Error Recovery for Real-Time Manufacturing
Control Via Augmented Petri Nets

Nicholas G. Odrey
Lehigh University
Gonzalo Mejia
Universidad de Los Andes

Report No. 04T-012



Error Reéovéry for Real-Time Manufacturing Control Via Augmented
| Petri Nets |

*Nicholas Odi'ey and **Gonzalo Mejia

* Department of Industrial Engineering
" Lehigh University
Bethlehem, PA, 18015, USA

#*Department of Industrial Engineering
Universidad de Los Andes
Bogota, Colombia

ABSTRACT

The construction of error vecovery Petri subnets and similar representations have received considerable
attention in the literature. Previous work has presented a multi-agent system representing various levels of
control in a reconfigurable architecture. Agents pertaining to production, mediation, and error recovery
within such an architecture were considered. Our focus here is on the workstation level of a hierarchy
where the workstation has the capability for recovery from physical errors. The approach is based on
integrating Petri subnet models within a general Petri net model for a manufacturing system environment. -
In essence, the error recovery plan consists of a trajectory (Petri subnet) having the detailed recovery steps.
that are then incorporated into the workstation control logic. The logic is based on a Timed Coloved Petri
Net model of the total production system. The Petri subset models consist of a seguence of steps required
to reinstate the system back to a normal state. Once generated, the recovery subnet is incorporated into the
Petri net model of the original expected (ervor free) model. Petri net augmentations pertaining to. various
issues are discussed in detail throughout the paper. Issues include the implication of generated error
recovery trajectories in the production activities, linking of production activity net and the ervor recovery =
subnet, potential deadlocks, the role of resources, and part handling ' : '

1. INTRODUCTION

The characteristics of physical error occurrence impose difficult challenges to workstation control. The control
st first handle simultaneously production and recovery activities, and second, errors that appear unexpectedly
must be treated in real-time to avoid a dramatic decrease in the performance of the system. Previous work pertained
to addressing the issue of monitoring, diagnostics, and error recovery within the context of a hierarchical multi-agent
system [1]. The system consists of production, mediator, and error recovery agents. Production agents contain both
planner and control agents. Here we address the error recovery agent within the hierarchical system at the
workstation level in more detail. It is assumed that raw sensory information has been processed and is available. For
complex systems the diagnostic task may be performed by a mediator agent. When an' error is detected, the control
agent diagnoses the error and requests the action of a recovery agent. In Teturn, the recovery agent devises a plan to
‘bring the system out of the error state. Such an error recovery plan consists of a trajectory having the detailed
recovery steps that are incorporated into the control agent logic. The construction of error recovery Petri subnets and
similar representations is a topic which received considerable attention in the literature during the late eighties and
early nineties. Petri Nets have been used previously to model recovery activities for machine breakdowns and
alternative routings [2]. Fxtensions to such model representations to handle a more complicated logic including
requests for recovery actions and temporary storage in buffers has also been accomplished [3].

*Corresponding author: Tel.: (610) 758-4036; Fax: (610) 758-4886; E-mail: ngoO@lehigh.edu



More recently a controlled automata ogic to represent normal and error states in a manufacturing system has
been developed [4]. In the context of Petri Nets, a recovery trajectory corresponds to a Petri subnet which models
the sequence of steps Tequired to reinstate the system back to a normal state. After being generated, the recovery
subnet is incorporated into the workstation activities net (the Petri Net of the multi-agent system environment). In
this research, we follow the designation of others [5], and denote the incorporation of a recovery subnet into the
activities net as net augmentation. The terms “original net” or “activities net” refer to the Petri Net representing the
workstation activities (within a multi-agent environment) during the normal operation of the systermn. The net
* augmentation brings several problems that require careful handling to avoid undesirable sitnations such as the
occurrence of state explosions or deadlocks.

Perhaps the most complete description of error recovery trajectories that has been developed [5] proposes three
possible error recovery trajectories, namely, input conditioning; backward error recovery and forward error recovery.
The concept of input conditioning is that an abnormal state can become a normal state after other actions are finished
or some conditions are met [3]. Backward recovery suggests that a faulty state can become a normal state if an early
stage in the original trajectory can be reached. The forward recovery tra;ectory consists of reaching a later state in
the original trajectory after satisfying some operational constraints.

The input conditioning example shows a.trajectory that “returns” to the state where the error occurred The .
backward recovery trajectory reaches a state visited prior to the state where the error occurred. Hence, the state
‘where the error occurred is reachsble from the state that represents the recovery. Finally, the forward recovery
trajectory reaches a state that is reachable from the state where the error occurred. Obviously, not all trajectories are
applicable in all cases due to operational or logical constraints. For instance, if the operation “process part” fails, the
state “part processed” cannot be reached unless the operation “process part” is re-attempted and satisfactorily
completed, Backward recovery trajectories can only be applied to reversible processes. A forward t:fajectory is the
most desirable but at the same time, it is the most difficult to implement with automated reasoning systems [6].
Examples of automated reasoning systems for error recovery procedures, such as expert systems and neural networks‘
have been proposed over the years include [7], [8] and [9].

2. BACKGROUND

The enormous number of errors and the corresponding ways to recover that can occur at the physical workstation
implies unlimited possibilities for constructing recovery subnets. The important issue in this research is that any error
and the corresponding recovery steps can be modeled with any of the three strategies mentioned above, namely input
conditioning, and backward or forward error recovery. Without loss of generality, this research limits the types of
errors handled by the control agent to errors resulting from physical interactions between parts and resources (e.g.
machines and material handling devices). The reason for this assumption is to facilitate the simulation of generic
recovery subnets. An example of errors handled by the control agent is the incorrect positioning of a part in a fixture.
This error represents the failed physical interaction part-fixture (the fixture is the resource).

Although not explicitly modeled in this research, the foilowmg examples are typmal eITOrS correspondmg to
interactions part-resource.

Parts missing in input buffer - Incorrect inspection of parts

Part missing in machine Part positioning in machine or inspection table
Incorrect or defective parts in buffer Part jammed in machine

Gripper slippage Part requiring additional processing

Incorrect fixturing of parts

Prior work recovery strategies {51 were intended to model the specifics of low level conirol typified by the
equipment level of a hierarchical control system. In the research presented here, the three recovery trajectories can
be applied to the workstation level within a hierarchical model as developed at NIST [10]. The application of these
trajectories implies that:

(i) the level of task decomposition is the same for the recovery and production commands, and

(ii) a careful handling of allocation and release of resources is performed in order to guarantee maintainability of the
net properties.



Since in this research the execution of both production and recovery activities is assigned to a workstation
control agent, the control logic of such an agent must be able to handle both activities. For this reason the degree of
‘detail in the command structure and the time horizons of both recovery and production must be compatible. For
example, if the workstation production activities include the action “unload part”, a possible recovery action at this
fevel would be “re-attempt part unloading”. Likewise the sequence of tasks for the control agent may be “process
part A”, “unload part A", “re-attempt part A unioading”, and “process part B”. Here the advantages of Petri Net
modeling can be fully appreciated.

3. CONSTRUCTION OF RECOVERY SUBNETS

An example of backward error recovery is presented here but note that a similar approach can be applied to the
other types of trajectories. For the construction of recovery submets, a2 number of important issues must be
considered. Figure 1 illustrates the events during an error occurrence and the corresponding recovery in terms of
Petri Net constructs. Subfigure () represents the Petri Net during the normal operation. In (b), an error occurs in an
- operation “move part” represented by the operational place p;. The error is represented by the addition of a new
transition t; and a place p.. A similar approach was previously employed [3] to handle machine breakdowns. The
transition t; represents the start of the event “error occurs” and p, represents the error state. Firing t; removes the
residing token in p;, resets the remaining process time corresponding to the place p;,"and puts a token in the new
place p.. The next step pertains to the incorporation of the recovery subnet: In the example, such a trajectory consists
of two places (py; and py) and three transitions (t, to ty). Here. p,, represents the recovery action “find part” and p,
the recovery action “pick up part”. The transitions t, to t; represent the change of states of these two recovery
actions. Having the recovery trajectory incorporated into the original net by the recovery agent, the workstation
control agent is required to execute the recovery actions. In (b), returning to the normal state requires the firing of
transitions t.1, t, and t;. After firing t.1 the scheduled transition firings in the original net resume. Notice that the -
augmented net now contains an Operational Elementary Circuit (QEC) = {pz, te, Pes ety Pris tizs Peas b3y Pos t1, P2} This
is an elementary circuit that has only operational places

OEC nets describing the sets of sequences of activities results in infinite reachability graphs since tokens can
infinitely loop around the OECs creating new states, The strategy adopted in this research to overcome this drawback
is that every time that a transition on the recovery subnet fires, the fired transition, its input places (except those
places belonging to the original net) and the connecting arcs are deleted from the augmented net. Thus, the
elementary circuit which would be created during the generation of the recovery subnet will only be partiatly
constructed. For example, in (b), as soon as the transition te fires, the transition t; and the arc I (py,te) are removed.
from the net. Subfigures (c) to () illustrate the sequence of firings and deletion of transitions, places and arcs from
the net. The original net is restored when the last transition (%) of the error/error recovery subnet has been fired.
After firing ¢, the part token returns to the original net and the resource token to the resource place. The workstation
control agent keeps a record of which elements (places, transitions and arcs) belong to the original net and which
elements correspond to the recovery subnets. This record allows the incorporation, deletion, and update of the
recovery nets. In a typical scenario, a number of normal and error recovery activities are likely to occur
simultaneously. For the purpose of tracking the recovery nets, every time a recovery agent creates a new recovery
subnet, such a subnet is stored in a “recovery agenda”. Every time that a transition of the augmented net fires the
workstation control agent searches for such a transition on the agenda. If the transition is found, it means that the
transition belongs to a recovery subnet and all the transition input places and all its input and output arcs are deleted
from the recovery agenda and from the augmented net (with the exception of arcs and places beionvmg only to the
recovery subnet and not to the orlgmal net). :

3.1 LINKING‘ THE ACTIVITY AND RECOVER Y NETS

The next step relates to resuming the normal activities after an error is recovered. In terms of Petri Nets this implies
finding a non-error state where the activities net and the recovery subnet are linked. The desired non- error state may
not the same as the state pnor to the occurrence of the error. For example, the state (marking) in figure 1(f} is not the
same as the state shown in figure 1(a). The example described in figure I illustrates a possible trajectory {backward
trajectory) which “started” (according to the arc directions) in p,. Defining the non-error state is the task of the
recovery agent and depends primarily on the characteristics of the error and its recovery. Except for the input
conditioning case, this research adapts a previous model {3] in which a job is transferred from the broken-down
machine to a storage buffer. In the event of an input-conditioning strategy, the corresponding net originates and
terminates at the same place {5]. This research assumes that a part token that goes through either a backward or a



(a) Petr] Net of during normal
. operation. A part is being processed by : P2 Or1
a resource 1 : o
(b} Incorporation of an error/error recovery net, The
errog/error recovery net is shown with thicker lines.

eg} Pz P

P Pn

(d) Firing and deletion of t,, the place p,
and the corresponding arcs,

() Firing and deletion of t5, the place po,
and the corresponding arcs.
The original net has been restored

Pra

(e) Firing and deletion of ty, the place pp,
and the corresponding arcs.

Remarks:

P, represents an error state. :

Do t0 3 represent arbitrary operational piaces; & 10 t; are changes of events in the original net
pe; and ppp represent recovery steps

t¢is the transition that represents the initiation of the failure.

t to t; represent the start and end of the recovery step

Figdre 1: Construction and Deletion of Recovery Paths

forward recovery trajectory is placed in a storage buffers after an error is fixed. Figure 2 illustrates the application of
backward recovery trajeciories in this research.



3.2 HANDLING OF RESOURCES IN RECOVERY TRAJECTORIES

An important issue is the handling of resource tokens. This research assumes that, when an error occurs, all
resources involved in the operation that failed as well as the part that was being manipulated become temporarily
unavailable. For example, assume that two recovery actions, “find part” and “pick up part”, are required to overcome
the error “robot dropped part” occurred in the course of the pre-planned activity “move part”. During the execution
of such recovery actions both the robot and the part remain unavailable for other tasks. This is a major difference
compared to approaches which consider machine breakdowns in which only the machine that fafled remain
unavailablie during the failure and repair period. At the workstation level, the actual manipuiation of the part during
the failure states is considered in the logic of the control agent. If the selected trajectory is an input conditioning
subnet, the resources that intervened in the operation that failed remain unavailable until the operation is successfully
completed. The cases of backward and forward recovery are more complex: All resources required to execute the
operation that failed need to be released at some point (to be determined by the recovery agent) m the recovery
frajectory.

Backward Recovery Subnet

po: part available Ds: part processed

py: part in buffer 1 . rl: resource 1 available
py: part being moved to resource 1 bl: buffer | available
ps: part being processed by resource 1 b2: buffer 2 available
pa: part in buffer 2 tr: Recovery transition

_ Fégure 2: Example of Backward Recovery Trajectory with Buffers

3.3 ISSUES ON DEADILOCKS WITH AUGMENTED NETS

In the case of net augmentation, the following situation might occur: Consider the case of a part transported by a
robot and that the operation “part moved by robot” fails because the robot dropped the part. Suppose that the error
recovery agent finds a trajectory that returns the part to the previous buffer but the buffer is full. Simultaneously,
parts located at the buffer are waiting for the robot to become available for transportation. This situation is depicted
in figure 3(a) which shows the incorporation of a backward recovery net into the activities net. The activities of the
recovery net are represented by the places py (pick up part) and py, (drop part in buffer). As in previous figures, the
thicker arcs highlight the recovery net. After the execution of the activity “pick-up part”, the transitions ty, tn and ip
and the places p. and p, are eliminated from the net. The resulting net is shown in figure 3(b). Notice that neither
transitions t; nor t, can be enabled and the net is deadlocked, A circular wait and a deadlock situation are
encountered and the control agent must adopt a policy to maneuver out of the undesired state. During the execution
of the normal (production) activities, deadlocks can be avoided with an adequate control policy (i.e. sequence of
transition firings). For the error recovery activities, the deadlock prevention or avoidance may be more difficult due
to the characteristics of the error recovery nets.

Deadiocks might be unavoidable and provisions must be taken to handle such undesirable situations. The policy
adopted in this research to maneuver out of such deadiock states consists of allowing temporarily a buffer overflow.



- Figure 4 illustrates an example of maneuvering out of the deadlock sitwation using a Petri Net model, In the Petri net,
the transition t; in figure 4 will be allowed to fire even if no tokens are available at place bl (i.e, the buffer bl is full).
In that case, the place pl, representing the “parts in buffer” condition, would accept a token overflow (two tokens
instead of one) only for the case of tokens coming from recovery subnets. The advantage of this policy is that clears
the deadlock situation in an efficient way that addtionally can be automatically generated in computer code. If this
policy is not feasible in real systemns due to buffer limitations, human intervention may be required.

This deadlock maneuvering brings another undesirable situation: Consider figure 4 where firing t1 twice would
put two tokens in place bl and the original buffer capacity would be permanently doubled. To compensate for this
situation, the following measure was taken in this research: When a token coming from a recovery net arrives fo a
buffer, one token is substracted from the buffer place (in thlS case, the place bl that represents the buffer availability)
even though the buffer place has no available tokens. .

If the buffer place has no tokens available then a buffer place will contain a “negative” token representing the
temporary buffer overflow. Negative tokens for Petri Nets have been proposedfor automated reasoning[11]. In this
research, the concept of negative tokens indicates that a pre-condition of an action was not met but still the action
was executed. The overflow is cleared when transitions, which are input to the buffer place, are fired as many times
as negative tokens reside in the buffer place. The storage buffer remains unavailable for other incoming parts from

 the original net until both the overflow is corrected and one slot of the buffer becomes empty. In terms of the Petri
Net of figure 4, the buffer will be available again only when there is at least one token in place bl. In terms of the
‘physical system, a buffer only accepts overflows when parts ‘are transported from situations that involve recovery
actions. Since the handling or processing capability of resources cannot be easily expanded {e.g. a robot cannot
handle more than one part at a time), the only way to create the required extra capacity is to expand the storage
capability of the buffers.

O

{a) Potential deadlock (b)Deadlocked net
Place description: : .
Po: part ready pa: part moved by robot
pi: parts in buffer Py’ part movement completed
py: part located at platform 1. Tobot available
bl: buffer available Do TTOr state
pri: looking up part D! picking up part
Transitions represent the start and the end of the events t transition on the recovery subnet

t,: transition on the activities subnet

Remark. When the token in place p, reaches the place py, a deadlock will oceur.

Figure 3: Example of Deadlock Wait in an Error Recovery Situation



Pez

(2) Deadlocked net before

firing & {b) Firing and deletion of t, and the corresponding arcs and places. -

Overflow of fokens occurs at the buffer to avoid a deadlock. X
represents a negative token '

{c) Firing of {1 restores the original
buffer capacity

(d) Execution of the activity represented by p,

{e) Activity p; completed and release bl
of resource rl
Po P 3 (}lz\ ; s Pa
&1/ @
r

(f) Acquiring resource rl and releasing resource bl

Figure 4: Deadlock Avoidance by Allowing Temporary Buffer Overflow



4. CONCLUSIONS

This paper has discussed the issues of incorporating recovery frajectories into the control logic of a workstation
control agent. A contribution is the real-time error treatment which involves the addition and deletion of recovery
paths from the contrel logic. In terms of Petri Nets, the recovery activities are modeled with a Petri subnet that is
attached to the existing activities net. In this research, three types of recovery actions, namely input conditioning,
backward recovery and forward error recovery were investigated from the perspective of the workstation level in a
hierarchical intelligent based architecture. Since the recovery actions were previously developed for very low levels
of control (i.e. equiprent level), modifications have been proposed to the three types of recovery action features that
characterize the workstation level. Such features are the preservation of the level of detail workstation commands
and the handling of resource allocation during the execution of recovery actions. The incorporation of recovery
subnets at the workstation tevel brings two undesirabie situations:

1. The reachability graph becomes infinite with the incorporation of elementary circuits that model the
recovery activities.

2. The new augmented net may bring deadlock situations that cannot be prevented or avoided.

Since the augmented net (recovery and activities net) can produce unavoidable deadlocks, a strategy must be
designed to maneuver out of the deadlock sittation. The strategy proposed here to counteract the deadlock situation
is to aliow temporary overflows at the storage buffers, In terms of the Petri Nets this overflow is modeled with the
concept of negative tokens. This simple but effective strategy solves the problem and avoids the vertfication of
structural properties. The dynamic incorportion and deletion of recovery nets is given in a concurrent paper [12].
The primary idea is that given a Petri Net and an initial marking, it is possible to reach the desired unaugmented final
marking when errors and their recovery nets are randomly generated. This involves the generation of execution
plans that include both recovery and normal operation activities. '

REFERENCES

[1] Odrey, N.G., Mejia, G. (2002) A Re«conf‘ gurable Architecture for Error Recove?y in a Multi-Agen! Production Sys!em,
Proceedings of the 12" International Conference on Flexible Automation and Intelligent Manufacturing, Dresden,
‘Germany, pp.1115-1125, 2002 _

[2] Barad, M. Sipper,D. (1988). Flexibility in Manufacturing Systems: Definition ard Petri Net Modeling.  International

. Jowrnal of Production Research. 26 (2) 237-248.

[3] Liu C. 8. 1993. Planning and Control of Flexible Manufacturing Cells with Alternative Routing Stm!egz'és. Ph.D.
Dissertation. Department of Industrial Engineering, Lehigh University.

[4] Brandin, B. 1996. Error-recovering supervisory control of automated manufacturmg systems. Integrated Computer-
aided manufacturing, 3 (4) 255-267

[5] Zhou, M. DiCesare, F. 1993. Petri Net Synthesis for Discrete Event Control of Manufacturing Systems. Kluwer
Academic Publishers. USA.

[6] Fielding, Paul J., DiCesare, ank Goldbogen, Geof: Désrochers, Alan. 1987. Intelligent automated error recovery in
manufacturing workstations. Proceedings - IEEE International Symposium on Intelligent Control, 280-285

[7] Seabra-Lopes, L. Camarinha-Matos, L M. 1996. Towards intelligent execution supervision for flexible assembly
systems. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. 2,pp1225-1230.

[8] Kokkinaki, A I Valavanis, K P. 1996. Error specification, monitoring and recovery in computer-integrated
manufacturing: an analytic approach. IEE Proceedings: Control Theory & Applications, 143 (6} 499-308.

[9] Ma, HY. (2000). “Flexible Manufacturing Workstation Control with Error Recovery Capability”, PhD. Dissertation.
Lehigh University, Department of Industrial Engineering.

[10] Albus, J. 1992 RCS: 4 Reference Model Architecture for Intelligent Control. IEEE Journal on Computer
' Architectures for Intelligent Machines, 46-39

[11] Murata, TYamaguchz H. (1991). A Petri Net with Negative Tokens and its Application in Automated Reasoning.
Proceedings of the 33™ Midwest Symposium on Circuits and Systems. Chicago, US4, 2 762-5.

[12] Mejia, G. , Odrey, N. (2004}, Real Time Control and Error Recovery of Flexible Manufacturing Workstations: An
Approach Based on Petri Nets, submitted to 14th Internationl Conference on Flexible Automation and Intelligent
Manufacturing FAIM 2004, Toronto, Canada, { unpublished)



