Job Shop Scheduling In Manufacturing:
An Approach Using Petri Nets and Heuristic Search

Gonzalo Mejia
Universidad de los Andes
Bagota, Columbia

Nicholas G. Odrey
Lehigh University

Report No. 04T-007

JOB SHOP SCHEDULING IN MANUFACTURING:

AN APPROACH USING PETRI NETS AND HEURISTIC SEARCH
by

GONZALQ MEJIA, Assistant Professor, Department of Industrial Engineering, Universidad de los Andes,
Bagota, Columbia

NICHOLAS G. ODREY, Professor, Department of Industrial and Systems Engineering, Lehigh University ,
Bethlehem, PA, 18015

ABSTRACT. Petri Nets have been extensively used to model different types of manufacturing systems due to
their power to capture the complex characteristics of many of such systems. However, the “state explosion” and the
NP-hard nature of many scheduling problems have prevented their use for optimization. In this paper, we propose an
algorithm that combines the A* Search with an aggressive node pruning to intelligently search the reachability graph
of a Petri Net. The primary purpose of the proposed algorithm is to reduce the search on the state space without
compromising much the solution quality. Computational tests were conducted on both randomly generated and
classical job shop problems. In addition, the performance of our algerithm is compared against the Beam Search
and the Shifting Bottleneck algorithms a benchmark comparison with other methods,. The obtained results suggest
that the Petri Net approach can be a powerful tool for scheduling and control of manufacturing systems.

Keywords: Petri Nets; A* Search; Beam Search; Job Shop Scheduling; Manufacturing Systems.
1. Introduction

Petri Nets have been extensively used to model a number of manufacturing systems due to their capability to
model the asynchronous, concurrent non-deterministic nature of such systems. A very good survey on the topic
modeling with Petri Nets was carried out by Moore and Gupta (1996). Petri Nets, however, suffer from “state
explosion” which has prevented their application for optimization (i.e. planning and scheduling in the manufacturing
systerns field). Recall that 2 Petri Net is a simplified representation of a graph (the reachability graph) and such a
graph can be huge even for small nets. Hence, performing an exhaustive search on the reachability graph is only
feasible in very limited instances.

In order to reduce the effort required to search the reachability graph, past approaches have used an adaptation of

the common A* search aigorithm. The A* search algorithm for Petri Nets is a branch and bound-like algorithm

which expands only the most promising nodes of the Petri Net reachability graph. Seminal papers date from 1994
(Lee and DiCesare, 1994). Since then, other authors have presented improved versions of the algorithm. For
example, Sun et al (1994) limited the expansion of the net reachability graph by selectively pruning non-promising
branches; Xiong and Zhou (1998) implemented the A* search with limited back-tracking capability; Jeng and Chen
(1998) used the Pefri Net state equations to calculate lower bounds for makespan and Reyes-Moro et al (2002)
presented a staged search approach combined with a pruning strategy to reduce the search space. These newer
versions of the algorithm have shown good results when compared against the performance of the original algorithm
developed by Lee and DiCesare (1994). However, there are two major issues that are have not received much
attention: (i) How the A* search algorithm performs on standard test problems with known optimal solztions, and
(it) how A* search derived algorithms on Petri Nets compares against other scheduling techniques.

This paper extends the work by the authors (Mejia and Odrey, 2003). In this paper, our version of the A¥
algorithm (named as the Beam A* Search (BAS)) is presented. The BAS algorithm incorporates a number of
features that improve both the performance and speed of the basic algorithm introduced by Lee and DiCesare
(1994). Such features, described below, include selective pruming (within a beam, as explained later in this
document}, limited expansion, and controlied search deepening. The experiments that validate our approach were
carried out in two parts: First, the performance of the BAS algorithm was compared against an exhaustive search
method to investigate both the reduction of the generated state space and the behavior of the solution quality. The
computational results show that our algorithm reduces drastically the search space while producing near-optimal
solutions. In the second part, the BAS algorithm was tested on classical job shop problems with known optimal
solutions and the results are compared against other similar algorithms. The obtained results show that the BAS
algorithm performs competitively both in CPU times and solution quality against other methods. In this way, we
conclude that heuristic search methods combined with Petri Nets can be a very powerfirl tool for scheduling and
control for a wide variety of manufacturing systems, We emphasize that our approach is not intended to be another
job shop scheduling algorithm. The job shop problems are only used as a benchmark. The virtue of this approach is
the handling of the complex features of Flexible Manufacturing Systems. These include alternative routings, dual
resources, buffers of finite capacity, material handiing machines, re-circulation, batch sizes, etc.

This paper is organized as follows: First, in section 2, concepts of modeling with Petri nets are introduced. Next

in section 3, time-space state equations to track the net evolution are presented. In section 4, the BAS algorithm is

described in detail. Section 5 presents the results of our experiments, Conclusions and further research are discussed

in the last section.
2. Modeling With Petri Nets

A Petri Net, as defined by Desrochers and Al-Jaar, (1995) is a bipartite directed graph having two types of nodes,
namely places and transitions. Places are generaily used to represent actions and/or conditions and transitions serve
to model events. Additional entities named tokens reside in the places and represent the truth of the condition
associated with the specific place. Tokens are moved between places by effect of fransition “firings”. Arcs between
places and transitions define the direction of the token flow. Desrochers and Al-Jaar (1995) formally define a Petri
Net as a 6-tuple {P, 7. I, O, My, W} in which P is a set of places, T is a set of transitions, PN =, I={Px T} isa
set of input arcs from places to transitions, O ={T x P} is a set of output arcs from fransitions to places, My is the
initial marking which represents the number of tokens in each place at the initial state and W is a set of weights for
each arc. The weight w of an input arc (p x £} € {P x T7 represents the number of tokens that are required in place p
to enable the transition t. Similarly, the weight w of an output arc (¢ x p) € {T x P} represents the number of tokens
that are placed in place p after transition ¢ fires. Without loss of generality, all weights w € # are set to 1 in this
research. In the remainder of the document, the set of weights is dropped from the definitions
Definition. Timed Petri Net (TPN): A TPN is a 6-tuple {P, T. I, O, M, t} where P, T, I, O and M, are defined as
before and v is the set of time delays associated with places.

Definitions. Source and Sink Places: A Source Place is a place with no incoming arcs. A Sink Place is a place with
no ouigoing arcs.

Definition. Path: A Path is a sequence of nodes (x;, x;...xy) (places or transitions) such that there exists a directed
arc between two consecutive nodes (x; x;.) 1 = 1...N-1. The definition implies that the arc connects a transition to a
place or vice versa. This definition was taken from (Zhou and DiCesare, 1994).

Definition. Sequence of Activities (SA). A SA is a Petri subnet that is intended to model the routing of a job or a
part (the distinction depends on the subject of the representation). Here on the SA will be related to jobs. A SA
accounts for precedence constraints, alternative routings and timing of operations. Each SA has a unique Source
Place and a unique Sink Place. Places that belong to a SA are denoted as operational places and represent either
conditions {e.g. part finished} or actions {e.g. part being processed). Places representing availability of resources are

not accounted for in the definition of the SA. Transitions represent the beginning or the end of an action. Formaliy:

*« A SA is an acyclic and connected state machine. In a state machine, every transition has only one input
and one output arc.

» A SA contains no cycles, No path in the net can have duplicated nodes.

s All places have at least one input and one output arc except the Source Place (no incoming arcs) and the
Sink Place (no outgoing arcs}).

Generally, any job operation is modeled with a “precondition” place, a timed “action” place and a “post-
condition” place. The precondition place represents (when marked) a job waiting in queue; the action place
represents the execution of the operation and the post-condition place represents the successful termination of the
operation. Transitions in all cases represent the start or end of an operation. More complex situations such as
alternative routings can be also represented. For example, consider a job having the following routing as shown in
table 1.

Table 1. Example of Job Routing

Operation 1 2 3
Resource M, M, or My My

The SA subnet for this job is represented as shown in figure 1. Table 2 shows the description for each place.
Transitions represent the start or the end of an operation. A goal of the tokens residing at the operational places

would be traversing the SA subnet from the corresponding Source Place to the Sink Place,

P: P2 Ps3 Pa Ps P Ps

Ps

Figure 1. An example Sequence of Activities (SA) for the routing of a job.

Table 2. Description of places for the net in figure 1

Job being processed by Job being processed by
Pi |Jobready P4 | machine 2 P7 | machine 4
Job being processed by Job being processed by ..
P2 | machine 1 Ps | machine 3 Ps | Job Finished
ps | Operation 1 finished Ps | Operation 2 finished

Definition. Set of Sequences of Activities (SSA). A SSA is the Petri Net formed by as many SAs as jobs there exist
in the system. A SSA consists of one or more unconnected SAs. A SSA represents the routing of the activities of ali
current jobs that have been allocated to a manufacturing system.

Definition. Set of Sequences of Activities with Resources (SSAR). A S8SAR represents the addition of resources to
SS8A. The addition of resources implies addition of resource places which represent the availability of a resource,
and arcs from/to the resource places to/from the transitions of the SSA. The number of resource places corresponds
in this case to the total number of machines. New tfransitions are not added. The resource allocation occurs when a
transition, having one or more resource places as input places, “fires” (i.e. tokens are removed from all the transition
input places and put into its output places). Resources become unavailable when allocated. Similarly, resources are
released and become available when & transition, having one or more resource places as output places, fires.
Additional provisions must be taken to ensure the “proper” allocation and release of the resources. Such provisions
include (i) verifying a resource cannot be allocated twice before being released and (i) guaranteeing that for any
outgoing arc from a resource place, there must be an incoming arc to the resource place, as well. Tokens residing
originally at the resource places are denoted as resource tokens. The concept of SSAR completes the modeling of a
manufacturing system. Figure 2 illustrates a Petri Net model of a manufacturing system with two jobs to be
processed and two machines, Job 1 is first processed by machine 1 and then by machine 2. Job 2 is processed first
by machine 2 and then by machine 1. The machines are released as soon as a job finishes its processing on such
machines. The highlighted places (pz, papry and po) represent timed places and correspond to operations. The

description of places follow in table 3.

7 P

Figure 2. Petri Net model of a job shop with two jobs and two machines

Table 3. Description of places for the net in figure 2

Place Description for Petri Net of figure 2

P Job 1 ready Ps Job 2 ready

P2 Job 1 being processed by machine 1 Pr Job 2 being processed by machine 2
P Operation 1 of Job 1 finished Ps Operation 1 of Job 2 finished

P4 Job 1 being processed by machine 2 je0] Job 2 being processed by machine 1
Ps Operation 2 of Job 1 finished Ps Operation 2 of Job 2 finished

P Machine 1 available Piz Machine 2 availabie

3. State Equations

The state equations presented here were the subject of the previous work (Liu et al {1997)) on Color Petri Nets.
Here these equations are adapted to SSAR nets, The state equations serve to track both the token evolution and the
net timing. The main feature is the augmentation of the marking vector with the remaining time vector. For the
following definitions, consider a SSAR net having » places and m transitions.

Definition. Remaining Process Time vector (M,}): This » vector contains in its i-t& position the remaining time
required to enable output transitions of the i-th place. The remaining process time corresponding to condition places
and to resource places is always set to zero {0). Here, we constrain the timed places to accept at most one token to
avoid duplicated remaining process times in one single place. This constraint is easily met by allowing at most one
token in each resource place that intervenes in an operation.

The remaining process time vector is updated with every transition firing. Here we assume that during a transition
firing, tokens are removed first from input places and then placed to the output places. Here, two more definitions
are required: M" and M," are respectively the marking and remaining processing time vectors after the token
removal (from input places) but before the token placement (in the output places).

Definition. Time elapse between transition firings 8¢k): This scalar is calculated as the maximum of the
remaining processing times of the places that are input to the firing transition (say %) at the -t event.

& (k) = Max { M.(%}; } ¥i such that the place p; € ¥ (1)

Mk} ; is the i-th position of the M, (k) vector.

The augmented state space representation can be writtén as:

X(k+1) = ARy X(&) + Blkju(k) @

Where: X(%) is the state vector.

Mk

M, (k)
M) and M.k} are n x 1 vectors. Mk} and M. (k) are respectively the marking vector and the remaining

X(k) = }

processing time vector after & transition firings.

A(k) is the system matrix. This matrix is partitioned as follows:

A(k) =

I, 0, ;

SmQ

I: Identity n x » matrix,

0,: Zero n x p matrix.

(: Diagonal n » n matrix that serves to distinguish operational places from resource places.
O={gg}.i=1..nj=1 . .nq;=1wheni=j iistimed place. g; = 0 everywhere else.

u(k): m x 1 Control vector that determines which transition fires after & firings. w%) is the j-th position of u at
time k. wk) = 1 if transition j fires, 0 if it does not.

Bfk): Distribution matrix that transforms the control action u(k) into addition or removal of tokens when firing a

transition represented in vector u(k).

B(k) =

C: n x m Incidence matrix, C = C" - C. See the definition of incidence matrix in Murata(1989).

C" and C~ are, respectively, the incidence input and output matrices.

T'= {t;}: Processing time n x n diagonal matrix for operational places. £; = 7; when i=j; 0 otherwise. 7 is the i-th
position of vector of time delays associated with places as defined in section 2,

Separating the marking and remaining processing time vectors, the equations will be respectively:

Mk+1) = Mk) + Cufk) ()

M (k1) =M,(k) - 3()OM(K) + TC uk) (4)
Equations 3.1 and 3.2 require a two step calculation in order to calculate the value of 8() :

ME)" = M(k) - Cu(l) ()

M(1)" =M,(k) - S(F)QM(K) (6)

and

ME+1) = ME)" + C* ufl) (7)
M+ 1) =M, (k)" + TC"u(k) (8)

Intuitively, the remaining process time is calculated as follows: Suppose that the firing of the 7 transition
corresponds to the k- event. The j transition will fire after 8¢%) units counted from the last transition firing. Thus,
the remaining process time vector is recalculated by subtracting 3(k) time umits from the vector M,(k} (for those
marked places). In the state space equations this is represented by MO = Mk - 8(k)QM(k} as in equation 6 .
Negative values of the M,(k)" vector are set to zero (0), meaning that the corresponding remaining process times
have been exhausted. Then the /™ transition fires and the corresponding tokens are moved from the input places to
the transition output places, Tﬁe remaining process time for the output places of the firing transition are the time
delays since the corresponding operations have not started yet. The time delay of the incoming tokens is represented
by the vector TC"u¢k). Thus, the remaining process time vector M, (k) is updated with the addition of the process
time of the just-arrived tokens. This yields M,(k+1) = Mk} + TC uk) as in equation 8.

Numerical Example: Consider the Petri net shown in figure 2. The Petri Net represents two jobs to be processed
by two machines. The Sequence of Activities (SA) of job I consists of the path = {py, %o, P2, ti. P3 B, Pas B3, Ps}
Likewise the S.A of job2 consists of the path = {pg, t4, ps, t5, Ds. 15, Po, £, Pro}- In the example, the time delay vector
is set to:

t1=1[0,3,0,4,0,0,2,0,5,0,0,0]

In this examplet(po)=0, ©(p;)=3, 1(p2)=0, 1(ps)= 4 and so on. Notice that time delays associated with resource

places and condition places are 0.

For this net, the matrices O and T are respectively:

<

O OO OO OO o oo
[onl el en Bl en e Bl a o Na Bo)
[eoBl el en Bl en i an Bl Jl e 1w . J o)« 3w}
fom R an B cn B cn Y an Y e B an e J e I o [@ P o 4
SO O OO~ OO OO0 o0
OO O = OO OO0 O 00
S OO OO OO OO
[on i o B o L an B an B an T B oo I e = N =) o]
SO O OO OO OO
[n-R0 =T u- T v ¥ on B an i an R an R =B o= R e
[ee e B o e B R e e B cns B o B o Qi ave 4
OO oD
[en R ev N cn R 04 S w i o (Y an B an B win S8 uo B e [o
[T e e T e e i ane Y - e [ow B s L o [s
OO OO OO OO OO

SO0 O OO OWwWD
[onBlen oo B el e B o R e I DN <o [we B s B v
OO OO ONOO OO oo
SO DD OO OO OO o

O D OO OO —= O OO
[m- I R - - T v oo B e s S o B8 o B e |

[R - I crve S v T oo [oo S o S v Y o Y e S
SO DD OO OO O OO0
Lo I e - R v Y v K o S s K e o 8 s Y s B o |

The state at k=0 is given by: (The " indicates the transpose of the vector).

MOY =M =1[1,0,0,0,0,1,0,0,0,0,1,1]
MAOY =10,0,0,0,0,0,0,0,0,0,0,0]
The initial M,(0) vector is O since the time delays for all marked places is 0. Notice that for the initial marking, all
marked places represent conditions {e.g. part available, machine available).
Assume that the net will be executed according to the valid transition firing sequence & = {f, &, Is, f;}. Hence %
fires at k=0. The control vector 2(0) corresponding to the firing of ¢, would be:
W' =[1,0,0,0,0,0,0,0]
The token evolution changes according to the equation 5.
M(O)" = M(0) ~ C~ u(0) where M(0) = M,
M(0) =10,0,0,0,0,1,0,0,0,0,0, 1]
The marking vector M(0)" is calculated with equation 4.1.
The time between transition firings (& (0))atk =0 is calevlated as in equation 1
& (k) =Max M%)} Vi/p:s of
The set of input places of transition & is: ey = {po, p11}. Thus = 3 (0) = max {M,(0) , M,(0)1,}. Since M,(0), and
M.(0)1; are both 0, the value of & (0) is 0.
From equation 4.2 at k= 0.
MA0)" = MJ0) - § (0) © M(0) = M0)
Recall that negative values of M, are set to zero (0). M(1) and M,(1) are calculated with equations 4.3 and 4.4:
The full M{1) and M,(1) vectors are:
M(1)" =10,1,0,0,0,1,0,0,0,0,0, 1]
M1 =10,3,0,0,0,0,0,0,0,0,0,0]
The firing of transition t, results in the following vectors:
M) =10,1,0,0,0,0,1,0,0,0,0,0]
M{2)" =1[0,3,0,0,0,0,2,0,0,0,0, 0]
Next transition ts fires. The time between iransition firings (5 (2)) at & = 2 is caleulated as in equation 1:
The set of input places of transition #s is: ef; = {p;}. Thus = 6 (2) = M,(2); = 2.

M2 T=1[0,1,0,0,0,0,0,0,0,0,0,0]

And M,(3) = M,(2)". Notice that if transition #, had been fired instead of 5, § (2) = 3, M(2)" 7 would have been —1
but since negative values are not allowed, the value of M,(2)"; would be 0.
The marking and remaining processing time vectors after firing transition # would be:
M(3) =1[0,1,0,0,0,0,0,1,0,0,1, 0]
M3 =1[0,1,0,0,0,0,0,0,0,0,0,0]
Transition t; fires last. The resulting value of 8(3) would be 1 and the corresponding marking and processing time
vectors would be:
M@#' =10,0,1,0,0,0,0,1,0,0,1, 1]

M4 =10,0,0,0,0,0,0,0,0,0,0, 0]

The total elapsed time is: | 8(k) =3,
13

Definition. Remaining Work Time (RWT) vector. This definition was originated in this research with the purpose
of calculating estimates of the minimum time required to complete the remaining operations on a job. The RWT
vector is a constant vector and contains in its i-zh position the sum of time delays (associated with places), along the
shortest elementary path, that a token Iocated at i-th place would require to reach the sink place of the corresponding
SA. The calculation of RWT; excludes the remaining processing time at the i~th place itself since such remaining
process time is a variable quantity. The RWT of all resource places is zero (0). An example of the RWT vector is
illustrated with the figure 3. The net shows a single SA net with a token in p,. Time delays are shown inside places
(if no number is shown, the timed delay is 0 for such a place). This SA contains two possible paths containing both
the start (po) and the Sink Place (py). The two paths correspond to the paths Pathy= {po, fo, p1, 11, D2 2 Pas B3 Pss s,
Pe b7 pr} and Pathp= {po, to, P, 1, D2s Las P3s 15, P55 b5, Pes 1, p7}- We denote here t(p;) as the time delay associated
with place i. The minimum time for a job token at py to reach p; (the Sink Place) would be 11 (t(p;) + t(pa) + (ps)
+1(ps) + o(ps) + T(p7)) time units along Pp. RWT, is then 11 time units. A token at pl would take 9 time units (1(p,)
+t{p3) +1(ps) + ps) + ©ps)) to reach p; plus the time required to enable £ (). Thus RWT, would be 9 since the
remaining time M,, is excluded from the calculation of R¥Ty. Following the same reasoning, RWT; would be 5 time
units. A token at ps (resp. p,) would require 3 time units plus the remaining time at p; {resp. ps). RW7T; and RWT,
both would be 3 time units (t(ps) + ©(pg) + 1{p7)). The full RIWT for the net shown in figure 3 would be:

RWT=111,9,9,3,3,3,0,0,0,0]

The RWT vector will be used to calculate lower bounds for completion times in the remainder of this paper.

10

Po to Py topx L Ps B oPs b Ps b oPs

OOy mOn mOx O mO% @
®)

o Dty

Figure 3. Calculation of the RWT vector (See text).

4. Optimization using Heuristic Search

Perhaps one of the most promising approaches for optimization with Petri Nets is to selectively search the net
reachability graph with the A* search algorithm (Lee and DiCesare (1994); Xiong and Zhou (1998); Reyes-Moro et
al (2002)). The A* search algorithm expands the most promising branches of a Petri Net reachability graph
according to a criterion established with the heuristic function fAM} = g(M) + h(M). The function g(M) is the actual
cost (time in the makespan case) from the initial marking M, to the marking M and 2(M) is an estimate of the cost
from marking M to the desired final marking M, Those markings having lower values of f{M) will have priority for
expansion.

The A* search algorithm (Lee and DiCesare, 1994) uses two lists: OPEN and CLOSE. The list OPEN contains
markings generated but not yet expanded. The list CLOSE contains the markings that have been selected for further
expansion, The OPEN list is sorted in ascending order according to the heuristic finction f{M). The following is the
A* search algorithm described in Lee and DiCesare (1994).

* Place the initial marking M, on the list OPEN

» JfOPEN is empty, terminate with failure.

» Remove the first marking A/ from OPEN and put M on CLOSE

v If M is the final marking M construct the path from M back to M; and terminate.

» Find the set of enabled transitions {£} (7 = I...et(M)). et(M)} is number of enabled transitions for the
marking M.

s Generate the successors A4 that would result from firing each enabled fransition {j and calculate g(Af’),
(M), and i),

= For each of the markings A’ do the following:

11

» If M’ is equal to some marking M already on OPEN, verify if g(M’) < gfM®). If that is the case delete
M from OPEN and insert M~ on OPEN. The conditions M’ = M° A g(M’} < g(M°) indicate that a new
better path was found between M, and M (M°,

= If M is equal to a marking M° already on CLOSE, verify if g(M’) < g(M®). If that is the case delete M¢
from CLOSE and all its successors that reside on OPEN and insert M/ on CLOSE. The conditions M’ =
M® A g(M’) <g(M°®) indicate that a new better path was found between M, aﬁd M M.

* If M’ is not on either lst, then insert M’ on OPEN.

* (5o to step 2.

The reader is referred to Russell and Norvig (1995) for further details of this algorithm.

Condition 1: In order to guarantee that A* search finds an optimal solution, ~(M) must be greater or equal than 0
and equal or less than the actual value 2*(M) for every marking M (Lee and DiCesare, 1994). Additionally, if the
final marking is reached for the first time using a heuristic function 2(M) that meets condition 1, then the path from
the initial marking to the final marking is the optimal one (Russell and Norvig, 1995). In this research, the
generation of the successor markings M’ of M and, the calculation of the corresponding remaining processing time
vector M, are accomplished with the state equations described in section 3 . The cost g(Af’) is calculated as:

(M) = gfparent of M) + & (parent of M/ -M}

where & (pavent of M -M") is the time elapse to reach g(M’) from the parent of g(M’). The cost g(My) is 0.

Although, A* search guarantees optimality, four major drawbacks of the above A* search algorithm have been
identified. Those relate to (i} the calculation of the heuristic function A(M), (i) the exponential complexity of the
algorithm that results in marking explosion, (iii) the generation of non-promising markings, and (iv) the growth of

the list OPEN (Sun et al, 1994), Bach of these drawbacks and our corresponding corrections are explained next:
4.1 Caleulations of the heuristic function k(M)

Heuristic functions &(M) that meet the Condition 1 described above are generally difficult to estimate (Reyes-
Moro et al, 2002) This is due in part to the lack of features of the Timed Petri Nets that facilitate the calculations.

In this research, two heurist'ics were developed: The first heuristic calculates a lower bound for the remaining
time to process all jobs given a marking M. This first heuristic function employs the remaining process time M, and
the remaining work time RWT vectors introduced in the previous section. The idea is that the minimum time that a

job (represented by a token located at place i} would require to reach the sink place of the corresponding SA is the

12

time required to process the remaining operations. This is given by E, = RW’I’, + Mp,. This calculation excludes the
time a job token spends in queues waiting for resources to become available. Although unrealistic, the estimate £, is
a lower bound of the remaining time required for a job io be finished. The maximum of the E; given that A£;> 0 and
p; is an operational place, is used as an estimate of 2(M). The estimate, denoted here as %,(M), can be expressed as:
ho(M) = max (E such that M;> 0 and p; is an operational place (10)
The second heuristic developed in this research to calculate the cost 2(M) calculates the remaining cost (M) as
the cost of the path from the current marking to the final marking using the common Most Remaining Work Time
(MRWT) dispatching rule. The dispatching rule MRWT was selected because it generally produces better results for
the makespan case than other common dispatching rules such as Shortest Processing Time (SPT) and Longest
Processing Time (LPT) (Morton and Pentico, 1996) Clearly this estimate is more realistic as compared to A,(M)
because it is based on a feasible s.chedule. This heuristic function denoted here as A,(M) is given by the expression:
(M) = HMRWT, M) (i1)
RMRWT,M) is the remaining cost from the marking M to the final marking M, employing the MRWT priority
rule for fransition firings. The MRWT rule is implemented here with the RWT vector. Other heuristic ﬁmctiéns
h{M) based on dispatching rules are currently under investigation.
4.2 Avoiding Markings Explosion by Controlled Deepening
The second drawback mentioned earlier in this section is that using admissible heuristics A(M) s A(A)* (for all
markings M, and A(M)}* is the actual cost), will degenerate towards a Breadth-First Search strategy (Reyes-Moro et
al (2002)). To overcome this drawback, the strategy followed in this research consists of forcing the search deeper in
the reachability graph in a controlled manner. This is accomplished by expanding only a limited number of markings
at each level of the reachability graph. The maximum number of markings allowed in a given level is denoted as the
beam width (bw). The speed of the search will be primarily determined by the beam width bw: Smaller beam widths
(bw) lead to faster solutions but the quality of the solution may be compromised because fewer markings are
explored. In figure 4, a sketch of the Petri Net reachability graph is depicted showing the explored markings. Notice
that only 2 markings at expanded at each level (beam width = 2).
I our algorithm, a maximum of bw markings on OPEN whose depth corresponds to the current depth, are moved
to CLOSE. If no marking on OPEN is located at the current depth, then the first marking on OPEN, whose depth is

greater than the current depth, is moved to CLOSE or, if no marking on OPEN has a greater depth than the current

13

depth, the marking with higher depth is selected. In this way, we guarantee that the search always move towards the

Discarded markings O
Expanded markings O
Markings generated

but not yet expanded

location of final marking.

e O
ofe

Figure 4. The Beam Width Approach fer Marking Selection

4.3 Reducing the Search Space by Eliminating Non-Promising Markings

The third strategy to reduce the search space consists of selectively eliminating nodes. Here, we adapt the concept
of “non-delay” scheduling (Baker (1974) to the Petri Net formalism. In a non-delay schedule, a machine is never
idle when a job is waiting for processing. The idea here is to avoid sequences of transition firings that lead to
schedules with delays. In the A* search terminology the non-delay scheme translates to the following: When
generating the successors M of a given marking M, only the marking(s) with the minimum value of g(M") would be
inserted on the list OPEN. Successor markings with values of g(M’) greater than min (g(M ")) will be permanently
deleted. Tn non-delay scheduling, the operations of the jobs with the earliest starting times are scheduled first. The

values of g(M) correspond to the start of such operations.
4.4 Reducing the Length of the List OPEN

As pointed out by Sun et al (1994) the list OPEN can exponentially grow if no appropriate measures are taken. In
.this research, we adapt the strategy of Sun et al (1994} which Himits the length of the list OPEN fo a certain cutoff
value. The strategy of Sun et al (1994) removes the last marking from OPEN (the marking M with highest value of
FIM)). The potential drawback is that usually deeper markings will have greater values of f(M) compared to shallow
markings. Hence “good” deeper markings can eventually be pruned off. In our strategy, when the length of the list
OPEN exceeds the pre-defined cutoff value, the marking with the highest ff{M), whose depth is lower than the

current depth is discarded.

14

4.5 The Beam A* Search Algorithm for Petri Net Optimization

All the proposed modifications presented in this research lead to the algorithm that we denote as Beam A* Search

(BAS) algorithm. The prototype function for this algorithm is BAS (h(M), bw, cutoff) where 2(M) is the heuristic

function used, bw is the width of the beam, and cutoff is the maximum length of the list OPEN as defined above. In

this paper, the algorithm is sometimes termed as BAS (h,) for simplicity and denotes the “BAS employing the

heuristic &,” regardless of the valnes of bw and cutoff.

The full BAS(R(M), bw, cutoff) algorithm follows next:

Place the imitial marking M, on the list OPEN

Initialize current depth = 0. Also initialize the variable count markings as 0. The variable
count_markings tracks the number of markings in the current depth that have been expanded.

If OPEN is empty, terminate with failure.

Remove the first marking M on OPEN whose depth equals the current-depth. If no marking is on the
current depth, select the first marking on OPEN whose depth is greater than current depth. If no
matking on OPEN has a greater depth than current depth then select the marking with the greatest
depth. Put M on CLOSE.

If M is the final marking Mj; construct the path from M, to M and terminate.

Find the set of enabled transitions {t} /7 € {l...m,} m, is mumber of enabled transitions when the
marking is M.

Generate the children markings M’ along with the corresponding remaining process time vectors M,’
that would result from firing each enabled transition t. This is accomplished with the state equations
described in previous sections. Also calculate g(M’) for each A", Store these markings on a temporary
list (TEMPLIST).

(Non-delay branching). Find the minimum value of g(M’) for all M's in TEMPLIST, say min(g(M)).
Delete those markings with values of g(M’} greater than min(g(M’)) from TEMPLIST. For each of the
markings M’ remaining on TEMPLIST do the following:

Calculate (M}, and f(M’).

If M’ is equal to some marking MP already on OPEN, verify if gM’) < g(MO). If that is the case delete

M from OPEN and insert M’ on OPEN. If not, insert M’ on OPEN. If the conditions M’ = M°, gM’) <

15

g(M®), a new better path was found from M, to M’ (M’ = M®). Deleting M° from OPEN and inserting
M’ redirects the path from M), to M.

» Tf M’ is equal to a marking M° already on CLOSE, verify if g(M’) < g(M°). If that is the case delete M©
from CLOSE and all its children that reside on OPEN and insert M’ on CLOSE. If not, insert 3’ on
CLOSE. This step follows the same logic as step 8a. If the conditions M~ = M°, 2(M’) < g(M®) are all
true, 2 new better path was found from M, to M’ (M’ = M®). Deleting M® from CLOSE and inserting M’
redirects the path from M, to M. In addition, if children nodes of M were expanded, they must be
deleted from OPEN.

= If M’ is not on either list, then insert M’ on OPEN.

= If the lenpgth of OPEN is greater than the pre-defined cutoff value, delete the marking on OPEN whose
depth is smaller than current depth and with the highest valie of #(M). If no marking has a depth
smaller than current_depth, delete the last marking on OPEN.

* If count markings < bw then add I to count markings. Otherwise, set count markings = 0 and
current_depth = cwrrent depth + 1.

* Gotostep 3.

The following section illustrates the performance of the BAS algorithm.

5. Computational Experiments and Results

The BAS algorithm was coded in C++ and the experiments were run on a personal computer having a 1.8 GHz
speed microprocessor and 256MB RAM memory. Two sets of test problems consisted were considered. The first set
of problems was randomly generated and the second set of problems consisted of ¢lassical problems taken from the

literature. The evaiuvation criterion in all cases was makespan.
5.1 Random Problem Generation

The first set of experiments was conducted on a set of 30 randomly generated problems of approximately the
same size (number of jobs and mumber of operations). Such tested problems consisted of 5 jobs, 3 or 4 machines, 4
or 5 operations per job, recirculation and approximately 33% of the operations had alternative routings. The purpose
of these tests was to evaluate performance of the BAS algorithm on both state space reduction and solution quality.

‘Any given problem was tested with both an exhaustive search method and the BAS algorithm. These problems were

16

generated by randomly selecting and linking predefined Petri Net modules. A pre-defined module is intended to

model a number of alternative routes to execute an operation of a job. The three predefined modules, denoted here as

modulel, module? and module3, with one, two or three possible alternatives per operation respectively are shown in

figure 5a. The SA of each job is constructed by linking the modules as shown in figure 5b. Next, the resources are

added to each operation of the SA as shown in figure 5S¢ with the restriction that no machine can be assigned twice

to an operation. This process is repeated for the SA of each job.

A detailed description of the random problem generation is described next:

Set the desired number of jobs, and the number of operations per job and the number of machines {or
resources) in the system.,

Create en “empty” job subnet that later will contain partial Sequences of Activities (SA) of a job.

For a given job:

Randomly select one of the modules (modulel, module2 or module3).

Randomly assign time delays to the timed operational places of the module (highlighted in figure 5a).
Link the selected module to the existing job subnet (See figure 5b). If this is the first module to be
selected, the module is added to the empty job subnet.

Repeat steps 3a, 3b and 3c for as many times as the number of operations of the job.

Repeat steps 2 and 3 »f times where af is the number of jobs.

Create as many resource places as resources were predefined.

Add resources to the operations (represented as timed places) of a job as follows:

Randomly select a resource place.

Link the selected resource place to an “uncovered™ timed place in the SA of the job. An uncovered timed
place represents an operation for which no resources have been assigned. Linking a resource place to a
timed place is accomplished by adding an arc from the resource place to the input transition of the timed
place and an arc from the output transition of the timed place to the resource place.

Repeat steps 6a and 6b until ail timed places have been covered.

Repeat step 6 until all jobs have been assigned resources.

Add tokens to each resource place and to each Source Place. The initial number of tokens in the resource
places is set to one (This will guarantee that no more than one token at a time can reside in a timed place

which is a condition for the net construction. See figure S¢ for an example.

17

s Calculate the Petri Net incidence matrix €, the initial and final marking vectors (M, and M), the

Remaining Work Time (RWT) vector, and the time delay vector 1.

O~»I->O—>I~>OC£::OAI—>

Module 1

Module 2 —
Module 3

(a) Modules employed to generate random Petri Net problems
for manufacturing systems. Timed places are highlighted

O

(b) Sequence of Activities (SA) of a job constructed
by linking medules 2-1-3

{c) Addition of resource places, arcs and resource and part
tokens to the SA. Resource piaces are M1 to M4, The SA
of one job is shown.

M1

Figure 5. Steps for Random Problem Generation

5.2 Results on Randomly Generated Problems

As mentioned above, we compare the BAS solutions against the solutions resulting from an exhaustive search
method on the Petri Net reachability graph (denoted here on as Exhaustive Search). The first indicator is the

average relative deviation, compared to the Exhaustive Search solution, of the 30 problems.

The relative deviation for a problem is defined as:

BAS solution ~ Exhaustive Search solution % 100% (12)

Exhasutive Search solution

The second indicator is the ratio of markings expanded by BAS vs. the number of markings expanded by

Exhaustive Search. The third and last indicator is the ratio of the CPU time of the BAS algorithm vs. the CPU time

18

of Exhaustive Search. The charts in the figures 6, 7 and 8 illustrate the performance of the algorithm using both
heuristic functions BAS {(#,) and BAS (/). Figure 6 shows the Average Relative Deviation (ARD) chart which is
the average relative deviation for the 30 problems as a function of the beam width (bw). Figure 7 corresponds to the
Average Ratio of Explored Markings (AREM) chart which shows the average ratio of markings explored by BAS
and Exhaustive Search vs. the beam width. Figure 8 is the Average Ratio of CPU Times (ARCT) chart. This chart
shows the average ratio of CPU times vs. the beam width. The maximum beam width was set to 7 because no more
than 7 transitions were enabled at any given time for any of these problems. Beam widths greater than 7 would
produce expansion of markings deeper than “current depth” in the reachability graph and eventually large beam
widths will degenerate into depth-first strategies.

Figure 6. The ARD chart

Average Relative Deviation (ARD) vs. Beam Width

- 12%

L2

B %

-

A %

Q5%

£

% 4%

v

o % .

o 1

9 0% :

] 0 1 2 3 4 5 8 7 8

<) e (@)
Beam Width g h(b)

Figure 7. AREM Chart.

Average Ratio of Explored Markings (AREM) vs.

Beam Width

7% +
w 1
=]
£ 50% -
-
=
‘2‘3 30% 4
T 50%
¢
%_ LI S
i

20% e o
5
9 0% feeeeenen
®
K 0%

4] 1 2 3 4 5 8 7 L)
Beam Width e
eam 1 1)

19

Figure 8. ARCT Chart.

Average Ratio of CPU Times (ARCT) vs. Beam Width

Beamn Width s iy

Analysis. The above charts show that on average, results very close to the Exhaustive Search solution can be
achieved in a very small fraction of time and exploring only a small portion of the markings. For example, the
average relative deviation for BAS (A, bw= 7, cutoff= 100) was 4.0% (See ARD chart), employing on average
approximately 0.2% of the time (this is the value of average ratio of CPU time for BAS(h,, bw=7, cutoff= 100) in
the ARCT chart) and exploring approximately 0.6% of the markings (see the AREM chart} compared to Exhaustive
Search. Similar conclusions can be drawn from the curves for BAS using the A, heuristic function.

Using the &, heuristic with small beam widths, relatively important gains in terms of performance were achieved
with changes on the beam width, For instance, the average relative deviation for BAS (A, bw = 1, cutoff=100) was
approximately 10% whereas the average relative deviation for BAS (4, bw =7, cutoff=100) was approximately 4%
(See ARD chart). The curves for BAS using the A, heuristic show that solutions close to the optimal were achieved
using small beam widths. The extra-effort of exploring more markings (by using larger beam widths) did not
produce significant improvements in terms of solution quality (See the ARD and AREM charts for the &, heuristic).

On average, BAS (#;) achieved better results than BAS (A,) given the same value of beam width {See the ARD
chart). Notice, however, that BAS (&) required significantly less CPU time than BAS (4;) for the same beam width.
The extra-time required by BAS (h;) is explained by the more complex calculation of the remaining function h,(M)

with the MRWT dispatching rule.

20

5.3 Results on Standard Job Shop Scheduling Problems

The literature has produced scores of papers on Job Shop Scheduling Problems (Pinedo and Chao, 1999} and it is
not the purpose of this research to develop yet another algorithim for this type of problem. Rather, we intend to show
the feasibility of Petri Nets as an optimization tool. The choice of testing our algorithm on classical job shop
problems corresponds to the wide availability of known optimal solutions and the results of other algorithms that
yield optimal or near-optimal solutions. These problems will provide a benchmark for the performance of the BAS
algorithm.

Problem Definition.

Ag it is common in the Hterature a N x M job shop problem represents a job shop problem having N jobs and M
machines The job shop scheduling problem can be defined as follows: A number of jobs (N) are to be processed by
a number of machines (M). The processing of & job on 2 machine is called an operation. Each job follows a fixed
sequence of operations and a job visits a machine only once. The processing times are deterministic and no pre-
emption is allowed. The objective of a schedule is to minimize some criterion, subject to (i) precedence constraints,
and (i) resource constraints (a machine can only process a job at a time). Let (i7) the operation of the job i on
‘machine j; py the duration of the operation (7,/) and y; the start time of operation (3,/). In this paper, the criterion is
makespan {Cmax) which is the maximum of the completion times of all jobs (Cmax = max (Cp) for all j).. This

scheduiing problem can be formulated as follows (Pinedo and Chao, 1999).

Min Cmax
Subject to
Y — ¥y & py for every operation (7,/) that precedes (k,/)
Cmax ~ yy 2 py for ali opexations (i,/)
Vi Vi Z pa OF yy — ¥y 2 py for all operations (i,/) and (i,/) to be processed on machine i
yy = 0 for all operations (i)

Solving this problem to optimality using mathematical programming is only feasible for small instances. For
bigger sized problems, most commonly used techmiques include graph-based algorithms such as the Shifting
Bottleneck algorithm (Adams et al, 1988) and Beam Search (Sabuncuogly, and Bayiz, 1999); Neighborhood search
algorithms such as Tabu Search (Glover, 1990), Simulated Annealing (Hussain and Joshi, 1997), and Genetic
Algorithms (Della Croce et al, 1995)

In this paper, 54 standard job shops problems were tested and the results compared against the optimal solutions,

and the results of the Beam Search and Shifting Bottleneck algorithms provided by Sabuncuoglu, and Bayiz (1999)

21

and Adams et al (1998) respectively. In all cases, the proposed job shop test problems were modeled with a SSAR
nets. Among these problems, MT06 and MT10 were developed by Muth and Thompson (1963), ABZS and ABZ6
were originated by Adams et al (1987), LAO1-LA40 were presented by Lawrence (1994) and ORB1-ORBS were
also taken from Applegate and Cook (1991) Based on the results found in the previous section in which the behavior
of BAS (&) and BAS () was investigated, we selected the range of beam widths. For BAS(h,) algorithm the beam
width was varied from 10 to 15, The BAS(h,) algorithm was used with beam widths of 1 and 2. A summary of the
results of BAS with both the heuristics b, and #; is shown in table 4. The comparison with the results from the Beam
Search (BS) and the Shifting Bottleneck (SB) algorithms are also shown in table 4. The BS algorithm is similar to
the BAS algorithm in the sense that both algorithms are graph-based. The biggest difference is that each node in BS
corresponds to an operation whereas in BAS, a node in the reachability graph corresponds to a transition firing.
Other differences include the branching schemes and the node filtering of BS. The SB algorithm was developed by
Adams et al (1988) and since its introduction has been widely popular (Pinedo and Chao, 1999). It is based on the
commeon digjunctive graph representation of a job shop and on finding the optimal solution of M single machine
problems.

Results and Analysis

The results in table 4 illustrate the feasibility of applying A* search-based algorithms for Petri Nets to job shop
scheduling problems. On the suggested problems, BAS(4,) found solutions within 7.38% of the optimal solution on
average, with 9 optimal solutions and 23 results within 10%, BAS(A;) found solutions on average within 3.78% of
the optimal, with 13 optimal solutions and 35 solutions within 10%. BAS(k,) performed better compared to BAS(4,)
in 28 out of 54 cases {in 9 cases both algorithms found the same solution). Overall, these results suggest that using
known properties (e.g. non-delay scheduling) and proved rules for job-shop scheduling (e.g. the MRWT rule to
calculate estimates of remaining times in the case of BAS(%;)) provide better results than using simple lowér bounds
for the estimation of the remaining cost 2(M) as in the case of BAS(4,).

The results also show that BAS(h,) performed competitively than the Beam Search and the Shifting Bottleneck
algorithuns as suggested by the closeness of the average, number of optimal solutions and results within 10% of the

optimal sohtion shown in table 4.

22

Table 4.

BAS (h,) BAS (%) BS SB

Problem Opt | Cpax | CPU |Dev %| Coax | CPU [Dev %] Cuax |Dev %] Cugy [Dev %
6 jobs 6 machines

MT06 | ss | 62 08 127%| 59 08 73%|NA NA| 59 7.3%|
10 jobs 5 machines

LAO 666 | 666 3.4 0.0%| 666 1.9 0.0%| 666 0.0%| 666 0.0%
LAO2 655 | 768 3.6 17.3%| 670 68 23%]| 704 7.5%| 720 9.9%
LAO3 597 | 651 28 9.0%] 633 52 6.0%]| 650 89%| 623 4.4%
LAO4 590 | 659 2.1 117%| 639 1.8 8.3%| 620 5.1%| 597 1.2%
1L.AOS 593 | 593 2.1 0.0%] 593 1.8 00%] 593 0.0%]| 593 0.0%
15 jobs 5 machines

LAOG 926 | 926 55 0.0%] 926 63 00%[926 0.0%] 926 0.0%
LAQ7 890 | 936 7.6 52%]| 890 7.2 0.0%| 890 0.0%| 890 0.0%
LAO8 863 | 870 6.8 0.8% | 863 68 0.0%| 863 0.0% | 868 0.6%
LAO9 951 | 951 74 0.0%]| 951 67 0.0%] 951 0.0%] 951 0.0%
LA10 958 | 958 55 0.0%| 958 6.5 0.0%| 958 0.0%] 958 0.0%
20 jobs 5 machines

LAl 12221222 135 0.0% 1222 166 0.0% 1222 0.0%] 1222 0.0%
LA12 1039 | 1039 118 0.0%| 1039 164 0.0% | 1039 0.0% | 1039 0.0%
LA13 1150 | 1150 122 0.0% | 1150 172 0.0% | 1150 0.0% | 1150 0.0%
LA14 1292 | 1292 24.8 0.0% 1292 167 0.0% | 1292 0.0% | 1292 0.0%
LAIS 1207 | 1294 237 7.2% {1207 17.9 0.0%| 1207 0.0% | 1207 0.0%
10 jobs 10 machines

ABZS 1234 | 1325 8.8 7.4% 1266 203 2.6% | 1288 4.4% | 1354 9.7%
ABZ6 943 | 1101 1.3 16.8%| 977 19.8 3.6% | 980 3.9% | 986 4.6%
1.A16 945 | 1052 18.9 11.3%| 983 105 4.0% | 984 4.1% | 1021 8.0%
LA17 784 | 822 8 48%| 800 100 2.0%| 827 5.5%]| 796 1.5%
LA18 848 | 880 27.1 3.8% | 860 19.4 1.4%| 881 3.9% | 891 5.1%
LA19 842 | 908 183 7.8% | 895 29.4 63%| 882 4.8% | 875 3.9%
LA20 902 | 948 7.8 5.1%| 959 197 63%| 948 5.1% | 924 2.4%
MT10 930 | 1026 7.1 10.3%| 1022 29.9 9.9% | 1016 9.2% | 1015 9.1%
ORB1 1059 | 1211 225 14.4%| 1161 268 9.6% | 1174 10.9%] 1250 18.0%
ORB2 888 | 921 7.5 3.7%| 923 267 3.9%| 926 4.3%] 1014 14.2%
ORB3 1005 | 1148 20.5 14.2%| 1100 101 9.5% | 1087 8.2% | 1175 16.9%
ORB4 1005 | 1087 127 8.2% 1067 97 62% | 1036 3.1% | 1053 4.8%
ORBS 887 | 1018 21.6 14.8%| 958 19.0 8.0%] 968 9.1%| 989 11.5%

Makespan. Dev(%). Relative Deviation from Optimal. CPU: CPU time in seconds. N/A. Not Available. *: Deviation
cannot be calculated. The results for ORB1 to ORBS in the Shifting Bottleneck case were found with the LEKIN ®
software.

23

Opt BAS (b)) BAS (h) BS SB
Problem Crax CPU Dev% Cpy CPU Dev% Cpa Dev% Cop Dev%

15 jobs 10 machines

1040, % *
LA21 (1053) 1250 18.8 # 1150 35.1 * 1154 * 1172
LA22 827 1027 3277 108%) 999 710 7.8% | 985 6.3% |1040 12.2%
1.A23 1032 | 1097 30,7 6.3% (1032 727 0.0% | 1051 1.8% |1061 2.8%
LA24 935 | 1036 23.6 10.8% [1000 34.6 7.0% | 992 6.1% 11000 7.0%
1.A25 977 | 1140 18.3 16.7% | 1027 735 5.1% [1073 9.8% 11048 7.3%

20 jobs 10 machines
1A26 1218 1 1361 50.9 0.1 1240 2532 0.018 [1269 0.042 |1224 0.5%

1.A27 (2350 1491 380 = 1356 2614 + |1316 * |1201 *
1260)

LA2S 1216 | 1412 46.6 16.1% | 1361 1762 11.9% | 1373 12.9% |1250 2.8%
LA29 (11119250)’ 1302 486 ¢ [1233 2703 ¢ {1252 % 1239 %
LA30 1355 | 1460 47.5 8.4% |1424 2633 5.1% | 1435 5.9% 1355 0.0%
Average 7.38% 3.78% 4.26% 4.20%
Optimal 9 13 12 12
solutions

Within 10% 23 35 33 31

6. CONCLUSIONS

This paper has presented a comparative study in which a Petri Net-based algorithm has been tested on a number
of test problems. The major conclusion that Petri Nets but can be a powerful tool for scheduling and control of
manufacturing systems and are not just a modeling and simulation tool.

In this paper a new algorithm, named Beam A* Search (BAS), was presented. The main features of the BAS
alporithm presented here include the intelligent pruning of the search space, a controlled search deepening to avoid
marking explosion and the development of new heuristic functions to estimate the remaining cost (M) for 2
marking M. Competitive results were obtained on standard job shop problems compared against similar algorithms
such as Beam Search (Sebuncuoghy, and Bayiz, 1999) and the Shifting Bottleneck algorithms (Adams et al, 1988).
The BAS algorithm exhibits in addition to good solutions, very atfractive computational times which, in turn, makes

it attractive for reai-time control of flexible manufacturing systems.

24

Further research is needed on developing 2 BAS version for minimizing other criteria such as mean tardiness or

maximum lateness. Also efforis would be concentrated on developing new heuristic functions 2(M), improving both

the marking pruning and the marking selection.

Other areas that are the subject of further research are the utilization of the BAS algorithm for cyclic scheduling,

agsembly operations where parts are incorporated into subassemblies, re-entrant manufacturing, and re-scheduling of

flexible manufacturing systems.

REFERENCES

1. Moore, K.E. Gupta, 5.M. “Petri Net Models of Flexible and Automated Manufacturing Systems: A Survey”.
International Journal of Production Research, 34, no 11, 1996, p 3001-3035

2. Lee, D. Y. DiCesare, F. “Scheduling Flexible Manpufacturing Systems using Peiri Nets and Heuristic
Search”. [EEE Transactions on Robotics and Automation, 10 no. 2, 1994, pp. 123-131.

3. Sun, T. Cheng, W. Fu, L. “A Petri Net Based Approach to Modeling and Scheduling for an FMS and a Case
Study”. IEEE Transactions on Industrial Electronics. 41, no 6, 1994, pp. 593-601,

4. Xiong. H. H. Zhou M.C. “Scheduling of Semi-Conductor Test Facility via Petri Nets and Hybrid Heuristic
Search”. IEEE Transactions on Semiconductor Manufacturing, 11, no 3, 1998, pp.384-393,

5. Jeng, M. D. Chen, S. C. “A Heuristic Search Approach Using Approximate Solutions to Petri Net State
Equations for Scheduling Flexible Manufacturing Systems”. The Infernational Journal of Flexible
Manufacturing Systems 10, 1998, pp.139-162.

6. Reyes-Moro, A. Yu, H. Kelleher, G. Llovd, S. “Integrating Petri Nets and Hybrid Heuristic Search for the
Scheduling of FMS”. Computers in Industry, 47, 2002, pp.123-138.

7. Sabuncuogly, 1. and Bayiz, M. “Job shop scheduling with Beam Search”. European Journal of Operational
Research, 118 no. 2 1999, pp.390-412,

8. Zhou, M. DiCesare, F. Petri Net Synthesis for Discrete Event Control of Manufacturing Systems. USA.
Kluwer Academic Publishers. 1993.

9. Liu, C, Ma, Y. Odrey, N. “Hierarchical Petri Net Modeling for System Dynamics and Control of
Manufacturing Systems™. Proceedings of the 7* FAIM International Conference. Fune 25-27. 1997.
Middlesbrough, UK.

10. Murata, T. “Petri Nets: Properties, Analysis and Applications™. Proceedings of the IEFE, 77 no 4, 1989, pp.
541-580.

11, Russell, S. Norvig, P. Artificial Intelligence: A Modern Approach. Prentice-Hall. 1995,

12, Morton, T. Pentico, D. Heuristic Scheduling Systems with Applications to Production Systems and Project
Management. Johm Wiley & Sons. New York. 1993,

13. Baker, K. R. [ntroduction to Sequencing and Scheduling. Wiley. 1974,

14, Pinedo and Chao, Operations Scheduling with Applications in Manufacturing and Services. Trwin-Mc Graw-
Hill. 1999.

15. Applegate, D. Cook, W. “A Computational Study of the Job-Shop Scheduling Problem”. ORS4 Journal on
Computing, 3, no 2, 1991, pp. 149-156.

16. Muth, 1. F. Thompson, G.L. (eds.) Industrial Scheduling. Englewood Cliffs, NJ. Prentice Hall, 1963,

17. Adams, J., Balas, E., Zawack, D. “The Shifting Bottlepeck Procedure for Job Shop Scheduling.

Management Science Research”. Report No. MSRR-525 (R), Camnegie Mellon University. 1987,

25

18. Lawrence, 5. “Resource Constraint Scheduling: An experimental Investigation of Heuristic Scheduling
Techniques”. GSIA, Carnegie Mellon University. 1984,

26

