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ABSTRACT

This paper introduces an intelligent flexible workstation controller integrating Petri Net models, heuristic search
methods and ervor recovery capability. The activities of the workstation controller are modeled via a re-
configurable Petri Net formalism that allows the incorporation of recovery tasks into its logic. The workstation
controller follows a production plan generated off-line during its normal operation and appropriately reqcts
when the criginal plan is disturbed due 10 the presence of ervors. The off-line production plan is generated via a
heuristic Beam A* Search (BAS) algorithm presented in previous work. The implications of the error recovery
tasks from the perspective of control are also discussed. When ervors oceur and the system cannot follow the
original schedule, the contraller attempis to reach the ovigingl production plan in  later stage in such a way
that the effect of the disruption is minimized. This is accomplished with a modified version of the BAS algovithm
adapted for on-line scheduling. This modified BAS algorithm generates a partial plan of activities that
“matches-up” with the original production plan. Simulation lests were conducted in order to study the behavior
of the algorithm under different scenarios. The results are and analyzed discussed. We conclude that our
approack can be a valuable tool for real time control of flexible manufacturing systems.

1. INTRODUCTION

Tn this paper we focus on the workstation level of a hierarchical manufacturing system. A workstation is typically
a set of parallel machines linked by material handling devices that perform one or more manufacturing and assembly
operations. The workstation controller is the entity responsible for the coordination, execution and regulation of the
activities at the physical workstation. The workstation controller receives a higher level comrpand, generally from a
higher level controlier (i.e. a cell controller) that corresponds a set of operations to be performed on the workstation
with the desired begin and finish times. The workstation controller decomposes such a command into a lower level
set of coordinated activities [1]. In addition to executing activities, the workstation controller should also provide a
reactive and adaptive response to errors and other disturbances [1].

Peiri Nets have been successfully used for modeling and contrel the dynamics of flexible manufacturing systems.
Typically a Petri Net representation of a manufacturing workstation includes the routing of the to-be-processed parts
and the required resources to process such parts. Several modeling approaches based on Petri Nets that include those
of [1]{2] and [3] have been proposed. Generally, the operations required on a part are modeled with combinations of
places and transitions. The movement of tokens throughout the net models the execution of the required operations.
Int this paper we follow the modeling approach previously presented by [1] and {4].

In simple workstation configurations, the coordination of activities is not difficult as the number of possible states
could be easily handled by exhaustive enumeration. As the complexity of the workstations increase more robust -
methods are required for sequencing and coordination of such activities. The Petri Net formalism can handle the
complexities of the highly detailed activities of a manufacturing workstation such as parallel machines, buffers of
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finite capacity, dual resources (nmltiple resources required simultaneously on one operation), alternative routings,
and material handling devices to name a few,

In order to optimize the execution of the workstation activities, we introduced a heuristic search algorithm [4].
This method partially searches the net state space of a Petri Net model of a mamufacturing workstation to find a near-
optimal execution plan. In the Petri Net terminology this corresponds to finding a valid sequence of transition firings
whose execution would minimize 2 criterion. This algorithim was named as Beam A* Search (BAS). In addition, the
sequence of transition firings found with BAS is guaranteed to be deadlock free. Here the criterion is to maximize
production rates or minimize makespan.

Unfortunately, the Petri Net representation of the workstation activities does not have provisions for errors and
other disturbances as these errors are generally not explicitly included in the logic of the controller. Thus, the
controller would have difficulties when handling such abnormal ervor states. A temporary solution for these
situations is to explicitly model the error states via Petri subnets [5][6]. Figure 1 shows an example of such subnets,
These are nets, linked to the original net (the net which models the pre-planned activities and the required resources),
representing states such as “machine unavailable” or “machine repair”[5]. This solution, however, is not feasible in
real workstation controllers because (i) the number of possible errors can be enormous, and (ii) an error not planmed
would prevent the controller to work properly. In this paper errors are only modeled with Petri subnets when they
occur and eliminated from the original net when recovered. In the remainder of the documents such subnets are
denoted as error recovery subnets,

The efficient handling of errors imposes a difficult task to the workstation controller as the original activity plan
(off.line plan) must be adapted to the error sitvation. When the original plan is distupted, the workstation controller
must adopt a remedial measure to minimize the effect of the error. Thus, the workstation controller must devise a
contingency plan to re-sequence the jobs on the physical workstation. In this paper we propose an approach in which
the controller attempts to “match-up” the contingency plan with the original production plan. The primary goal of
this paper is investigate the issues related to the re-planning activity in order to obtain both good performance in
terms of total flowtime and efficiency measured in computational time. The remainder of the paper is organized as
follows: Section 2 discusses the issues related to modeling error recovery with Petri Nets; Section 3 introduces our
approach for real time control; Section 4 presents the results and analysis of our simulation tests. Finally in section 5
our insight for further research is discussed.

2. BACKGROUND

The construction of error recovery Petri subnets and similar representations is a topic which received
considerable attention in the Iterature. For example, [6] presented a typical Petri Net representation for machines
breakdowns and alternative routings. Liu [7] extended such a representation in ozder to handle a more complicated
logic that included requests for recovery actions and temporary storage in buffers.

Perhaps the most complete description of error recovery trajectories was developed by [3] who proposed three
possible error recovery trajectories: input conditioning, backward error recovery and forward error recovery. The
concept of input conditioning is that an abnormal state can become a normal state after other actions are finished or
some conditions are met. Backward recovery suggests that a faulty state can become a normal state if an early stage
in the original trajectory can be reached. The forward recovery trajectory consists of reaching a later state in the
original trajectory after satisfying some operational constraints. Zhou and DiCesare [3] developed a formal
description of these three possible trajectories in terms of Petri Net constructs. See figure 1 for an example of the
three types of recovery paths. The input conditioning example shows a trajectory that “returns” to the state where the
error occwrred (figure 1.a). The backward recovery trajectory aims to reach a state visited prior to the state where the
error occurred (figure 1.b). Finally, the forward recovery trajectory aims to reach a state reachable from the state
where the error occurred (figure 1.c).

Obviously not all trajectories are applicable in all cases due to operational or logical consiraints. For instance, if
the operation “process part” fails, the state “part processed” cannot be reached unless the operation “process part” is
re-attempted and satisfactorily completed. Backward recovery trajectories can only be applied to reversible
processes [8]. A forward trajectory is the most desirable but at the same time, it is the most difficult to implement
with automated reasoning systems as pointed out by {8]. The three recovery strategies developed by [3] were
intended to model the specifics of low level control typified by the equipment level of a hierarchical control system.
In the research presented here, the three recovery trajectories are also applied to the workstation level. The
application of these trajectories implies that (i) the level of task decomposition is the same for the recovery and



Real Time Control and Error Recovery of Flexible Manufacturing Workstations: An Approach Based on Petri Nets 3

production commands, and (i} a careful handling of allocation and release of resources is performed in order to
guarantee the maintainability of the net properties.

The control logic workstation of the controller must be able to handle both production and recovery activities.
For this reason the degree of detail in the command structure and the time horizons of both recovery and production
must be compatible. For example, if the workstation production activities include the action “unload part”, a possible
recovery action at this level would be “re-attempt part unloading™.

TV T

Input conditioning Backward recovery subnet |Forward recovery subnet
recovery subnet
(a) Example of input conditioning (b) Example of backward (c) Example of forward

Figure 1. Error Recovery Trajectories modeled with Petri Nets

3. REAL TIME CONTROL AND OPTIMIZATION OF FLEXIBLE MANUFACTURING WORKSTATIONS

This section investigates the issue of optimizing the performance of a manufacturing workstation in the context of
dynamic scenarios where exrors occur. In the event of disruptions, the original activity plan devised off-line by the
workstation controller may require adjustments. The question that arises is which is how to re-construct the activity
plan. A first alternative would be to build a completely new plan to execute the pending jobs. The other extreme
would be waiting until the disturbance is fixed and continuing with the original plan. In general, the literature (e.g.
[9]) has shown that a completely new plan provides the best performance. However, the completely new plan may be
costly in termns of computational time. The other extreme which resumes the original plan as soon as the disturbance
is fixed does not require major calculations but may deteriorate the overall performance of the system [9]. An
intermediate measure between these two extremes is also possible. This would be partially constructing a new plan to
a point where the original plan can be resumed. In terms of the Petri Nets this corresponds to find a marking (state)
in the original plan reachable from the disrupted state and the question to be answered is the selection of marking
that should be reached. Figure 2 illustrates a view of the issue of “match-up” state in a manufacturing system. Figure
2 shows a desired “trajectory” conmstructed out of normal states, 2 disrupted state and the possible transient
trajectories {dotted lines) to return to the original trajectory. The disrupted state is reached involuntarily. From there,
a number of possibilities exist to return to the original plan. The best plan implies the trajectory with minimmun cost
to reach the final state. Notice that the minimum cost plan to the final state may include a combination of transient
and steady state trajectories, The match-up point is the point in time where the transient and the steady state
schedules are compatible [10].

e Steady-state trajectory
— — —>Normal (planned) states
--------------- » Error recovery trajectory

Final efate

Normal (planned) states O
Disrupted state @

Tirne

mitial state

Figure 2. Brror Recovery trajectories from a disrupted state
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3.1 MATCH-UP STRATEGIES USING PETRI NETS AND HEURISTIC SEARCH

This section investigates the issne of the match-up approach from the perspective of the Petri Net terminology.
The following are definitions. '

Definition of Finak Marking (M, ): It is the state represents the state where all operations in all operations have
been completed.

Definition of Intermediate Marking (M,): An intermediate marking (M, # M) is a state of the Petri Net
reachable from the initial marking A, after following a pre-planned sequence of transition firings.

Definition of the List of Markings (Listmarkings): Listmarkings is an ordered list that contains M, all
intermediate states M,,, and the final marking My Any transition on Listmarkings (except M) is reachable from the
previous one on the list by firing one transition. Listmarkings corresponds to the sequence of states of the Petri Net
generated offline by the workstation controller that lead from the initial to the final marking. This sequence of states
corresponds to the activity plan at the workstation.

Definition of Error Marking (M, }: M, is a marking of the Petri Net that contains one or more tokens in places
representing error states and the corresponding error recovery subnets if available. An example is given in figure
6.2¢.

Definition of Match-up Marking (M,): M, is the intermediate marking selected to be the end of the transient
activity plan.

In terms of the Petri Nets, an error occurs when a transition fires outside a predetermined time frame [11]. When
a transition fires earlier or later (if the transition fires at all) than expected, an alarm is triggered and an error state is
produced. After the error is acknowledged and diagnosed, a recovery plan is generated, This is accomplished by
linking a error recovery subnet to the activity net as shown in figure 1. Linking the error recovery subnet to the
activities net produces an augmentation of the original Petri Net model. At this stage the confroller must devise 2
plan to reach the final marking M based on the status of the augmented net. Reaching the final marking My is
accomplished by constructing a plan to reach some pre-defined intermediate marking M, from Listmarkings and
then firing the pre-determined sequence of transitions from such an intermediate marking to the final marking. If a
path to the intermediate marking can be found, then the original execution policy (sequence of transition firings) can
be employed from the desired intermediate marking M, to reach the final marking M, The issue of selecting the
appropriate intermediate marking will be discussed in section 4.

3.2 THE ADAPTIVE BEAM A™ SEARCH ALGORITHM

The logic of the workstation controller must translate the match-up requirements to methods (algorithms) that
apply to the Petri Net model. This means that the workstation controller must possess the methods to find a sequence
of transitions to reach any feasible intermediate marking M, {on Listmarkings) reachable from an error marking AM,.
In the approach proposed in this research, the workstation controller employs a modified version of the BAS
algorithm presented earlier [4] to find intermediate markings. The BAS algorithm is a modified version of the
popular A* Search algorithm applied to Petri Nets [12]. BAS expands only the most promising nodes of the net
reachability graph by improving on the deficiencies of A* Search. The main features of BAS are:

- Limited expansion of nodes within the levels of the reachability graph
-~ A non-delay scheme
- Improved lower bounds by using dispatching rules

Essentially BAS aims to trim down the reachability graph with two strategies: Limited expansion and node
filtering. BAS expands only a maximum predefined number of nodes at each level of the reachability graph. When
such a number is reached, the search moves onto the next level. In addition, a non-delay scheme filters out non-
promising nodes by guaranteeing that a resource is never idle when it can be processing/handling a part. At the same
time BAS calculates lower bounds by looking at feasible sequences of transition firings generated with dispatching
rules. Recall that A* search is a branch and bound like algorithm which requires lower bounds in order to direct the
node expansion.

The modified algorithm version of BAS is termed here as Adaptive A* Search Algorithm (ABAS). (ABAS) uses
essentially the same features of BAS. The main difference is that the ABAS algorithm is primarily stractured to find
paths to desired intermediate markings, instead of paths to the final marking. In the case of the BAS, the task of
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finding a path to the final marking M, is not difficult because the algorithm forces the search deeper in the
reachability graph until the final marking is eventoally found. The final marking is at the lowest possible depth and a
simple depth-first strategy would find the final marking, 'This is true since the final marking is reachable from any
marking in the reachability graph provided there are no deadlocks. Finding a path between any two intermediate
markings would require a breadth-first strategy or similar strategy and there will be no guarantee that such a path
exists,

The proposed solution for finding intermediate markings is to construct a path to (i) a desired intermediate
marking M;,, whenever such a marking generated, (ii) any marking in the original trajectory reachable” from M,,, or
(iii} to the final marking. The initial conditions for the ABAS algorithm are the error marking M., the desired
intermediate marking M, the final marking My and the list of pre-planned markings (Listmarkings) that constitute
the original plan devised offline.

Notice that in the case of the net augmented with error recovery paths, M, M, and A, are augmented vectors.
These augmented vectors are re-dimensioned to the original dimensions once the recovery trajectories lose their
tokens (i.e. the errors are recovered).

4. COMPUTATIONAL EXPERIENCE

This section investigates the selection the match-up marking from the list of pre-defined markings (Listmarkings)
when the normal operation of the system is resumed after the recovery of an error, Selecting an intermediate marking
is related to choosing the number of operations to be re-scheduled. It can be noted that targeting intermediate
markings located near the end of Listmarkings, will involve the re-planning of more operations. The primary idea of
the experiments is to detect differences in performance as the number of operations to be re-planned is varied.

4.1 ASSUMPTIONS

— There are a number of jobs assigned to the workstation which are available at time 0. A job consists of a
batch of parts. The setup time for each job is 0. No new jobs arrive to the workstation and no jobs are
canceled.

~ There is a probability of exvor for each operation of a job. This is, either an operation fails with probability
pyor it is successfully completed with probabiiity 1- p. The probability that an error occurs in an operation
is independent of the previous error occurrences. Unlike other approaches that involve machine breakdowns
(e.g. Ledn et al, 1994), the generation of errors here is event driven and not time driven.

— All errors can be recovered. The issue of how to devise the recovery plan is out of the scope of this paper.
The input to this model is the recovery time which is the time required to fix the error. The recovery times
are randomly generated with 2 uniform probability distribution.

— All manufacturing, inspection, and transport operations have the same probability of failure. This
assumption can be easily relaxed for real life stadies. The frequency of error occurrence refers to the
probability of failure of an operation. The probability of failure for each operation was set to 10%.

The recovery steps are modeled with a subnet containing one timed place that represents the downtime. The
downtime includes the time to diagnose and classify the error and to generate a recovery plan. The recovery
steps can lead to an input conditioning, backward recovery or forward recovery strategies, depending on the type
of error. For the purpose of the simulation only, we assume the workstation controller selects any of the recovery
strategies with the same probability.

4.2 SIMULATION STUDIES

The performance evaluation was conducted through 12 case studies that correspond to 12 workstation models,
The Petri Nets workstation models were randomly generated with the following characteristics:

—  Each workstation processes five jobs and each job comprises 10 parts (i.e. batch size is 10)

~  There may be parallel machines for the operations performed at the workstation.

" A marking M is reachable from M,, if M is located after M, in the ordered list Listmarkings.
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-~ The number of operations performed at each workstation varies between | and 4.

- All jobs follow the same route.

—  There are buffers located between machines with limited capacity (capacity = 10 parts)
-~ There may be one or more resouces working on a particular operation.

The following flowchart illustrates the execution of the simulation:

Activity plan
calculated offline

Next transition is fired
{(transitions are fired according
to predefined sequence)

Execution plan
finished?

End

Error when firing
transition?

Recovery plan is generated
and activity plan is
modified

Figure 3. Flowchart of the simulation tests

The experiments were conducted by running 10 replicates for a particular problem. The re-scheduling strategy
was defined by the match-up marking M,. The match-up marking is selected from Listmarkings and can be any
marking reachable from the marking state prior to the error occurrence, including such a marking itself and the final
marking My The farther away the selected match-up marking is located down the list Listmarking, the greater
number of operations that can be re-scheduled The notation established here is as follows: The strategy selected
depends on the namber of transition firings required to reach the selected match-up marking on Listmarkings from
the last non-error state (this is the last reached marking before the occurrence of the error), For example, if the
strategy 0 is selected, then the match-up marking is same as the last non-error state, Strategy 2 means that the match-
up marking can be reached by firing two transitions from the last non-error marking. Strategy “all” indicates that the
match-up marking is the final marking. There may be cases in which a match-up marking on Listmarkings is not
reachable from the last non-error state. This happens because some recovery actions put the system back on a normal
state not defined in the original activity plan. In this case, the ABAS algorithm searches for any marking located on
Listmarkings in the path from the selected match-up marking to the final marking. The Petri Net models were
constructed that the final marking is reachable from any marking M reachable from the initial marking M.

The analysis of the results was carried out with an ANOVA experimental design baving the final flow time and
the required CPU time (sec) for the calculations as the responses and “strategy” and “problem” as factors. Flow time
was the simulation clock time for each run. CPU time was the total computer time in seconds for each run. Notice
that the match-up algorithm takes varying CPU times 1o be executed depending on the selected sirategy. This is the
main reason why the simulation times change from run to run, For both responses, “Strategy” is the factor of interest
and “problem” is a blocking factor. “Strategy” is a fixed effect and “problem” is a random factor. Six levels were
chosen for the factor “strategy” and twelve levels for the factor “problem”. Ten replicates were nun for each
combination strategy-problem. The levels of strategies were: Strategy 0, strategy 2, strategy 5, strategy 10, strategy
20 and strategy “all”. The significance level o was set to 0,03,

The ANOVA analysis revealed that the strategies are significant at the 0.05 level for both responses {flowtime
and CPU times). Further analysis was carried out to (i) find the means for the factor “strategy™ on both responses and
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Figure 4. Main Effects Plots for Flow Time and CPU Time vs. Strategy

Table 1 presents the results of pairwise comparisons for the factor strategy for both Flow time and CPU time. A
“Yes” on the tables is interprefed means that the strategies of the corresponding row and colurrmn are significantly
different (¢ = 0.05). The pairwise comparisons were carried out with the Tukey test (See [131 for details.)

Table 1. Statistical significance between strategies

Flow time 0 2 5 10 20 All
0 Yes Yes Yes Yes Yes

2 No No No No

5 No No No

10 . No No

20 No
CPU Time 0 2 5 16 20 All
0 Yes Yes Yes Yes Yes

2 No No No Yes

5 No No Yes

10 No Yes

20 Yes

4.3 ANALYSIS

The results presented the figure 4a for total flow time show that better performance is achieved with higher
strategy numbers. Recall that higher strategy numbers indicate a higher number of operations that are subject to re-
schedule and consequently indicate a higher level of planning. However, the gains resulting of higher number
strategies were very small and only in the case of strategy O compared against the other strategies, there were no
differences at the desired significance level. The second analysis concerns finding differences between the means of
the strategies being the CPU time the response for the experiment. Figure 4.b shows the means for the factor CPU,
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The Tukey comparisons show that the only strategies that were significantly different from the others were the
strategies 0 and “Ail”. The overall conclusion of the experiments is that small gains in performance (measured as
total flow time) were achieved with significant increase in computational effort. At the workstation level, the
planming horizon is short {17 and therefore a quick response is critical. Hence, the selection of the right level of
planning for the problems tested here seems to correspond to a low-mumber strategy.

5. CONCLUSIONS

This paper has presented the methods to react to errors occwring at the shop floor employed by a workstation
controiler the context of a hierarchical architecture. The methods developed in this research for the controlier were:
~  The incorporation and deletion of error recovery trajectories into the logic of the controller,
—  The re-planning capability that can adapt the original execution plan to the conditions in the shop floor
without requiring a full plan overhaul.
- The translation of these methods into a Petri Net Janguage. '

The strategy followed in this research corresponds to the “match-up” approach adapted to the Petri Net logic. In
terms of the Petri Nets employed here, match-up consists of finding a path from an error state to an arbitrary state
termed here as the “match-up” marking. In this paper, a new Petri Net based algorithm (ABAS) was derived with the
purpose of finding an arbitrary match-up marking in the logic of a Petri Net based controller, Simulation experiments
were carried out in order to investigate the performance of the algorithm in terms of simulation total time and CPU
time, The analysis of the experiment was performed with an ANOVA factorial experimental design having the
factors “strategies” and “problem”. Further research will be focused on adapting the algorithm to situations related to
other disruptions such as order cancellation, machine breakdowns and the arrival of new jobs.
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