Allocating Manufacturing Capacity by Solving a
Dynamic Stochastic Multi-Knapsack Problem

Thomas C. Perry
Joseph C. Hartman
Lehigh University

Report No. 04T-009

Allocating Manufacturing Capacity by Solving a Dynamic Stochastic
Multi-Knapsack Problem

Thomas C. Perry and Jeseph C. Hartman
Industrial & Systems Engineering, Lehigh University, Bethlehem, Pennsylvania

Revenue management problems have been extensively studied and applied to the airline, hotel and rental
industries. These problems generally maximize system profitability by accepting or rejecting arrivals based
on their reward and how many resources they wtilize. If a deadline is reached and a resource goes under
utilized, potential revenue is lost. Problems in the literature generally involve the selection of arrivals that
would exist in the system up to some specific deadline (could be finite or infinite). This is ofien practical
Jor the case of the transportation industry (airline, cargo transport, and others), but is often not applicable
in continuous manufacturing situations. Typically, an arvival (production ordery will enter a
manufacturing facility and stay for some period of time, utilizing resources (production lines). To account
for this attribute, one can view a manufacturing facility's capacity as a series of knapsacks with orders
modeled as arrivals that can be placed in these knapsacks. Accept and reject decisions are made based on
the utilization of the capacity window, or a knapsack representing system capacily over some discrete
period of time. Since the capacity window may consist of past arrivals, accept and reject decisions are
considered beyond the current period, As future arrivals are uncertain, a stochastic dynamic program s
used to model this situation, We present several strategies employed o solve the model and insight gained
from the solution of various situations encountered in the semiconductor marnyfacturing sector.

1.0 Background

This investigation is motivated by a problem in the semiconductor industry where a wafer
fabrication line can produce multiple products. State of the art semiconductor fabrication lines
can cost over $3B, resulting in very high fixed costs of operation. This necessitates that capacity
be fully utilized and consist of the right mix of products. This is a difficult task due to the long
lead-time between design and production and the lengthy cycle-time of the product. With long
cycle times, selecting the right product to most effectively utilize the available resource is
critical. The literature has closely studied the issue of utilization, with a number of papers
dealing with production scheduling, but considering the mix or portfolio of products has been
largely overlooked. In this paper, we consider the problem of having production orders arrive
over time, defined by capacity needs and expected revenues. The orders must be accepted, upon
which they use capacity and generate revenue, or rejected, freeing up capacity for later orders.

This can be generalized to any manufacturing setting that uses a common set of resources to
manufacture multiple products with varying cycle times. It is important to determine the best
policy of accepting or rejecting new sources of revenue. This policy can be studied under
uncertain demand in a constantly changing system. The dynamics of the system would include
several factors including the level of capacity utilization, the volume, the profit and the risk '
associated with the arrival.

In the classic knapsack problem, items of known size and reward are placed in a knapsack of
known capacity. This static and deterministic problem is well studied (Martello and Toth [1]).
Kleywegt and Papastravrou [2] [3] extend this concept to the case where items arrive over time
with unknown size and rewards. This type of problem is classified as the dynamic stochastic

knapsack problem (DSKP). Several classes of problems are associated with the DSKP and
have been summarized by Weatherford and Bodily [4] as perishable asset revenue management
(PARM) problems. All of these problems however, deal with a single knapsack with a certain
deadline. For example, consider a transportation problem to haul packages from one location to
another. Items arrive and are either accepted or rejected for an upcoming shipment. Once an
item is accepted, it waits for the shipment to take place. The time of the shipment then becomes
the deadline.

Using the knapsack analogy, a continuous manufacturing line can be viewed as a set of multiple
knapsacks. These knapsacks represent the capacity of the manufacturing line over consecutive
periods of time, such as months or quarters. This model is required as there are generally no
deadlines in which the capacity departs, such as a truck or an airplane. Rather, orders depart the
system once their production run is completed.

Ttems, representing orders, arrive and if accepted, are placed in a knapsack. 1f an order spans
multiple periods, then it may fill multiple knapsacks in time until it departs, representing the end
of a production run. During its production, more orders may arrive and if capacity is available,
may be accepted or rejected. If an item arrives but there is no capacity, it is rejected. Hence, the
acceptance of an order must consider the future arrival of orders, as the product mix greatly
affects profitability.

Ross and Tsang [5] study a problem that is analogous to this problem. They study the effective
use of bandwidth through a communication switching network. Multiple classes of calls can
arrive to which bandwidth is allocated. The length of the call is random. Ross and Tsang
approach this problem as a Markov Decision Process (MDP) and determine a threshold policy
for 2 given classes of calls. As accepted orders to the manufacturing systems are generally
contracted, and not random, we consider a different approach by incorporating what we term a
capacity window. The capacity window is a representation of capacity utilization over multiple
time periods. The capacity is bounded in each period, resulting in the use of multiple knapsack
constraints to model capacity. This allows us to study manufacturing capacity in this window in
a rolling-horizon fashion.

To illustrate the need for multi-period knapsacks, consider a two period problem. Two classes of
objects are known to arrive each period. Once an object is accepted, it will remain in the system
for two periods (manufacturing cycle time). The initial knapsack (manufacturing capacity) is
empty at the beginning of the first period. Given,

t time period
ie{1,2} arrival class i
X, e {0,1} accept/reject of arrival class 7 in time period ¢
R, € {300,200} reward of class i
¢, €{0.75,0.5} capacity needs of class i
B=1 maximum capacity

This becomes a two period static multiple knapsack problem with the objective to maximize the
reward, or

maxZ=(X;,; + X,)R["'(Xz,s + X3,)Rz

and is subject to the following multi-knapsack capacity constraints

X,,C +X,,C, <B

(Xu +X5)Cx '*“(Xz,l + X5,)Cz <B

Figure 1 illustrates the possible choices in the first two periods. Given an empty system at the
beginning of the first period, the optimal decision would be to accept object one. However, if
time period two is considered, you can see that the optimal decision is to accept object two in the
first period and then accept another object two in the second period. Or, X, = 0, X,, =1,

X,,=0and X,,=1. This illustrates the need to look at multiple periods, which is even more
critical under the assumption of dynamic arrivals.

Figure 1 - One and two period representation of order acceptance problem.

The incorporation of the capacity window allows the extension of the DSKP to a dynamic
stochastic multiple knapsack problem (DSMKP). In this paper, we formulate the capacity
reservation problem as a DSMKP. As we are motivated by real problems in industry, we explore
ways in which to efficiently solve the associated dynamic program, which has an exponential run
time in the number of arrivals per period.

Section Error! Reference source not found. will give an overview of the model. Section 3.0
will discuss the limitations of the model. The use of a capacity window allows the use of several
techniques that can be used to simplify the implementation of the model. These techniques will
be described in section 4.0. Finally, the results of the model will be presented in section 5.0.

2.0 A Dynamic Stochastic Multiple Knapsack Problem

We use discrete time intervals that coincide with the arrivals of new orders (i.e. monthly or
quarterly). Under this assumption, the state of the system is defined by the utilization of capacity
at each period of time. Note that this is equivalent to modeling the available capacity of the
system.

2.1 The System State and Capacity Window

The “capacity window” noted carlier, refers to the state of the system, as it is the number of
periods of capacity tracked through time. This can be represented as a capacity utilization vector
(also referred to as the state vector or the state of the system):

S= [b19b25b3‘1b4]’

where b, is the utilized capacity in period ¢. Decisions on orders occur at the end of each

period, the decision is to either accept or reject the order. Accepting an order reserves capacity,
thereby increasing utilization of the system, for the periods defined by the ordet’s contract.
Thus, if an order is accepted which consumes w units of capacity for two periods beginning in
period 2, the resulting state of the system is:

S =[b, +w,b, + w,b,, b].

As with any perishable asset, the capacity is either consumed or left underutilized as the system
transitions in time. Our capacity window allows for the system to be studied over time, such that
the utilization of the system merely shifts in time. For example, given our original state of the
system, if no orders are accepted, then at the next decision epoch, the state of the system is:

S= [bz>b3’b4vbs]>
which represents a translation of the capacity window by one time period. An illustration of this
capacity window can be found in Figure 2. In this illustration, the four period capacity window

represents the utilized capacity of the system over four time periods. At the end of each time
period, the capacity merely shifts one time period.

=1 s He 78—t
= —H B R H s —
=3 1 zHEEs e s

Figure 2 — The system capacity utilization is captured in a 4-period Capacity
Window.

There is a maximum available capacity for each time period that cannot be exceeded,
representing the maximum available resources of the system. The maximum capacity at each
time period is represented by a knapsack constraint. Thus, the capacity of the system is
represented by a series of K knapsacks. If b, is the capacity of knapsack k&, the capacity of the

system can be written as:
S =1b,b,,....0¢]

If an order is to be accepted, the capacity that is needed to fulfill the order must satisfy the
knapsack constraint for all time periods within the capacity window.

2.2 State Transition

This process is illustrated in more detail in Figure 3. The knapsacks in the capacity window are
labeled 1 through X, where K is the number of knapsacks (or, correspondingly the number of
time periods in which the capacity utilization of the system is being tracked). A transition in
time is illustrated in Figure 3, where the capacity in knapsack & -1 of the pervious time period
becomes the initial capacity of knapsack k in the current time period. This represents orders
that are still in the system that have not completed. In addition to the translation of the capacity
window, the capacity of orders that are accepted in the previous time period are added to the
knapsacks based on the orders requirement for the system capacity. This is represented as small
boxes in Figure 3. The knapsack constraint must be met in each time period or the order must be
rejected.

1

"2

D arrivals knapsacks

Figure 3 — Snapshot of utilized capacity over time defines capacity window.

capacity window

At each time period, several decisions may exist to either accept or reject order arrivals. The
accepi-reject combinations are dependent on the number of order arrivals per period, and are
defined as decision set, . For example, two arrivals would have four in the decision set: (1)
accept none (empty set), (2) accept arrival one and reject arrival two, (3) accept arrival two and
reject arrival one and (4) accept both arrivals. In general, the number of decision sets is 27,
where N is the number of arrivals. This model considers that there is some probability that an
order may arrive in a given period. The probabilistic arrival/no arrival combinations are defined

as the arrival set . The number of objects in the arrival set is equal in number to the decision
set, comprising all combinations of orders arriving or not arriving (resulting in a total of
2% possible arrival combinations). The transition paths from state S to 8}, is illustrated in

Figure 4. S, is the next state, or the capacity utilization of the system, resulting from a

transiation of the capacity window and the capacity from orders resulting from the intersection of
the decision set & and the arrival set y .

I
& Sa,w

Figure 4 — State transitions consist of a decision set and an arrival set which
is used to determine the expected reward given the probability of the
arrivals.

2.3 Expected Reward

Associated with each arrival set i is a probability P, . This probability is the product of the
probability of arrival, p,, or the probability of not arriving, 1— p,, for all the ordersin the arrival
set. P, can be calculated as:

P, =1 10-p.)-

ney ey

The transition from S to S’ as shown in Figure 4 results in a potential reward. In order to

aa
receive a reward, two things must occur: (1) an order must arrive, which is defined by the arrival
set i and (2) we must accept the order, which is defined by our decision set §. The reward is

the combination of arrivals that are both accepted and arrive, or:

R;, = Zrn .

nedry

2.4 Dynamic Program Recursion

Let V, (S) represent the maximum expected discounted profit through time horizon T, assuming

one starts with a system utilized for K periods at levels b, b, , through b, attime 7. At each
stage, time period, we maximize the reward over the decision set &, which results in a new state

s » depending on the arrival set y, as:

v,(8)= , max [ZP,,,(RMKH(S;,W))}

55{3;#, eBILY

where S}, must satisfy the knapsack constraint in each time period (must be an element in the
set of valid states B). We discuss this now.

2.5 Capacity Constraints

All accepted arrivals in & are subject to the system capacity window constraint, represented in
our recursion as:

L
S, €8,

where 8} , is the resulting capacity window based on the decision setd and the arrival set .
B is the set of valid system states (no violation of capacity)

As illustrated in Figure 3, the capacity window is bounded by the capacity of X knapsacks. As
orders arrive to the system, the decision to accept or reject is made based on the future knapsack
constraints. If there is insufficient capacity the item is rejected. If there is sufficient capacity in
the system for the multi-period capacity of the order arrival, the order is evaluated for possible
inclusion.

Let b, be the utilization of knapsack k. The initial utilization of the knapsack is the sum of the

capacity of orders that are still in the system in the & +1 knapsack of the previous time interval,
t—1 (refer to Figure 3). The required capacity of any order arrival that is accepted in the
previous period is added to this and compared to the capacity limit.

Let the capacity of arrival » can be expressed as a vector:

CH = [wn.l’wn,ZJ v 'JWR,K] *

where w,,, w,, , through w, , isthe capacity for each time period ¢ in the capacity window.

As mentioned previously, the decision to accept an order occurs at the end of the current period.
However, the order capacity is not added to the system state until the next time period. To keep
the multi-knapsack capacity balance, the current state vector needs to be translated on period in
time. The current state vector is given by:

.S = [bx(t)s bz(f)v'-:bx(t)]'

This state vector is translated one period in time, S{t), as shown below:

S = [b,(r=1),b,(t ~1),..., b, (t = 1),0].

The last knapsack is zero because this is new capacity that becomes available which is beyond
the capacity window. Once the current state capacity is translated, the arrival capacity utilization
vector:

€, = Oy)],

REEmy nedry

can be added and the resulting state vector is:

S;, =S+ Y.C,.

nedrvy
Referring to Figure 3, this constraint for each individual knapsack can be expressed as:

bt -1+ Yow,, () forallke{l2,...K-1}

b(t)= i <b,.
{0 Zw,,_k(t). fork=X ¢

redryy

This can be implemented in a stochastic dynamic program recursion that can be solved
backwards. The key to implementing this stochastic dynamic program is the ability to keep track
of the staie S of the capacity window.

3.0 Model Limitations

This mode] poses two difficulties, namely the enormous number of calculations and infinite state
space. This is due in part to the general flexibility of the model to allow a varying number of
arrivals per time period. It is also due in part to the implementation of the capacity window in
which multiple knapsack constraints need to be considered.

The number of calculations for each state and for each time period can be derived from all
possible decision sets at each state node. The number of decisions is calculated as 2", The
stochastic nature of this problem adds another factor of complexity to determine the expected
revenue at each state node. The dynamic program algorithm must iterate over all possible arrival
sets for each decision. Therefore, the total calculations per state per time period, is 2%V Ifthe
model runs over T periods, the resulting calculations would be 2*¥T . Therefore, the number of
calculations grows exponentially with the number of arrivals. This is made worse by the
maximum number of states in a given time period that is dependent on how we define capacity,
which we discuss later.

It is a known issue that the state space of dynamic programs can quickly become unmanageable,
commonly referred to as the curse of dimensionality. This is especially true in this model with
the capacity window. Let us assume a one period (one knapsack) problem where the arrival

number is fixed for each time period and all have equal capacity. A node in the state diagram
could be represented in terms of the number of items in the knapsack resulting in a finite number
of states. Representing the state by the amount of utilized capacity leads to an infinite number
of states since capacity utilization is continuous on [0,1]. Multiple knapsack constraints further
complicate the state space.

The infinite states could be reduced to a finite set utilizing aggregation techniques like the ones
proposed by Bean et al. [6] or Kim and Smith [7]. If the capacity utilization is divided into a
discrete number of capacity buckets, the state space could be described and the number of states
becomes finite, although very large. The approach using the discrete buckets of capacity will be
discussed in the next section in greater detail.

But, to illustrate the complexity, let B represent the number of discrete capacity buckets. The

total number of states would then be £#*, where K is the number of knapsacks constraints
needed to describe the system. Combining this with the number of calculations shown earlier,
the total calculations would be 2*" 75 .

The magnitude of calculations per period for an example with =20, K= 8,and N =5, would
be:

Y =2920% = 26x10%.

The dynamic program would need to run over a number of periods at least equal to the number
of knapsacks. Let us assume that one calculation by a computer takes InS (1e-9 sec). This many
calculations would take approximately 7.5 hours per period to calculate. This is certainly large
and would not satisfy the requirements of a real time calculation. (Note that while we may not
require real time decisions, the user presumably will have to make accept or reject decisions
within a reasonable time period (1-2 business days).)

4.0 Implementation

Several techniques have been used to simplify the implementation of the model. These
techniques simplify the calculations and the looping structure of the dynamic program.

4.1 Capacity Buckets

As previously noted, the percent of capacity utilization is continuous on [0,1], taking on an
infinite number of possible states. This complicates the implementation of a dynamic program.
Therefore, capacity utilization is defined by dividing the capacity into discrete buckets f. This
aggregates the state space into a large finite number of nodes. An example of this aggregation
can be found in Table 1 where the capacity is broken into four buckets, 5 =4.

b, capacity utilization of

Bucket (S =4
knapsack % (£=4)

b, =0
0<b, <0.33
0.33<b, <0.67
0.67 <b, <1.00

Wit = O

Table 1 - Capacity buckets aggregate infinite capacity utilization into discrete
: capacity buckets.

The amount of capacity utilization that the capacity buckets represents, determines the
complexity of the dynamic program. The smaller the capacity bucket size (finer granularity) the
Jarger the number of states. Problems that would be solved for larger manufacturing situations
would have 20 or more buckets, which would translate to a bucket size of 5% capacity
utilization. Order arrivals typically would utilize up to 25% capacity, with a typical capacity
utilization around 2-5%. The bucket size needs to be small enough to be able to represent low
volume orders.

4.2 The System Capacity Window

The system state vector continues with the same notation; however, b, now represents the
capacity bucket, or the aggregate capacity utilization level the system: ‘

S =b,b,,...,5¢]

For example, Figure 5 illustrates the state S = [3,2,3,0,1] with K =5 knapsacks and =4
capacity buckets.

Figure 5~ Representation of state vector S = [3,2,3,0,1] with K = 5 knapsacks
with [=4 capacity buckets.

This state vector can be represented by a single numerical value by concatenating together the
amount of capacity buckets that are used for each time period of the capacity window, The
numerical representation of the state vector for the example shown in Figure § is 32301.

4.3 The Arrival Capacity Window

This concept can also be applied to the capacity window C, of arrival n. The arrival capacity
vector notation stays the same; however, w, , now represents the capacity bucket, or the
aggregate capacity utilization level required by the order arrival:

10

Cn - [wn,l’wn,z" ’ "wn,k] .

Figure 6 illustrates the capacity utilization of the arrival capacity window C, = [1,0,1’0,0] with
K =5 knapsacks and f =4 capacity buckets.

3
ﬂ=4{f - UNUSED
§] | e—p—
=0 b,=0

Figure 6 - Representation of arrival capacity utilization vector C, = [1,0,1,0,0]
with K =5 knapsacks with 3 = 4 capacity buckets.

As with the state vector, the arrival capacity vector can be represented by a single numerical
value by concatenating together the amount of used capacity buckets. The numerical
representation of the state vector for the example shown in Figure 6 is 10100.

4.4 State Transition

When considering an arrival, the decision is made in the current period and the arrival begins to
utilize capacity any of the ensuing periods. In order to add the arrival capacity window to the
system capacity window, the system capacity window needs to be translated one time period. As
explained earlier, this represents orders that are still in the system which have not been
completed. The translation of the capacity word described in Figure 5 is shown in Figure 7.

3
_ 2
o | =
0 _— —
= = B=0

L L N N
Figure 7 — Translation of the state vector S = [3,2,3,0,1] by one time period to
[2,3,0,,0}

Therefore, the state numerical representation of 32301 when translated one period would be
23010.

4.5 State Transition with Arrivals

With both the system and arrival capacity utilization represented by a single number, the
resulting state can be determined by simple addition. This is illustrated in Figure 8.

11

[2,3.0,10}

Translated 3
Capacity 'B o 4 2
Window !

)

Axrival 31 |
Capacity }3 w4 ?
9

Window

I

[
b
i
wh

[1 [1,0,1.00

|
N ?
i I H I [33110]
.

Figure 8 - Example of the system state transition with an accepted arrival.

Resulting 3
Capacity =447
Window 1

9

The translated state vector represented by 23010 and the arrival capacity vector represented by
10100, are added to obtain the resulting state of 33110.

4.6 Numerical Representation

It is noted that we implemented the dynamic program using numerical representations of the
state vector. The benefits are in flexibility of the model. See Perry and Hartman {8] for more
details.

4.7 Reduction of State Nodes in the Dynamic Program

To accommodate the large number of states that are possible with this flexible DSMKP, another
technigue is introduced. Even though there are potentially a large number of states that can
theoretically exist in the state space, in reality, only a portion of them are actually used (given the
number of periods). In order to limit the number of states that need to be evaluated in the
stochastic dynamic program, a simple routine is run to build the network forward to capture the
valid state nodes. With the establishment of valid state nodes, the stochastic dynamic program
can operate backwards only on valid network nodes.

Of course, this does require the construction of the network, which can be done by assuming all
future orders will arrive (deterministic case). Beginning with the initial state, the next time
period states can be determined by evaluating all the possible decision combinations.

Continuing in this fashion the network can be built for subsequent time periods. In doing this,
the early time periods will have a relatively small number of states, growing to a large number of
states as time progresses. To determine the minimum number of time periods in which the valid
states would approach the number of possible states could be determined by solving for T' in

NT:ﬂK

12

where N7 is the maximum number of valid states at fime period 7'. This will give the lower
bound on the number of time periods, since in a real situation, several decision combinations will
most likely results in redundant states.

The time to build the network is depends on the number of decision sets as shown in an Figure 9
and Table 2.

128 : 7 ; 7

7

-
f 3
[%)3 3
1 |

Time (Seconds)

a SIG 1 Egﬁ 1 SID ZﬂlD 2§D 300
Decision Sets

Figure § - Build Network Time dependence on decision sets

T|\N{B|Kk| B & | Build Network Time (sec)
6| 2 111] 3 7986 4 0.09

6 | 3 |11] 3 7986 8 0.17

6| 4 |11] 3 | 7986 16 0.45

6 5 |11 | 3 | 7986 32 1.67

6 16 |11 | 3 7986 64 6.74

6 7 1113 7986 | 128 33.69

6 | 8 |11 3 7986 | 256 124.39

FTable 2 - Time to build a valid network

5.0 Results

As shown in section 3.0, the total calculations is given by
22N T ﬂK

The complexity of the dynamic program then depends on four factors: the time horizon, the
number of arrivals, the number of capacity buckets and the number of knapsacks. The model
was run varying these four parameters and the results are shown in Table 3. For each model run,
the execution time was recorded, The DP was also run in two different ways: DP type full and
DP type valid. In the DP type full, all possible states are evaluated at each time period. In the

13

DP type valid, the state network is reduced as described in section 4.7. A fixed number of
potential arrivals were assumed each period. Figure 10 summarizes the dependence of the
different parameters on the execution time.

4600 0 :
500 Bhd- -
%308&” % .
32 g s
3 wooy &
L Pl i B
o 15001 -
& 1o00- n-"&”- e
soa- ol “
[g._

D

e

L
o
oo
&
7
53
%23@5&%@91@ 2' ’ ! ;
: & g 1m 18 w
Agrivaly Horlzon

Figure 10 - Execution time for different number of knapsacks, buckets, arrivals and horizons.

From these results it becomes evident that two factors influence the execution time. The first is
the number of states and the second is the number of arrivals. Increasing either the number of
knapsacks (states) or the number of arrivals substantially increases the execution time.
Increasing the number of buckets also has an affect, but to a lesser extent. In general, the
execution time can be plotted as a function of the number of states and arrivals as shown in
Figure 11.

14

States

Figure 11 - Execution time dependence on the number of states and number of arrivals

The reduction in execution time for the DP type valid versus the DP type full is a direct
correlation to the number of states for each DP. Reducing the number of states clearly results in
a reduction of the execution time. There is an advantage to determining the valid states prior to
performing the DP. This figure also illustrates that increasing the number of arrivals, the
execution time quickly grows exceptionally large.

T|N] B K| & |V]| 6w Full DP Valid DP Full DP Valid DP
States States Time {sec) | Time (sec)
6 | 2] 11 4 4 16 7,086 81 2.19 0.08
612 M 4 4 18 87,848 81 24.06 0.08
g 21 11 4 4 16 966,306 81 287.50 0.08
6 | 2| 11 4 4 16 | 10,829,366 81 3453 53 0.08
6 3| 4 4 16 7,986 81 2.19 0.08
8 3| 8 8 64 7,986 151 5.76 0.45
6 3] 16 | 16 | 256 7,986 437 16.39 8.45
6 31 32 | 321,024 7,986 345 31.56 18.34
6 3] 64 | 64 [4,096 7,986 450 107.45 57.83
6 3| 128 |128116,384 7,986 544 376.44 243.17
6 18 3| 256 | 256 65536 7,986 364 960.45 337.52
8]2 3| 4 4 16 7,986 81 2.19 0.08
2 3] 4 4 16 8,317 104 2.86 0.11
2 3] 4 4 16 13,310 168 4.49 0.20
2 3| 4 4 16 19,965 273 7.14 0.31
202 3| 4 4 16 26,620 442 9.51 0.51
B 2144131 4 4 16 7,986 81 2.19 0.08
gl2t2113| 4 4 16 55,566 110 15.84 0.11
6 2 HER 4 16 178,746 114 49.09 0.11
5 [20 3| 4 4 16 6,655 178
6 [2 3] 4 4 | 16 7,986 2.19
6 2 3] 4 4 16 55,566 15.84
8 [2] 1114] 4 4 16 87,846 24.06

15

8.0 Appendix A

A summary of notation can be found in Table 4 below.

T
f
N
7

2y

P

=
Sﬁ*hg ";U_EQ'I;-.O

o
-

£ 2BV »]

’

dy
7(8)
B

B

§ base

S\! base

Cbase

H
Noase
A &

Jrbase
P,

Time horizon

Time index {1,2,...,T }

Number of arrivals

Arrival index {1,2, s N }

Probability of an arrival #

Reward of arrival n

Capacity of arrival n for knapsack k (elements of capacity verctor)
Vector representing the capacity of arrival »

Decision sets for » arrivals

Arrival sets for n arrival

Probability of the arrival set

Reward for arrivals {n|ne &y}

Number of knapsacks that make up the capacity window
Knapsack index {1,2, LK }

Utilized capacity of knapsack &

Maximum capacity of knapsack &

State of system (vector of utilized capacity over X time periods)
State of system translated by one time period

State of the system resulting from arrivals {n| nedny }
Reward of system state S

Set of all valid states for which each capacity constraint is not violated.

Number of capacity buckets.

Capacity window of state S in numerical base.
Capacity window of state S in numerical base translated one period.
Arrival capacity of decision set § and arrival set y in terms of
numerical base.

Decision set representation of decision set § in numerical base

Arrival set representation of arrival set i/ in numerical base

Table 4 - Summary of Notation

9.0 References

[1] Martello, S. and Toth, P. Knapsack Problems, Algorithms and Computer Implementations. John Wiley &

Sons, West Sussex, England. 1990,

17

[2] Kleywegt, Anton J., Papastavrou, Jason D. The Dynamic and Stochastic Knapsack Problem. Operations
Research. 46 (1998) 17-33

[3} Kleywegt, Anton J., Papastavrou, Jason D. The Dynamic and Stochastic Knapsack Problem with Random
Sized Items. Operations Research. 49 (2001) 26-41.

[4] Bodily, Samuel E., Weatherford, Lawrence R. A Taxonomy and Research Overview of Perishable-Asset
Revenue Management: Yield Management, Overbooking and Pricing. Operations Research. 40 (1992) 831-
844.

[5] Ross, K.and Tsang, D. The Stochastic Knapsack Problem. [EEE Transactions on Communications. 37 (1989)
740-747,

[6] Bean, James C., John R. Birge, and Robert L. Smith. Aggregation in Dynamic Programming. Operations
Research. 35 (1987) 215-220.

[7] Kim, David S. and Robert L. Smith An Exact Aggregation/Disaggregation Algorithm for Large Scale Markov
Chains., Naval Research Logistics. 42 (1995) 1115-1128.

[8] T.C.Perry and J.C. Hartman. Flexible Implementation of Dynamic Programs using Numerical Representation
of State Space Vectors. Industrial and systems Engineering, Technical Report, Lehigh University, 004T-008,
(2004).

18

TIN| B K| 6 vl Sy Full DP Valid DP Full DP Valid DP
States States Time (sec) | Time (sec)

6 L2 3113 4 4 16 178,746 49.09

6 121 1115] 4 4 16 966,306 287.50

6 12130 (4| 4 4 16 4,860,000 1422 09

6 2117 15] 4 4 16 8,519,142 2516.52

6 211 |6 4 4 16 | 10,629,366 3453.53

5 a1 11 |3 8 8 64 6,655 4.34

6 b3 11131 8 8 64 7,986 576

6 13| 1114 8 8 64 87,846 60.95

5 31 13|5] 8 8 64 2,227,758 1470.83

6 [3]1515] 8 8 64 4,556,250 3097.30

713 10]6| 8 8 84 7,000,000 5316.16

6 1411 4] 16 |16 | 256 87,846 140.47

6 4] 115 16 | 16 | 256 966,306 1609.64

1164 12 {5] 16 | 16| 256 | 2,737,152 5657 44

6 4|30 |4] 16 |16 | 256 | 4,860,000 8201.20

Table 3 - Results of Dynamic Stochastic Multi-Knapsack on 2.6GHz Pentium IV

6.0 Conclusion

The model has been implemented as a Microsoft Excel macro, The premise for this model is that
is could be flexible an able to integrate with desktop tools on the PC to quickly solve item
acceptance decisions for manufacturing lines. The introduction of the numerical representation
of the capacity utilization vectors, the decision sets and the arrival sets greatly improves the
jooping complexity of the dynamic program. The system state, decision set and arrival nested
loops can all be replaced with a single Joop for each. This not only reduces the complexity of the
DP, but also serves to add flexibility in the size of the capacity window that is tracked and the
number of arrivals per time period without having to change the physical implementation of the
DP algorithm.

The execution time is dependent on the number of states, the number of arrivals and the time
horizon. Building a valid state network prior to solving the DP is shown to reduce the execution
time. Extensions of this problem would include implementing future arrival pre-processing
algorithms to estimate the cost-to-go function, looking into possible approximate schemes at
each node to quickly determine optimal path given the arrivals present or further reduction the
number of states.

7.0 Acknowledgements

[want to thank Dr. R. Storer, Dr. A. Ross and Dr. C. Pearce for their support in defining this
problem and for their review. This research was in support of NSF grant....

16

