The SYMPHONY Callable Library
For Mixed Integer Programming

T. K. Ralphs
Menal Guzelsoy
Lehigh University

Report No. 04T-011

The SYMPHONY Callable Library for Mixed Integer Programming

Ted Ralphs* Menal Guzelsoy!
May 13, 2004

Abstract

SYMPHONY is a customizable, open-source library for solving mixed-integer linear pro-
grams (MILP) by branch, cut, and price. With its large assortment of parameter settings, user
caltback functions, and compile-time options, SYMPHONY can be configured as a generic MILP
solver or an engine for solving difficuls MILPs by means of a fully customized branch and cut
algorithm. SYMPHONY can also be configured for a wide variety of architectures, including
single-processor, distributed-memory parallel, and shared-memory parallel architectures under
MS Windows, Linux, and other Unix operating systems. SYMPHONY 5.0 is implemented as
a callable library that can be accessed either through calls to the native C subroutines of the
application program interface or through a C-++ class derived from the COIN-OR Open Solver
Interface. Among its new features are the ability to solve bicriteria MILPs, the ability to stop
and warm start MILP computations after modifying parameters or problem. data, the ability to
create persistent cut pools, and the ability to perform basic sensitivity analysis on MiLPs.

1 Introduction

As recently as a decade ago, the software available for solving generic mixed-integer linear programs
(MILPs) was relatively limited. In the last 10 years, that has changed dramatically, as the market
has opened significantly. There are now more than a dozen solvers available, many of which
are open source. Among the academic and research codes available for solving generic MILPs
are MINTO [20], MIPO (1}, be-opt [7], SBB [13], bonsaiG [15], PARINO [18] and FATCOP 14,
5]. Commercial offerings include ILOG’s CPLEX, IBM’s OSL {soon to be discontinued}), and
Dash’s XPRESS. In addition, there are a number of other customizable frameworks, including
COIN/BCP [28], ABACUS [16, 17], ALPS [24], and PICO [8].

SYMPHONY is a callable library for solving MILPs that was originally developed as a frame-
work for implementing custom solvers for hard combinatorial problems. It has recently been inte-
grated with the Computational Infrastructure for Operations Research (COIN-OR) libraries [13]
and outfitted as a generic MILP solver. SYMPHONY’s core solution methodology is a branch, cuf,
and price algorithm that incorporates most of the advanced solution management features avail-
able in other codes. fts main shortcoming is that it lacks both an integer presolver and a primal
heuristic, which hurts its performance as a generic MILP code. However, it is otherwise very com-
petitive, especially as a parallel solver. SYMPHONY depends on several other open source libraries
for functionality, including the Cut Generation Library maintained by the COIN-OR project for
cut generation, COIN-OR’s MPS file parser, COIN-OR’s Open Solver interface for accessing LP
solvers, and GLPK’s parser for GMPL files (GMPL is a subset of AMPL) [19].

”_‘Dep“o. of Industrial and Systems Engineering, Lehigh University, Bethlehem PA, tkr2€lehigh.edu
TDept. of Industrial and Systems Engincering, Lehigh University, Bethlehem PA, megb@lehigh.edu

2 The Application Program Interface

SYMPHONY 5.0 is the first version of SYMPHONY to be implemented as a callable library with
a new interface derived from the COIN-OR Open Solver Interface. This change markedly improves
SYMPHONYs usability and flexibility. SYMPHONY and solvers built using SYMPHONY have
been the subject of a number of papers, most recently {23], [22], and [25]. SYMPHONY’s legacy
features are well-detailed in the SYMPHONY 4.0 User’s Manual [21], so we focus here on new
features, such as the application program interface (APT), the bicriteria solver, the ability to warm
start MILP computations, and the ability to perform sensitivity analysis. To our knowledge, these
features are not available in any other MILP code and should of interest to users of the technology.
Below, we briefly describe the new API, the C-+- interface, and the use of the user callback
functions.

2.1 The Callable Library

SYMPHONY’s callable library consists of a complete set of subroutines for loading and modifying
problem data, setting parameters, and invoking solution algorithms. The user invokes these sub-
routines through the API specified in the header file sym_api.h. Some of the basic commands are
described below. For the sake of brevity, the arguments have been left out.

sym_open_environment () Opens a new environment, and returns a pointer to it. This pointer
then has to be passed as an argument to all other API subroutines (in the C-+++ interface, this
pointer is maintained for the user).

sym.parse_command line() Invokes the built-in parser for setting commonly used parameters,
such as the file name which to read the problem data, via command-line switches. A call to this
subroutine instructs SYMPHONY to parse the command line and set the appropriate parameters.
This subroutine also sets all other parameter values to their defaults, so it should only called when
this is desired.

sym_load problem() Reads the problem data and sets up the root subproblem. This includes
specifying which cuts and variables are in the core (those that are initially present in every sub-
problem during the search process) and the additional cuts and variables to be itially active in
¢he oot subproblem. By default, SYMPHONY reads an MPS or GMPL file specified by the user,
but the user can override this default by implementing a user callback that reads the data from a
file in a customized format (see Section 2.3).

gym find initial bounds() Invokes the user callback to find initial bounds using a custom
heuristic.

sym_solve() Solves the currently loaded problem from scratch. This method is described in more
detail in Section 3.1.

sym.resolve() Solves the currently loaded problem from a warm start. This method is described
in more detail in Section 3.2.

int main{int argc, char #*argv)

{
sym_environment *p = sym_open_environment();
sym_parse_command_line(p, argc, argv);
sym_load_problem(p);
sym_solve(p);
sym_close_environment(p);

}

Figure 1: Implementation of a generic MILP solver with the SYMPHONY C callable library.

symme.solve() Solves the currently loaded problem as a multicriteria problem. This method is
described in more detail in Section 3.3.

aym_close enviromment () Frees all problem data and deletes the environment.

As an example of the use of the library functions, Figure 1 shows the code for implementing a
generic MILP solver with default parameter settings. To read in an MPS file called model .mps and
solve it using this program, the following command would be issued:

symphony -F model.mps

The user does not have to invoke a command to read the MPS file. During the call to sym_parse_command.line(),
SYMPHONY determines that the user wants to read in an MPS file. During the subsequent call

to sym_load.problem(), the file is read and the problem data stored. To read an GMPL file, the

user would issue the command

gymphony -F model.mod ~D model.dat

Although the same command-line switch is used to specify the model file, the additional presence
of the -D option indicates to SYMPHONY that the model file is in GMPL format and GLPK’s
GMPL parser is invoked [19]. Note that the interface and the code of Figure 1 is the same for both
sequential and parallel computations. The choice between sequential and parallel execution modes
is made at compile-time through modification of the makefile or the project settings, depending on
the operating system.

In addition to the parts of the API we have just described, there are a number of standard
subroutines for accessing and modifying problem data and parameters. These can be used between
calls to the solver to change the behavior of the algorithm or to modify the instance being solved.
These modifications are discussed in more detail in Section 3.2.

2.2 The OSI Interface

The Open Solver Interface (OSI) is a C+-+ class that provides a standard API for accessing a variety
of solvers for mathematical programs. It is provided as part of the COIN-OR repository [13}, along
with a collection of solver-specific derived classes that translate OSI call into calls to the underlying
libraries of the solvers. A code implemented using calls to the methods in the OSI base class can
easily be linked with any solver for which there is an OSI interface. This allows development

int main(int argc, char skargv)

{
OsiSymSolverInterface si;
si.parseCommandline{argc, argv);
gi.loadProblem();
si.branchindBound () ;

}

Figure 2: Implementation of a generic MILP solver with the SYMPHONY 08I interface.

of solver-independent codes and eliminates many portability issues. The current incarnation of
OSI supports only solvers for linear and mixed-integer linear programs, although a new version
supporting a wider variety of solvers is currently under development.

We have implemented an OSI interface for SYMPHONY 5.0 that allows any solver built with
SYMPHONY to be accessed through the OSI, including customized solvers and those configured
to run on parallel architectures. To ease code maintenance, for each method in the OSI basge class,
there is a corresponding method in the callable library. The OSI methods are implemented simply
as wrapped calls to the SYMPHONY callable library. When an instance of the O8I interface class is
constructed, & call is made to sym_open.environment () and a pointer to the environment is stored
in the class. Most subsequent calls within the class can then be made without any arguments. When
the OSI object is destroyed, sym_close_environment is called and the environment is destroyed.

To fully support SYMPHONY’s capabilities, we have extended the OSI interface to include some
methods ot in the base class. For example, we added calls equivalent to our sym_parse_command.line()
and sym.find initial bounds(). Figure 2 shows the program of Figure 1 implemented using the
O8I interface. Note that the code would be exactly the same for accessing any customized SYM-
PHONY solver, sequential or parallel.

Although we are using the OSI to access a MILP solver, the current version of the OSI is
geared primarily toward support of solvers for linear programming (LP) problems. This is because
LP solvers employing some version of the simplex algorithm support much richer functionality
and a wider range of interface functions, due to their support of warm starting from previously
saved checkpoints. This functionality is difficult to provide for MILP solvers. In SYMPHONY
5.0, we have implemented for MILPs some of the same functionality that has long been available
for LP solvers. As such, our OSI interface supports warm starting and sensitivity analysis. The
implementations of this functionality is straightforward at the moment, but will be improved in
the future, as discussed in Sections 3 and 4.

2.3 User Callback Functions

The user’s main avenues for customization of SYMPHONY are the tuning of parameters and the
implementation of one or more of over 50 user callback functions. The callback functions allow the
user to override SYMPHONY’s default behavior for many of the functions performed as part of its
algorithm. The user has complete control over branching, cutting plane generation, management
of the cut pool and the LP relaxation, search and diving strategies, and limited column generation.
The callback functions are grouped by module according to their functionality. The names of the
callback functions begin with the prefix user_. For instance, the user find cuts() subroutine is
used to implement subroutines for finding problem-specific cutting planes and is part of the cut
generation module. A full list of callbacks is contained in the SYMPHONY user’s manual [21].

4

Callbacks in SYMPHONY are implemented slightly differently than in other popular libraries.
Bach user function is called from a SYMPHONY wrapper funetion that interprets the user’s return
value and determines what action should be taken. If the user performs the required function, the
wrapper function normally exits without further action. If the user requests that SYMPHONY
perform a certain default action, then this is done. Files containing defanlt function stubs for all
callbacks are provided along with the SYMPHONY source code and must be compiled and linked
with SYMPHONY’s internal library functions to cbtain an executable. Makefiles and Microsoft
Visual C++ project files are provided for automatic compilation.

3 Implementation

Because SYMPHONY is designed to allow parallel execution, both the internal library and the
set of user callback functions are divided along functional lines into five separate modules. This
modularization makes the parallel implementation more transparent and eases code maintenance.
The five modules are the master module, the tree manager module, the cut generafion module, the
cut pool module, and the node processing module. Only the master module is persistent and the
environment pointer described earlier is a pointer to the master module. All other modules are
transient and exist only while a solve call is active. The master module’s primary functions are

e initialization of the environment,

e setting and maintaining of parameter values,

o 1/0,

e storage of static problem data,

e storage of warm start information between calls to the solver,

e distribution of data to other modules, and

o tracking of the status of associated processes during parallel execution.

Other modules encapsulate the specific functionality needed to execute the algorithms described
below and can function as independent remote processes for parallel execution. A more complete
description of the modular design of SYMPHONY ¢an be found in the user’s manual [21] or in {23].

For linear programming problems, the OSI has two function calls for solving the loaded model,
initialSolve() and resolve(). The first call is used when solving a problem from scratch and
the second is used when resolving after having modified the problem in some way. SYMPHONY’s
OSI implementation extends this idea to MILPs. We have also implemented a third solve call
multiCriteriaBranchAndBound() for solving bicriteria MILPs. In the next few sections, we de-
seribe some of the details of how these methods are implemented.

3.1 Initial Solve

Calling the initial solve method solves a given MILP from scratch, as described above. The first
action taken is to create an instance of the tree manager module that will control execution of
the algorithm. If the algorithm is to be executed in parallel on a distributed architecture, the
master module spawns a separate tree manager process that will antonomously control the solution
process. The tree manager in turn creates the modules for processing the nodes of the search tree,
generating cuts, and maintaining cut pools. These modules work in concert to execute the solution

o

process. When it makes sense, sets of two or more modules, such as a node processing module and
a cut generation module may be combined to yield a single process in which the combined modules
work in concert and communicate with each other through shared memory instead of across the
network, When running as separate process, the modules communicate with each other using a
standard communications protocol. Cuxrently, the only option supported is PVM, but it would be
relatively easy $o add an MPI implementation.

The overall flow of the algorithm is similar to other branch and bound implementations and has
been described in detail in [23]. A priority queue of candidate subproblems available for processing
is maintained at all times and the candidates are processed in an order determined by the search
strategy. The algorithm terminates when the queue is empty or when another specified condition
is satisfied. A new feature in SYMPHONY 5.0 is the ability to stop the computation based on
exceeding a given time limit, exceeding a given limit on the number of processed nodes, achieving
a target percentage gap between the upper and lower bounds, or finding the first feasible solution.
After halting prematurely, the computation can be restarted after modifying parameters or problem
data. This enables the implementation of a wide range of dynamic and on-line solution algorithms,
as we describe next.

2.2 Solve from Warm Start

Among the utility classes in the COIN-OR repository is a base class for describing the data needed
to warm start the solution process for a particular solver or class of solvers. To support this
option for SYMPHONY, we have implemented such a warm start class for MILPs. The main
content of the class is a compact description of the search tree at the time the computation was
halted. This description contains complete information about the subproblem corresponding to
each node in the search tree, including the branching decisions that lead to the creation of the
node, the lst of active variables and constraints, and warm start information for the subproblem
itself (which is a linear program). All information is stored compactly using SYMPHONY’s native
data structures, which store only the differences between a child and its parent, rather than an
explicit description of every node. This approach reduces the tree’s description to & fraction of the
size it would otherwise be. In addition to the tree itself, other relevant information regarding the
status of the computation is recorded, such as the current bounds and best feasible solution found
so far. Using the warm start class, the user can save a warm start to disk, read one from disk, or
restart the computation at any point after modifying parameters or the problem data itself. This
allows the user to easily implement periodic checkpointing, to design dynamic algorithins in which
the parameters are modified after the gap reaches a certain threshold, or to modify problem data
during the solution process if needed.

3.2.1 Modifying Parameters

The most straightforward use of the warm start class is to restart the solver after modifying problem
parameters. The master module automatically records the warm start information resulting from
the last solve call and restarts from that checkpoint if a call to resolve() is made, unless external
warm start information is loaded mamually. To start the computation from a given warm start
when the problem data has not been modified, the tree manager simply traverses the tree and
adds those nodes marked as candidates for processing to the node queue. Once the queue has been
reformed, the algorithm is then able o pick up exactly where it left off. Figure 3 illustrates this
concept by showing the code for implementing a solver that changes from depth first search to best
first search after the first feasible solution is found. The situation is more challenging if the user

int main(int argc, char #xargv)

{
OsiSymSolverInterface si;
si.parseCommandLine (arge, argv);
si.loadProblem();
8i.setSymParam(0siSynFindFirstFeasible, true);
si.setSymParam(0siSymSearchStrategy, DEPTH_FIRST_SEARCH) ;
si.initialBSolve();
si.setSymParam(OsiSymFindFirstFeasibie, false):
si.setSymParam(0siSymSearchStrategy, BEST _FIRST_SEARCH);
gi.resolve(};

Figure 3: Implementation of a dynamic MILP solver with SYMPHONY.

modifies problem data in between calls to the solver. We address this situation next.

3.2.2 Modifying Problem Data

If the user modifies problem data in between calls to the solver, SYMPHONY must make cor-
responding modifications to the leaf nodes of the current search tree to allow execution of the
algorithm to continue. In principle, any change to the original data that does not invalidate the
subproblem warm start data, i.e., the basis information for the LP relaxation, can be accommo-
dated. Currently, SYMPHONY can only handle modifications to the rim vectors of the original
MILP. Methods for handling other modifications, such as the addition of columns or the modifica-
tion of the constraint matrix itself, will be added in the future. To initialize the algorithm, each leal
node, regardless of its status after termination of the previous solve call, must be inserted into the
queue of candidate nodes and reprocessed with the changed rim vectors. After this reprocessing,
the computation can continue as usual. Optionally, the user can “trim the tree” before resolving.
This consists of locating nodes whose descendants are all likely to be pruned in the resolve and
eliminating those descendants in favor of processing the parent node itself. This ability could be
extended to allow changes that invalidate the warm start data of some leaf nodes.

The ability to resolve after modifying problem data has a wide range of applications in practice.
One obvicus use is to allow dynamic modification of problem data during the solve procedure, or
even after the procedure has been completed. Implementing such a solver is simply a matter of
periodically stopping to check for user input describing a change to the problem. Another obvious
application is in situations where it is known a priori that the user will be solving a sequence
of very similar MILPs. This occurs, for instance, when implementing algorithms for multicriteria
optimization, as we describe in Section 3.3. One approach to this is to solve a given “base problem”
(possibly limiting the size of the warm start tree}, save the warm start information from the base
problem and then start each subsequent call from this same checkpoint. Code for implementing this
is shown in Figure 4. In this example, the solver is allowed to process 100 nodes and then save the
warm start information. Afterward, the original problem is solved to optimality, then is modified
and resolved from the saved checkpoint. Results from a sample run of this code are discussed in
Section 5.

int main(int argc, char *xargv)

{
OsiSymSolverInterface si;
CoinWarmStart* wg;
si.parseCommandLine(argc, argv);
$i.loadProblem() ;
si.setSymParam(DsiSymNodeLimit, 100);
gi.initialSolve();
ws = si.getWarmStart();
si.resolve();
si.8et0bjCoeff (0, 100);
si.setDbjCoeff (200, 150);
si.setWarmStart(ws);
si.setSymParam(DsiSymNodeLimit, -1);
si.resolve();

Figure 4: Use of SYMPHONY’s warm start capability.

3.3 Bicriteria Solve

For those readers not familiar with bicriteria integer programming, we briefly review the basic
notions here. For clarity, we restrict the discussion here to pure integer programs (ILPs), but the
principles are easily generalized. A bicriteria ILP is a generalization of a standard ILP presented
earlier that includes a second objective function, yielding an optimization problem of the form

vmin ez, dz],
8.t Az < b, (2)

z e &

The operator vmin is understood to mean that solving this program is the problem of generating
efficient solutions, which are these feasible solutions p to (2) for which there does not exist a second
distinct feasible solution g such that cg < ¢p and dg < dp and at least one inequality is strict.
Note that {2) does not have a unique optimal solution value, but a set of pairs of solution values
called outcomes. The pairs of solution values corresponding to efficient solutions are called Pareto
outcomes. Surveys of methodology for for enumerating the Pareto outcomes of multicriteria integer
programs are provided by Climaco et al. [6] and more recently by Ehrgott and Gandibleux [9, 10
and Ehrgott and Wiecek [11].

The bicriteria ILP (2) can be converted to a standard ILP by taking a nonnegative linear
combination of the objective functions [14]. Without loss of generality, the weights can be scaled
so they sum to one, resulting in a family of ILPs parameterized by a scalar 0 < a < 1, with the
bicriteria objective function replaced by the weighfed sum objective

(e + (1 — a)d)z. (3)

Each selection of weight o produces a different single-objective problem. Solving the resulting
ILP produces a Pareto outcome called a supported outcome, since it is an extreme point on the

8

convex lower envelope of the set of Pareto outcomes. Unfortunately, not all efficient outcomes are
supported, so it is not possible to enumerate the set of Pareto outcomes by solving a sequence of
ILPs from this parameterized family. To obtain all Pareto outcomes, one must replace the weighted
sum objective (3) with an objective based on the weighted Chebyshev norm studied by Eswaran et
al. [12] and Solanki [27]. If z° is a solution to a weighted sum problem with o = 1 and z% is the
solution with « = 0, then the weighted Chebyshev norm of a feasible solution p is

max{a(ep — ca), (1 —) (dp - da®)}. (4)

Although this objective function is not linear, it can easily be linearized by adding an artificial
variable, resulting in a second parameterized family of ILPs. Under the assumption of uniform
dominance, Bowman showed that an outcome is Pareto if and only if it can be obtained by solving
some ILP in this family [3]. In [25], the authors presented a method for enumerating all Pareto
outcomes by solving a sequence of ILPs in this parameterized family. By slightly perturbing the
objective function, they also showed how to relax the uniform dominance assumption. Note that
the set of all supported outcomes, which can be thought of as an approximation of the set of Pareto
outcomes, can be similarly obtained by solving a sequence of ILPs with weighted sum objectives.

SYMPHONY 5.0 contains a generic implementation of the algorithm described in [25], along
with a number of methods for approximating the set of Pareto outcomes. To support these ca-
pabilities, we have extended the OSI interface so that it allows the user to define a second objec-
tive function. Of course, we have also added a method for invoking this bicriteria solver called
multiCriteriaBranchindBound (). Relaxing the uniform dominance requirement requires the un-
derlying ILP solver to have the ability to generate, among ail optimal solutions to a ILP with a
primary objective, a solution minimizing a given secondary objective. We added this capability to
SYMPHONY through the use of optimality cuts, as described in [25].

Because implementing the algorithm requires the solution of a sequence of ILPs that vary only
in their objective functions, it is possible to use warm starting to our advantage. Although the
linearization of (4) requires modifying the constraint matrix from iteration to iteration, it is easy to
show that these modifications cannot invalidate the basis. In the case of enumerating all supported
outcomes, only the objective function is modified from one iteration to the next. In both cases, we
save warm start information from the solution of the first ILP in the sequence and use it for each
subsequent computation.

The applications of the bicriteria solver are numerous. Besides yielding the ability to closely
examine the tradeoffs between competing objectives, the method can be used to perform detailed
sensitivity analysis in a manner analogous to that which can be done with simaplex based solvers for
linear programs. As an example, suppose we would like to know exactly how the optimal objective
function value for a given pure integer program depends on the value of a given objective function
coefficient {see [2] for a discussion of this in the case of linear programming models). Consider
increasing the objective function coefficient of variable i from its current value. Taking the first
objective function to be the original one and taking the second objective function to be the it unit
vector, we can derive the desired sensitivity function by using the bicriteria solution algorithm to
enumerate all supported solutions and breakpoints. This information can easily be used to obtain
the desired function. Figure 5 shows the code for performing this analysis on variable 0. For an
example of the application of this code, see Section 5.

int main{int argc, char *x¥argv)

{
JgiSymSolverInterface si;
si.parseCommandLine (arge, argv);
si.loadProblem(};
si.set0bj2Coeff (0, 1);
si.multiCriteriaBranchAndBound(};
¥

Figure 5: Performing sensitivity analysis with SYMPHONY s bicriteria solver.

int main(int argc, char **argv)

{
DsiSymSolverInterface 8i;
si.parseCommandLine (arge, argv);
gi.loadProblem();
si.branchAndBound;
int cnt = 2;
int #* ind = new intlcnt];
double * val = new doublelcnt];
ind{0] = 4; wvall0Q] = 7000;
ind[l] = 7; val[1] = 6000;
1b = si.getLbForNewRhs(cnt, ind, val);

Figure 6: Performing sensitivity analysis with SYMPHONY

4 Other New Features

4.1 Sensitivity Analysis

In addition to the sensitivity analysis that can be undertaken by using SYMPHONY’s bicriteria
solver, we have also implemented the method suggested by Schrage and Wolsey in [26] for performing
approximate sensitivity analysis on the right hand side vector. The method of Schrage and Wolsey
is based on constructing an approximate dual price function from the dual solutions obtained while
solving the LP relaxations in each search tree node. Figure 6 shows an example of a program that
uses this sensitivity analysis function. This code will give a lower bound for a modified problem
with new right hand side values of 7000 and 6000 in the 4" and 7" rows. The price function
does not have a simple closed form, and must be computed for each change in the right hand
side. This price function can be used to obtain approximate sensitivity information quickly when
there is not enough time for a complete resolve. We discuss this example and present some sample
computational results with this method in Section 5.

10

CPU Time | Search Tree Nodes
Generate warm start 28 100
Solve original problem (from warm start} | 3 118
Solve modified problem (from scratch} 24 122
Solve modified problem (from warm start) | 6 198

Table 1: Warm starting a computation with p0201

4.2 Persistent Cut Pools

To complement the ability to checkpoint the search tree, the user can also checkpoint and save
the global cut pool. When checkpointing the search tree, only the cuts that are currently active
in some leaf node and are needed to restart the search process are saved. At times, however, it
may be advantageous to save the entire global cut pool, including cuts that were generated, but
are not currently active. If this is desirable, the user can direct SYMPHONY to maintain one or
more persistent cut pools. Such pools exist as part of the master module and are attached to the
tree manager whenever a solve call is made.

5 Examples

We now present some brief examples of applying the capabilities of the new library. These are not
meant to be indicative of the solver’s performance—computational results will be presented in a
full-length companion paper to follow this abstract. Rather, we aim here simply to present some a
few numerical examples that Hllustrate the concepts.

To illustrate the use of the warm start and resolving capabilities of the library, we refer to the
code of Figure 4 described earlier. We ran this simple code on the MIPLIB 3 example p0201. The
results are shown in Table 1. For this simple example, the warm start does its job. Interestingly, the
number of search tree nodes generated is actually increased over solving the problem from scratch,
but because most of the work takes place in cut generation near the top of the tree, the resolve is
much guicker than the initial solve.

As an ilustration of the use of the bicriteria solver, we applied the code of Figure 5 to the
following simple MILP.

max 8z + 0z,
8.1, Ta) 4+ 2o < b8,
28z 4 9z < 252,
3z + Tzy < 105,and

z1,zy > 0, integral.

Applying the bicriteria solver of Figure 5 results in the price function p() shown in Table 2.
Extensive computational results obtained applying the solver to a class of network routing problems
can be found in [25].

Finally, we illustrate the use of the approximate sensitivity analysis function illustrated in
Figure 6. We tested the code shown there with the instance flugpl from MIPLIB 3, varying the
right hand side values of the 4*® and 7'® rows. The results are shown in Table 3. In this table,
for each pair of right hand side values, the smaller of the two numbers (shown above) is the lower

11

range (#) Ty x4
(~00,1.333) 64] 0
(1.333,2.667) 56+ 60 7 6
{2.667,8.000) 40 + 120 5 12
{8.000, 16.000) 32+ 136 4 i3
(16.000, 00) 150 0 15

Table 2: Price function for a simple MILP

bound obtained by SYMPHONY, whereas the larger number is the optimal solution value for the
problem with the given right hand side values.

6 Conclusions

We have described the main features of the SYMPHONY 5.0 callable ibrary. SYMPHONY includes
implementations of a number of techniques useful for performing sensitivity analysis, resolving
MILPs from a warm start, and analyzing bicriteria MILPs. To our knowledge, these fechniques
are not available in any other solver. These capabilities are still being refined and new techniques
developed, so they will undoubtedly be improved in future versions of the library. This is an area
of active research that we believe has a great deal of potential and has received relatively little
attention in the literature. It remains to be seen how well these methods will work in practice. In
future work, we plan to extend and generalize the methods presented here to allow greater flexibility
on the type of problem modifications and sensitivity analyses that can be performed and to further
improve the power of the bicriteria solver.

Acknowledgments. 'This research was partially supported through NSE grant ACI-0102687 and
the IBM Faculty Partnership Program.

References

[1] E. Balas, 5. Ceria, and G. Cornuéjols. Mixed 0-1 programming by lift-and-project in a branch-
and-cut framework. Management Science, 42:1229-1246, 1996.

(2] D. Bertsimas and J.N. Tsitsiklis. Infroduction to Linear Optimizetion. Athena Scientific,
Belmont, MA, USA, 1997.

(3] V. J. Bowman. On the relationship of the Tchebycheff norm and the efficient frontier of
multiple-criteria objectives. In H. Thieriez, editor, Multiple Criferia Decision Making, pages
248-258. Springer, Berlin, 1976.

[4] Q. Chen and M. C. Ferris. FATCOP: A fault tolerant condor-pvm mixed integer program
solver. Technical Report Mathematical Programming Technical Report 99-05, Computer Sci-
ences Department, University of Wisconsin at Madison, 1999. Submitted.

5] Q. Chen, M. C. Ferris, and J. T. Linderoth. Fatcop 2.0: Advanced features in an opportunistic
mixed integer programming solver. Technical Report Data Mining Institute Technical Report
99-11, Computer Sciences Department, University of Wisconsin at Madison, 1999.

12

uonpoung sisdrene A)1argsues § ANOHJIWAS Tia symser ofdureg ¢ a(qe],

0070092821 | 0070099421 | 00°00992%7T | 00°00%9.4ST | 00°00S9LTT | 00°00992ZT | 00°0099.2T | G0°00494¢T | 00°0099LET
9G'188PZZ1 | 0T°0LT912T | $9°882L08T | 84'LECTOTT | 84 ATGTOTT | 8L ATSI8TT | T8'GIIVATT | GE'TOLSOTT | 68°68CLGTT | 000TT
00°0052921 | 00°009T9ZT | 00°00ST9ET | 0O'00ST9ZT | 00°00STIHTT | 00'00GTIZT | 00°00STIZT | 0O'COSTHTT | 00'00STICT
09°7£Z01ZT | 09°C8201ET | #T'TG8I0ET | 82°2CSTOGT | 84°LT1ST0CT | 0SL86Z8TT | TE'GLT8ITT | GR'EGL6GTT | 68°CGETEIT | 00G0T
00°0052S3T | 0070099761 | 00°00G9FET | 00°0099FCT | 0000S97CT | 00°00%9FET | 00°0059%¢1T | 00°0069%¢T | O0r0099¥CE
929022121 | 01°G8ZF0TT | 81°LTSTOZT | 847 L¢8TOCT | 8274191027 | 00°069LATY | 00°069¢9TT | SE°928ESTT | 68 FIPGFIL | 00001
00°0089%ZT | 00°0080%¢T | 00°00S0FZT | 00'00GTEST | 00°00%9TET | 00'O0STOZT | 00°00S86L1 | 00°00G86TE | 00°00S8611T
90°6929021 | 8472851081 | 84°LTSTOGT | 82°2¢GT10CT | 84 LIGT0TT | 00°GPELLTT | 00'SPCCITT | 48°888LFIY | 6E LLFOETT | 0046
000089521 | 00°0080%21 | 00°00S0FGT | 00°00S9TZT | 00°00STOZT | 00°00G98TT | 00'00GEBTIT | 00°004E8TT | 00°00SESTI
00°00CTOZT | 00°00STOST | 00'00ST0ZT | 00'00STOZT | 00°00GT0ZT | 00'096ELTT | 00°0968GTT | 00'096EFTT | 68'6ESECTT | 0006
00°000£€ZT | 000004221 | 0070002221 | 00°00ST0ZT | 00°00S98TT | GO00GTLIT | 00°009891T | 00°00S8ITT | 00'00S89T1
90'F6STBIT | 09°Z8PIRIT | 65°0LYFRIT | 6 0LFFSIT | L EREPRIT | LOFILGITT | L0'POLOGTT | $8'8TO9ETT | 6€°C09LCTT | 0058
00°0008TZT | 00000211 | 00°000TTET | 0O'D0SE6TT | 00°00GERTT | 00'00G8ITT | 00°00SE9TT | O0°00SSOTT | 0G'009G9TT
949068811 | OI'SYSO8TT | PO'CLITATY | 00'0SFEITT | 676866911 | £CE8EFATT | EE'EBEBETT | GE€°9L00CTT | 68FH9TCIT | 0008
00°0002021 | 00°000L6TT | 00°00046T7 | 00°000L61T | 0O'0OGESTT | GO'00G8STT | 00°00GGITT | 00°00SSSTL | 00°004G9TT
90'6TOCSTT | 09 L09FLTT | PT'96T99TT | 8OPRLLETT | £€EREFSTT | LA TOG0FIT | TE0SSCETT | GR'8ETVCIT | 66°LCLSTIT | 00GL
00'000002T | 00°000F61T | 00°000%617T | 00°000¥6TT | 00°00GE8TT | 00°00G89TT | 00°00SSITT | 00°00SSHTT | 00'00GIITT
9G° TROLLTT | 010498911 | $9'85¢09TT | 8T LPSIGTT | 82 69E9VIT | LT FCOSETT | TR'CTHOCTT | GETOC8TIL | 686846011 | 0002

00001 00%6 0006 00S8 0008 0054 0004 0089 0009

13

[6] J. Climaco, C. Ferreira, and M. E. Captivo. Multicriteria integer programming: an overview of
different algorithmic approaches. In J. Climaco, editor, Multicriteria Analysis, pages 248-258.
Springer, Berlin, 1997.

{7} C. Cordier, H. Marchand, R. Laundy, and L. A. Wolsey. bc-opt: A branch-and-cut code for
mixed integer programs. Mathemaetical Programming, 86:335, 1997.

i8] J. Eckstein, C.A. Phillips, and W.E. Hart. Pico: An object-oriented framework for parallel
branch and bound. Technical Report RRR 40-2000, Rutgers University, 2000.

[9] M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiobjective com-
binatorial optimization. OR Spektrum, 22:425-460, 2000.

[10] M. Ehrgott and X. Gandibleux. Multiobjective combinatorial optimization—theory, method-
ology and applications. In M. Ehrgott and X. Gandibleux, editors, Mulliple Criteria
Optimization—State of the Art Annotated Bibliographic Surveys, pages 369-444. Klhuwer Aca-
demic Publishers, Boston, MA, 2002.

[11] M. Ehrgott and M. M. Wiecek. Multiobjective programming. In M. Ehrgott, J. Figueira, and
S. Greco, editors, State of the Art of Mulliple Criteria Decision Analysis. Kluwer Academic
Publishers, Boston, MA, 2004. in print.

[12] P. K. Eswaran, A. Ravindran, and H. Moskowitz. Algorithms for nonlinear integer bicriterion
problems. Journal of Optimization Theory and Applications, 63(2):261-279, 1989.

[13} Computational Infrastructure for Operations Research. http://www.coin-or.org.

[14] A. M. GeofIrion. Proper efficiency and the theory of vector maximization. Journal of Mathe-
matical Analysis and Applications, 22:618-630, 1968.

[15] L. Hafer. bonsaig: Algorithms and design. Technical Report SFU-CMPTTR 1999-06, Simon
Frazer University Computer Science, 1999.

[16] M. Junger and S. Thienel. Introduction to abacus—a branch-and-cut system. Operations
Research Letters, 22;83-7, 1998.

[17] M. Jinger and 8. Thienel. The abacus system for branch and cut and price algorithms in integer
programming and combinatorial optimization. Software Practice and Experience, 30:1325-
1352, 2001.

[18] J. Linderoth. Topics in Parallel Integer Optimization. PhD thesis, School of Industrial and
Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 1998.

[19] A. Makhorin. Introduction to glpk. http://www.gnu.org/software/glpk/glpk.html.

[20] G. L. Nemhauser, M.W P. Savelsbergh, and G.S. Sigismondi. Minto, a mixed integer optimizer.
Operations Research Letters, 15:47-58, 1994.

[21] T. K. Ralphs. SYMPHONY Version 4.0 User’s Manual. Technical Report 03T-006, Lehigh
University Industrial and Systems Engineering, 2003.

[22] T.K. Ralphs. Parallel branch and cut for capacitated vehicle routing. Parallel Computing,
29:607-629, 2003.

14

[23] T.K. Ralphs, L. Ladnyi, and M.J. Saltzman. Parallel branch, cut, and price for large-scale
discrete optimization. Mathematical Programming, 98:253-280, 2003,

[24] T.K. Ralphs, L. Ladnyi, and M.J. Saltzman. A library hierarchy for implementing scalable
parallel search algorithms. Journel of Supercomputing, 28:215-234, 2004.

{25] T.K. Ralphs, M.J. Saltzman, and M.M. Wiecek. An improved algorithm for biobjective integer
programming and its application to network routing problems. Technical Report 04T-001,
Lehigh University Industrial and Systems Engineering, 2004.

[26] Linus Schrage and Laurence A. Wolsey. Sensitivity analysis for branch and bound linear
programming. Operotions Research, 33:1008-1023, 1985.

[27] R. Solanki. Generating the noninferior set in mixed integer biobjective linear programs: an
application to a location problem. Computers and Operations Research, 18:1-15, 1991,

[28] T.K. Ralphs. COIN/BCP User’s Manual, 2001.

