush order appears, instead
of running the SubgradUB solution method over, the multipliers from the previous execution can
be used by the GreedyUB solution method.

The following procedure is used to test the effects of using the multipliers: A rush order
is added to the data set and the GreedyUB algorithm is executed with and \‘Nithout using
multipliers. The results are then compared.

The time horizon for the data sets was again restricted to three weeks. The orders with
due dates beyond the 3 week time horizon are used as rush orders. One at a time, each order 18
considered as a rush order. Table 19 and Table 20 present the basic results of using the
multipliers. The “Improved” column contains the number of times using the multipliers

produced an improved solution over not using the multipliers. The “Total” column is the number

39

of different rush orders. Overall, using the multipliers improved the rush order solutions around

97% of the time, 96.84% using lambdas from SubgradUB and 97.15% using multipliers from

SubgradUBS.
Table 19 — Rush Order Improvement with Multipliers from No Scaling
Data Set Improved Total Percent
1 218 239 91.21%
2 760 786 96.69%
3 1,227 1,263 97.15%
4 1,035 1,105 93.67%
5 969 1,001 96.80%
6 1,039 1,075 96.65%
7 2,436 2,516 96.82%
g 2,382 2,486 95.82%
9 1,698 1,722 98.61%
10 5,367 5,398 99.43%
11 3,146 3,295 95.48%
12 1,819 1,893 96.09%
13 1,029 1,065 96.62%
14 134 147 91.16%
15 226 255 88.63%
16 389 427 91.10%
17 1,081 1,096 98.63%
Overall 24,955 25,769 96.84%

40

Table 20 — Rush Order Improvement with Multipliers from Scaling

Data Set Improved Count Percent
1 363 429 84.62%
2 778 807 96.41%
3 822 859 95.69%
4 1,096 1,172 93.52%
5 1,143 1,200 95.25%
6 1,397 1,496 93.38%
7 2,352 2,380 98.82%
8 2,452 2,521 97.26%
9 1,662 1,722 98.26%
10 3,213 3,229 99.50%
11 4,089 4,282 95.49%
12 2,587 2,605 99.31%
13 1,033 1,039 99.42%
14 155 167 92.81%
15 1,075 1,091 98.53%
16 2,116 2,136 99.06%
17 1,205 1,241 97.10%
Overall 27,568 28,376 97.15%

Table 21 and Table 22 present the results. The “Count” column it the number of rush
orders considered for each data set. The “Improved” column contains the percent of the time
using the multipliers improved the GreedyUB solution. The “Savings” column contains the cost
savings from using the multipliers. Table 21 presents the results using the multipliers generated
from the no scaling version; SubgradUB while Table 22 presents the results using the scaling

version, SubgradUBS.

41

Table 21 — Rush Order Improvements with No Scaling
Data Set Count Improved Savings

1 239 91.21% 0.66%
2 786 96.69% 0.64%
3 1,263 97.15% 1.18%
4 1,105 93.67% 2.28%
5 1,001 96.80% 0.99%
6 1,075 96.65% 2.92%
7 2,516 96.82% 3.60%
8 2,486 95.82% 1.61%
9 1,722 98.61% 1.73%
10 5,398 99.43% 1.18%
11 3,295 95.48% 1.28%
12 1,893 96.09% 1.29%
13 1,065 96.62% 4.97%
14 147 91.16% 0.85%
15 255 88.63% 0.61%
16 427 91.10% 0.54%
17 1,096 98.63% 7.28%
Overall 25,769 96.84% 2.21%

Table 22 — Rush Order Improvements with Scaling
Data Set Count Improved Savings

I 429 84.62% 0.56%
2 807 96.41% 0.85%
3 859 95.69% 1.50%
4 1,172 93.52% 2.48%
5 1,200 95.25% 1.12%
6 1,496 93.38% 3.12%
7 2,380 98.82% 3.63%
8 2,521 97.26% 1.87%
9 1,722 98.26% 1.82%
10 3,229 99.50% 1.49%
11 4,282 95.49% 1.40%
12 2,605 99.31% 1.04%
13 1,039 99.42% 4.80%
14 167 92.81% 1.07%
15 1,091 98.53% 0.47%
16 2,136 99.06% 0.40%
17 1,241 97.10% 7.15%
Overall 28,376 97.15% 2.13%

Using the multipliers maintains the level of savings achieved by the SubgradUB

algorithms. The savings here are higher than the savings reported in the previous section

42

because not all of the partitions are included in these results. Only partitions with generated
multipliers are included here. The results illustrate, that when no time is available for re-solution
of the complete algorithm (over six hours for the larger data sets), using the multiplier values in
GreedyUB leads to improved savings. Recall that this algorithm solved in 32 seconds, on

average, for the 17 data sets.

9. CONCLUSIONS

This paper presented a 0-1 integer formulation and solution methods for the steel plate order
fulfillment problem (SPOF). The SPOF is a generalization of one-dimensional cutting and
packing problems.

Three methods are presented for generating and improving lower bounds for the problem,
including a greedy heuristic and two methods based on Langrangean Relaxation and Subgradient
Optimization. It is shown that the lower bound methods can reduce the solution gaps in excess
of 30%. Two similar methods are also presented for generating and improving upper bounds. It
is shown that the lower bound methods can reduce the solution gaps in excess of 34%. The
upper bound improvements represent a real-world cost reduction of over 2%, or almost $4
million dollars over a three-week period, for the 17 analyzed data sets.

The presented approaches were able to solve real-problems over a three-week period,
representing problems with, on average, 6,916 slabs and 950 orders (for the three week time
horizon)., The solutions were achieved in less than 7 hours on a 900 MHz desktop computer.
Furthermore, multiplier values provided by the Subgradient Optimization methods are shown to
be useful for handling rush orders such that the time-consuming improvement procedure does

not need to be re-executed.

43

Our models tied the inventory assignment decisions to actual production through use of
“hypothetical slabs” in that if inventory could not satisfy an order, new production was required.
Future research may look at examining a closer tie between inventory assignment and production
scheduling solutions, as they are highly integrated. Unfortunately, this will lead to even larger

problems to solve, but may lead to improved solutions and better customer service.

10. REFERENCES

D. Adelman, G. L. Nemhauser, 1999, Price-directed control of remnant inventory systems.
Operations Research 47 889-898.

- , , M. Padron, R. Stubbs, R. Pandit. 1999. Allocating fibers in cable
manufacturing. Manufacturing and Service Operations Management 1 21-35.

J. Antonio, F. Chauvet, C. Chu, J-M. Proth. 1999. The cutting stock problem with mixed
objectives: Two heuristics based on dynamic programming. European Journal of
Operational Research 114 395-402.

C. Arbib, F, Marinelli, F. Rossi, F. Di Iorio. 2002. Cutting and reuse: An application from
automobile component manufacturing, Operations Research 50 923-934,

J.E. Beasley. 1993, Lagrangian Relaxation. C.R. Reeves (Ed.), Modern Heuristic Methods.
Blackwell Scientific Publications, Oxford, 243-303.

0. J. A. Chiotti, J. M. Montagna. 1998. A global approach for the provision of bar pieces in a
metallurgic firm. Mathematical and Computer Modeling 28 73-89.

C. Chu, J. Antonio. 1999. Approximation algorithms to solve real-life multicriteria cutting stock
problems. Operations Research 47 495-508. ‘

J. Cohen, H-M. Wallmeier, U. Twisselmann, B, Lantz, 3. O’Dell. 1984. Enhancing hot mill slab
yield, usage and throughput using expert systems and numerical optimization. ISS
Technical Paper.

R. W. Haessler. 1978. A procedure for solving then 1.5-dimensional coil slitting problem. AI7E
Transactions 10 70-75,

—————————— , M. A. Vonderembse. 1979. A procedure for solving the master slab cutting stock
problem in the steel industry. AI/E Transactions 11 161-165.

P. A. Huegler. 2003, Fulfilling Customer Orders for Steel Plate from Existing Inventory. Ph.D.
Dissertation, Industrial and Systems Engineering, Lehigh University, Bethlehem,
Pennsylvania.

J. R. Kalagnanam, M. W. Dawande, M. Trumbo, H. S. Lee. 2000. The surplus inventory
matching problem in the process industry. Operations Research 48 505-516.

F.J. Vasko, M, L. Creggar, K. L. Stott, L. R. Woodyatt. 1994. Assigning slabs to orders: An
example of appropriate model formulation. Computers and Industrial Engineering 26
797-800.

~~~~~~~~~~ , D. D. Newhart, K. L. Stott, Jr. 1999. A hierarchal approach for one-dimensional cutting
stock problems in the steel industry that maximizes yield and minimized overgrading.
European Journal of Operational Research 114 72-82.

44



~~~~~~~~~~ , F. E. Wolf, K. L. Stott, O. Ersham Jr. 1992. Bethlehem steel combines cutting stock
and set covering to enhance customer service. Mathematical and Computer Modeling 16
9-17.

M. A. Vonderembse. 1995. Exploring a design decision for a cutting stock problem in the steel
industry: all design width are not created equal. IIE Transactions 27 358-367.

---------- , R. W. Haessler. 1982a. A mathematical programming approach to schedule master slab
casters in the steel industry. Management Science 28 1450-1461.

- . 1982b. Scheduling master slab casters. Iron and Steel Engineer. 59, 39-43.

L. Tang, J. Liu, A. Rong, Z. Yang. 2001a. An effective heuristic algorithm to minimize stack
shuffles in selecting steel slabs from the slab yard for heating and rolling. Journal of the
Operational Research Society 52 1091-1097

- - . 2001b. A review of planning and scheduling systems and

methods for integrated steel productions. European Journal of Operational Research 133
1-20.

45

