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Abstract

The Generalized Traveling Salesman Problem is a variation of the well known Traveling
Salesman Problem in which the set of nodes is divided into clusters; the objective is to find a
minimum-cost tour passing through one node from each cluster. We present an effective heuristic
for this problemn. The method combines o genetic algorithm (GA) with a local tour improvement
heuristic. Solutions are encoded using random keys, which cizcumvent the feasibility problems
encountered when using traditional GA encodings. On a set of 41 standard test problems with
symmetric distances and up to 442 nodes, the heuristic found solutions that were optimal in
most cases and were within 1% of optimality in all but the largest problems, with computation
times generally within 10 seconds. The heuristic is competitive with other heuristics published
to date in both solution guality and computation time.
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1 INTRODUCTION

1 Introduction

1.1 The GTSP

The generalized traveling salesman problem (GTSP) is a variation of the well known
traveling salesman problem in which not all nodes need to be visited by the tour. In
particular, the set V' of nodes is partitioned into m sets, or clusters, V1,..., Vi, with
ViU...UVyp =V and ;N V; =0 if ¢ # j. The objective is to find a minimum-length
tour containing exactly one node from each set V;.

Applications of the GTSP include postal routing [19], computer file sequencing [16],
order picking in warehouses [27), process planning for rotational parts {5}, and the
routing of clients through welfare agencies [35]. In addition, many other combinatorial
optimization problems can be reduced to, or have as a subproblem, the GTSP (see [19]).
The GTSP is NP-hard, since the TSP is a special case obtained by partitioning V into
|V} subsets, each containing one node. In this paper we present a heuristic approach to
solving the GTSP.

A given instance of the GTSP may use “symmetric” distances, in which the distance
from node i to node 7 is the same as the distance from j to 1, or “asymmetric” distances;
there are theoretical and computaiional consequences of using one type of distance
metric or the other. For example, the GTSP is often transformed into an equivalent TSP,
but many such transformations depend on whether or not the problem is symmetric.
Similarly, a given algorithm’s computational performance may be quite different when
applied to different types of instances. We test our heuristic on a standard test-bed of

symmetric instances,



1 INTRODUCTION
1.2 Genetic Algorithms

A genetic algorithm (GA) is a metaheuristic inspired by the efficiency of natural selec-
tion in biological evolution. Genetic algorithms have been applied successfully to a wide
variety of combinatorial optimization problems and are the subject of numerous recent
books [26, 30, 39, 40, 41] and conference proceedings i1, 2, 4, 17]. Unlike traditional
heuristics (and some metaheuristics like tabu search) that generate a single solution
and work hard to improve it, GAs maintain a large number of solutions and perform
comparatively little work on each one. The collection of solutions currently under con-
sideration is called the population. Each member of the population {called an individual
or a chromosome) is an encoded version of a solution. The encoding strategy is differ-
ent for different optimization problems, and a given problem may have more than one
workable encoding strategy. The goal of any encoding is to translate a solution into a
string of genes that make up the chromosome, just as in biological genetics.

Each iteration of a GA consists of several operators that construct a new generation
of solutions from the old one in a manner designed to preserve the genetic material of the
better solutions (survival of the fittest). Many GA operators have been proposed; the
three most common are reproduction, crossover, and mutation. Reproduction consists
of simply copying the best solutions from the previous generation into the next, with
the intention of preserving very high-quality solutions in the population as-is. Crossover
takes two “parents,” randomly chosen, and produces one or more “offspring” that con-
tain some combination of genes from the parents. Crossover can be performed in a
deterministic manner (e.g., “one-point” crossover), with genes appearing before a cer-
$ain cutoff coming from parent 1 and genes after the cutoff coming from parent 2, or in

a random manner, with each gene taken from a given parent with a certain probability.
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The mautation operator changes a few genes randorly, borrowing from the evolutionary
concept that random genetic mutations may produce superior offspring (or, of course,
inferior offspring, but such individuals are less likely to survive from one generation
to the next). OQur aigorithm does not use mutation, but rather immigration, in which
new individuals are generated randomly from scratch, rather than performing random
mutations on existing individuals.

Each iteration of o standard GA consists of generating a new population using the GA
operators. Our GA also uses judiciously applied local improvement heuristics to improve
the quality of the individuals in the population without adding excessive computation

time.

1.3 Random Keys

The GA presented in this paper uses random keys to encode solutions. The use of
random keys is described in [3] and is useful for problems that require permutations
of the integers and for which traditional one- or two-point crossover presents feasibility
problems. The technique is best iHlugtrated with an example.

Consider a 5-node instance of the classical TSP. Traditional GA encodings of TSP
solutions consist of a stream of integers representing the order in which nodes are to be
visited by the tour. (That is, the solution 4 2 1 5 3 represents the tour 3 - 2 -~ 5 —
1 — 4, not the tour 4 -2 —1—5 — 3.} But one-point crossover, for example, may
result in children with some nodes visited more than once and otheré not visited at all.

For example, the parents
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1 INTRODUCTION

In the random key method, we assign each gene a random number drawn uniformly
from {0,1). To decode the chromosome, we visit the nodes in ascending order of their

genes. For example:

Random key 0.42 0.06 038 048 031
Decodes as 3 1 2 4 5

{Ties are broken arbitrarily.) Nodes that should be early in the tour tend to “evolve”
genes closer to 0 and those that should come later tend to evolve genes closer to 1.

Standard crossover techniques will generate children that are guaranteed to be feasible.

1.4 Contributions

This paper contributes to the literature by presenting a heuristic for the GTSP that
uses a novel combination of features (GAs, random keys, and Improvement heurtstics}.
Our heuristic finds optimal solutions for a large percentage of instances from a set
of standard test problems, with computation times that are competitive with, if not
superior to, previously published heuristics. We also present extensive computational
results lending insight into the behavior of the heuristic, such as the relative importance
of the GA and the improvement heuristics. Finally, like any GA, our heuristic is simple
t0 implement and can be easily modified to ineorporate alternate objective functions or
additional constraints.

The remainder of this paper is organized as follows: Section 2 presents a brief lit-
erature review; section 3 describes the algorithm in greater detail; section 4 provides
compusational results; and section 5 summarizes our findings and discusses avenues for

future research.
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2 Literature Review

The earliest papers on the GTSP discuss the problem in the context of particular
applications {16, 35, 38]. Laporte, Mercure, and Nobert [20, 21] and Laporte and Nobert
[22] began to study exact algorithms and some theoretical aspects of the problem in
the 1980s. Since then, a few dozen papers related to the (TSP have appesared in the
literature. Fischetti, Gonzdlez, and Toth [13] discuss facet-defining inequalities for the
GTSP polytope, and in a later paper [14] use the polyhedral results to develop a branch-
and-cut algorithm. Other exact algorithrs are presented in (28] (a Lagrangian-based
branch-and-bound algorithm) and {7} (a dynamic programming algorithm).

A variety of descriptions of the GTSP are present in the literature. Some papers
assumne symmetry or the triangle inequality; others do not. Some require the subsets to
form a strict partition of the node set; others allow them to overlap. Most papers allow
the tour to visit.l more than one node per cluster, but some require that exactly one
node per cluster be visited. (The two formulations are equivalent if the distance mairix
satisfies the triangle inequality.) Only a few papers (see l[22, 351) handle fixed costs for
including a node on the tour, possibly because such fixed costs can be incorporated into
the distance costs via a simple transformation (see [22]; note that this transformation
does not preserve the triangle inequality}.

Applications of the GTSP are discussed in [5, 19, 27). [12] transforms the clustered
rural postman problem into the GTSP. [6, 9, 23, 25, 29] present transformations of the
QTSP into standard TSP instances that can then be solved using TSP algorithms and
heuristics. Some of the resulting TSP instances have nearly the same number of nodes
as the original GTSP instances and have nice properties like symmetry and the triangle

inequality; others have many more nodes and are more irregular. Some transformations
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of the QTSP into the TSP (e.g., that in [20]) have the property that an optimal solution
to the related TSP can be converted to an optimal solution to the GTSP, but a (sub-
optimal) feasible solution for the TSP may not be feasible for the GTSP, reinforcing the
necessity for good heuristics for the GTSP itself. Furthermore, well known heuristics
for the TSP may not perform well for the GTSP; for example, “reneralized” versions of
Christofides’s heuristic have worst-case bounds that are strictly greater than its worst-
case bound of £ for the TSP [11, 36].

Two approximation algorithms have been published for the GTSP. Slavik [36] de-
velops a 3p/2-approximation algorithm for the GTSP, where p is the number of nodes
in the largest cluster, that is, p = maxi-1,..m{|Vil}. As p may be quite large, the
worst-case bound may be relatively weak. Garg, Konjevod, and Ravi [15] present an
approximation algorithm for the group Steiner tree problem, which provides as a byprod-
uct an O{log? |V loglog |V|log m)-approximation algorithm for the GTSP. Both papers
assume that the distance masrix satisfies the triangle inequality.

Noon [27] proposed several heuristics for the GTSP, the most promising of which
is an adaptation of the well known nearest-neighbor heuristic for the TSP Fischetti,
Gonzélez, and Toth [14] propose similar adaptations of the farthest-insertion, nearest-
insertion, and cheapest-insertion heuristics.

Renaud and Boctor [32] develop the most sophisticated heuristic published to date,
which they call GI? (Generalized Initialization, Insertion, and Improvement). GPisa
generalization of the P heuristic. proposed in [33]. It consists of three phases. The first,
Initialization, constructs an initial tour by choosing one node from each cluster that is
“close” to the other clusters, then greedily building a tour that passes through some, but

not necessarily all, of the chosen nodes. The second phase, Insertion, completes the tour
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by successively inserting nodes from unvisited clusters in the cheapest possible manner
between two consecusive clusters on the tour, allowing the visited node to change for
the adjacent clusters; after each insertion, the heuristic performs a modification of the
3-opt improvement method. The third phase, Improvement, uses modifications of 2-opt
and 3-opt to improve the tour. The modifications, called G2-opt, G3-opt, and G-opt,
allow the visited nodes from each cluster to change as the tour is being re-ordered by
the 2-opt or 3-opt procedures.

Several researchers (see [18] and the references contained within) have implemented
GAs for the standard TSP, with mixed results. The GA in [18] found new best solutions

for some well studied benchmark problems.

3 The Heuristic

Our heuristic couples a GA much like that described in [3] with a local improvement
heuristic. We will describe the heuristic in the context of the symmetric GTSP; the
heuristic can be modified easily to handle problems with asymmetric distance matrices,
though our computational results do not necessarily generalize to the asymmetric case.
Throughout the rest of this paper, we will use the terms “golution,” “individual,” and
“chromosome” interchangeably to refer to either a GTSP tour or its representation in

the GA.

3.1 Encoding and Decoding

Bean [3] suggests encoding the GTSP as follows: each set V; has a gene consisting of an
integer part (drawn from {1,...,|¥;|}) and a fractional part (drawn from {0,1)). The

integer part indicates which node from the cluster is included on the tour, and the nodes
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are sorted by their fractional part as described in section 1.3 to indicate the order.
For example, consider a GTSP instance with V = {1,...,20}and V5 = {1,... %3 T

Vi = {16,...,20}. The random key encoding
423 3.07 1.80 378

decodes as the tour 8 — 4 —» 18 — 11 the integer parts of the genes decode as,
respectively, node 4, node 8 (the third node in ¥2), node 11 {the first node in V3), and
node 18 (the third node in Vy), and the fractional parts, when sorted, indicate that the
clusters should be visited in the order 2 — 1 -4 — 3.

The QA operators act directly on the random key encoding. When tour improve-
ments are made, the encoding must be adjusted to account for the new solution (see
gection 3.4 below). |

The population is always stored in order of objective value, from best to worst.

3.2 Initial Population

The ':nitiéd population is created by generating a population consisting of N chromo-
somes {we use N = 100), drawing the gene for set V; uniformly from [1, |V + 1) {or,
equivalently, adding an integer drawn randomiy from {1,‘...,5Vi|} to a real number
drawn randomly from [0,1)}). “Level-I” improvement heuristics (see section 3.4) are

applied to each individual in the population.

3.3 GA Operators

At each generation, 20% of the population comes directly from the previous population
via reproduction; 70% is spawned via crossover; and the remaining 10% is generated

via immigration. We describe each of these operators next.
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3.3.1 Reproduction

Qur algorithm uses an elitist stralegy of copying the best solutions in the population to
the next generation. This guarantees monotonic non-degradation of the best solution
from one generation to the next and ensures a constant supply of good individuals for

matbing.

3.3.2 Crossover

We use parametrized uniform crossover [37] to generate offspring. First, two parents
are chosen at random from the old population. One child is generated from the two
parents, and it inherits each gene from parent 1 with probability 0.7 and from parent 2

with probability 0.3.

3.3.3  Imumigration

A small aumber of new individuals are created in each generation using the technique
described in section 3.2. Like the more typical mutation operator, this immigration

operator helps ensure a diverse population.

3.4 Improvement Heuristics

Local improvement heuristics have been shown by various researchers to add a great
deal of power to GAs (see, for example, [24)). In our algorithm, every time a new
individual is created, either during crossover or immigration or during the construction
of the initial population, we attempt to improve the solution using 2-opt and “swap”
operations.

The well known 2-opt heuristic attempts to find two edges of the tour that can be

10
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removed and two edges that can be inserted to obtain a single tour with lower cost. For
problems with Buclidean distances, a 9-opt exchange “straightens” a tour that crosses
itself.

The “swap” operation involves removing the node from cluster V; and inserting a
different node from V; into the tour. The insertion is done using a modified nearest-
neighbor criterion, so that the new node may be inserted on the tour in a spoi different

from the original node. In pseudocode, the swap operation is as follows:

procedure SWAP (tour T'; set V;; node j € Vi, j € T'; distances D, between
each u,v € V)
remove 7 from T
for each k € V;
er, «— min{ Dyx + Diy — Duol(u,v) 18 an edge in T}
k* « argmingey, {ck}
insert k* into T between the nodes v and v that attained the cost cgx

Note that k* may be the same node as j, which allows the heuristic to move a node to
a different spot on the four.

The 2-opt and swap operations are considered separately by our heuristic; they are
not integrated, as in the G2-opt, G3-opt, and G-opt methods used by [32].

When an improvement is made to the solutio, the encoding must be altered to
reflect the new tour. We do this by rearranging the fractional parts of the genes to give
rise to the new tour. When a swap is performed, we must also adjust the integer part
of the gene for the affected set.

To take a simple example, suppose we have the chromosome
1.1 13 14 17

for the sets V; given in section 3.1; this represents the tour 1 — 6 — 11 — 16. Now

suppose we perform a swap by replacing node 16 with node 17 and repositioning it after

11
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node 1 so that the new tour is 1 — 17 -~ 6 — 11. The new encoding is

1.1 14 1.7 23

For each individual in the poptlation, we store both the original (pre-improvement)
cost and the final cost after improvements have been made. When a new individual
is created, we compare its pre-improvement cost to the pre-improvement cost of the
individual at position p x N in the previous (sorted) population, where p € [0,1] is a
parameter of the algorithm (we use p = 0.05 in our implementation). If the new solution
is worse than the pre-improvement cost of this individual we use level-I improvement:
apply one 2-opt exchange and one swap {assuming a profitable one can be found) and
store the resulting individual. If, on the other hand, the new solution is better, we use
level-1I improvement: apply 2-opts until no profitable 2-opts can be found, then apply
swaps until no profitable swaps can be found, and repeat until no improvements have
been made in a given pass. This techaique is designed to spend more time improving
solutions that seem promising in comparison to previous solutions and to spend less
time on the others. In both level-I and level-11 improvement, we use a “first-improving”
strategy in which the first move of a given type that improves the objective value is
implemented, rather than searching for the best such move before choosing one.

No improvement is done during the reproduction phase, since these solutions have

already been improved.

3.5 Population Management

Two igsues are worth mentioning regarding how we maintain GA populations. First,
no duplicates are allowed in the population. TFach time a new individual is created, it

is compared to the individuals already in the population; if it matches one of them,

12
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it is discarded and a new individual is created. Duplicate-checking is performed after
improvement, and individuals are considered identical if the decoded solutions are iden-
tical, not the genes. That is, chromosomes 2.14 4.25 3.50 2.68 and 2.07 4.73 3.81 2.99
are considered identical since they represent the same tour.

Second, it is undesirable to allow multiple “reflections” and “rotations” of a tour
to co-exist in the population. That is, if 1 — 6 — 11 — 16 is in the population, we
would not want 6 — 11 — 16 — 1 or 16 — 11 — 6 — 1 in the population. There
are two reasons for this. One is that such quasi-duplicates appear to add diversity to
the population but in fact do not, and so should be avoided just as duplicates are.
The second reason is that crossover between two such individuals will result in offspring
whose genetic information is “watered down” and may lead to slower convergence of the
GA. In the course of the GA, nodes that should appear consecutively in the tour tend
to evolve fractional parts of the gene that are close to one another. For this process
to work, the beginning of the tour needs to be well defined—that is, we can’t allow
reflections and rotations.

For example, suppose V = {1,...,5} and V; = {4} for all 4, and suppose it is optimal

for nodes 3 and 4 to be consecutive on the tour. The chromosomes

i 1.9 13 14 1.8
1.4 1.8 15 17 1.2
represent the tours 1 =3 — 4 —=5—2and 5 —~1—-3— 42 respectively. Their

offspring might be
14 19 13 17 138

representing the tour 3 ~ 1 — 4 — 5 — 2; nodes 3 and 4 are split. If, however, the

second solution had been rotated so that it began at node 1, its encoding would be

1.2 1.7 14 15 138

1f this individual were to mate with the first one, it would produce offspring in which

13



4 COMPUTATIONAL RESULTS

the genes for nodes 3 and 4 were no more than 0.2 apart from one another, making it
more likely that these nodes wouid be consecutive.

To avoid rotations, we artificially set the fractional part of the gene for V1 to 0,
ensuring that set 1 will be at the beginning of the tour. To avoid reflections, we must
choose between the two orderings of a given tour that begin with cluster 1. The node
from V) has two neighbors; we require the lower-indexed neighbor to appear in slot 2
on the tour (and the higher-indexed neighbor to appear in slot m). These rules ensure

that each tour is stored in a unique manner and that quasi-duplicates are eliminated.

3.6 Termination Criteria

The algorithm terminates when 100 iterations have been executed, or when 10 con-
secutive iterations have failed to improve the best-known solution. These numbers are
parameters that may easily be changed. {In our computational tests, the first criterion
never held-—the GA always terminased because 10 consecutive iterations had failed
to improve the solution. We tested termination criteria greater than 10 on our test
prob;lems and found substantially longer run times with little improvement in solution

quality.)

4 Computational Results

4.1 Experimental Design

Fischetti, Gonzélez, and Toth [14] describe a branch-and-cut algorithm to solve the
symmetric GISP. In their paper, they derive test problems by applying a partitioning
method to 46 standard TSP instances from the TSPLIB library [31]. They provide

optimal objective values for each of the problems, and since the partitioning method

14
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is deterministic and is described in enough detail to reproduce their test problems, we
were able to apply our heuristic to the same problems and compare the results.

We tested our algorithm on all of the problems discussed in [14] except the five
problems that use great-circle (geographical) distances. The problems we tested have
between 48 and 442 nodes; m is set to [n/5] in each case, where n is the number of
nodes and m is the number of clusters. Most of the problems use Fuclidean distances,
but a few have explicit distance matrices given,' and one uses a “modified Euclidean”
distance measure (see [31] for details); all distance matrices are symmetric. For each
problem, we ran the GA five times to examine the algorithm’s performance and its
variation from trial to trial. The algorithm was implemented in C++ and tested on a
(Gateway Profile 4MX desktop computer with a Pentium IV 3.2 GHz processor and 1.0

QB RAM, running under Windows XP.

4.2 Solution Quality

Table 1 summarizes the results for each of the problems. The columns are as follows:

Problem: The name of the test problem. The digits at the beginning of the name give
the number of clusters (m); those at the end give the number of nodes (n).

Opt Obj Val: The optimal objective value for the problem, as reported in Tabie IT of
(14].

# Opt: The number of trials, out of five, in which the GA found the optimal solution

# Best: The number of trials, out of five, in which the GA found its Best solution.

(For problems in which an optimal solution was found, this is equal to the “#
Opt” column.}

Mean, Minimum, Maximum: The mean, minimum, and maximum objective values
returned in the five trials (in the Value column}, and the respective percentages
above the optimal value (in the Pct column).

I The explicit distance matrices de not satisfy the triangle inequality. Nevertheless, the optimal sotutions to the

TSP for these problems contain exactly one node per set, allowing us to use the results from [14].
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Table 1. Genetic Algorithm Results: Objective Values,

Mean Minimum Maximum
Problem Opt Obj Val  # Opt 4 Dest Value Pct | Value Pet | Value Pct
10ATT48 5394 5 5 2504 0.00% | 5304 0.00% | 53%4 0.00%
10GRA8 1834 5 5 1834 0.00% | 1834 0.00% | 1834 0.00%
10HKA48 6386 5 5 6386 0.00% | 6386 0.00% | 638 0.00%
11EIL5E 174 5 5 174 0.00% 174 0.00% 174 0.00%
19BRAZIL5SS 15332 5 5 15332 0.00% | 15332 0.00% | 15332 0.00%
1487170 316 5 B 316 0.00% 316 0.00% 316  0.00%
16EILT6 209 5 5 209  0.00% 209 0.00% 209 0.00%
16PR76 64925 5 5 64925 0.00% | 64925 0.00% | 64925 0.00%
20KR0OA100 g7il 5 5 o711 0.00% | 9711 0.00% | 9711 0.00%
20KROB100O 10328 5 5 10328 0.00% | 10328 0.00% i 10328 0.00%
20KROC100 9554 5 5 o554 0.00% | 9554 0.00% | 9554 0.00%
20KROD100 9450 5 5 9450 0.00% 1 9450 0.00% | 94560 0.00%
20KROEIN0 9523 5 5 0523 0.00% | 9523 0.00% i 9523 0.00%
20RAT99 497 5 5 497  0.00% 497  0.00% 407 0.00%
20RD100 3650 5 5 3650 0.00% { 3650 0.00% | 3650 0.00%
21EIL10L 249 5 5 249 0,00% 249  0.00% 249  0.00%
21LIN10S 8213 5 5 8213  0.00% 3213 0.00% 8213 0.00%
22PR107 27898 5 5 27808 0.00% | 27898 0.00% | 27898 0.00%
24GR120 2769 5 5 2769  0.00% 2769 0.00% 2769 0.00%
25PR124 36605 5 5 36605 0.00% | 38605 0.00% | 36605 0.00%
26BIER127 72418 5 ) 79418 0.00% | 72418 0.00% | 72418 0.00%
28PR136 42570 5 5 42570 0.00% 1 42570 0.00% | 42570 0.00%
20PR144 45886 5 5 45886 0.00% | 45886 0.00% | 45886 0.00%
30KROA150 11018 5 5 11018 0.00% | 11018 0.00% | 11018 0.00%
30KROBI150 12196 5 5 12196 0.00% | 12196 0.00% | 12196 0.00%
31PR152 51576 5 5 51576  0.00% | 51576 0.00% | 51576 0.00%
320159 22664 5 5 29664 0.00% | 22664 0.00% | 22664 0.00%
39RAT195 854 5 5 254 0.00% 854 0.00% 854  0.00%
40D198 10557 5 5 10557 0.00% | 10557 0.00% | 10557 0.00%
40KROA200 13406 ) 5 13406 0.00% | 13408 0.00% | 13406 0.00%
40KROB200 13111 4 4 13112 0.00% | 13111 0.00% | 13114 0.02%
45T8225 68340 4 4 68352 0.02% | 88340 0.00% | 68400 0.09%
46PR226 64007 5 5 84007 0.00% | 84007 0.00% | 64007 90.00%
53GI1,262 1013 0 1 1021 0.75% 1014 0.10% 1025 1.18%
53PR264 20549 5 5 20549  0.00% | 29549 C.00% | 29549 (L00%
G6OPR209 22615 0 1 22630  0.11% | 22620 0.02% | 22677 0.27%
64LIN318 20765 2 2 20804 0.62% | 20765 0.00% i 21026 1.26%
80RD40G0 6361 0 1 6436  1.19% 6418 0.86% 6448 1.37%
8471417 9651 0 1 9656  0.06% 9654  0.03% 9658 0.07T%
83PR439 60099 ¢ i 60258 0,27% | 60100 0.00% | 60492 0.65%
RGPCB442 21657 0 1 29026 1.70% | 21941 1.31% j 22131 2.19%

16
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The GA found optimal solutions in at least one of the five trials for 35 of the 41
problems tested {85%). For 32 (78%) of the problems, the QA found the optimal solution
in every trial. The GA solved 39 (95%) of the problems to within 1% of optimality on
average, and in no case did it return a solution more than 2.2% above optimal. The
heuristic tended to return consistent solutions (i.e., the same from trial to trial} for the
smaller problems; for larger problems, it Teturned more varying solutions (but close to

each other in objective value).

4.3 Computation Times

Table 2 gives information about running times for each of the trials. The columns are

as follows:

Problem: As in Table 1.

CPU Time: The mean, minimum, and maximium CPU time, in seconds, for each of
the fve trials of the GA.

# Iterations: The mean, minimum, and maximum number of iterations before the
GA terminated.

# Impr Iter: The mean, minimum, and maximum number of iterations during which
the CA found a new solution better than the current best solution (excluding the
first iteration).

The heuristic executes extremely quickly, with a mean CPU time of less than 10
seconds for all problems and a maximum of less than 15 seconds. The GA generally
found its best solution in the first 2 or 3 iterations or so and spent most of the iterations
waiting to terminate. In general, the bulk of the running time (ranging from 65% for the
smaller problems to 95% for the larger problems) is spent in the improvement heuristic,
suggesting that a more efficient improvement method (such as Renaud and Boctor’s
G2-opt or G3-opt) may improve the speed of the GA even more.

Note that the GA seems to perform equally well for problems with modified Eu-

clidean distances (10ATT48), and explicit distances (10GR48, 10HK48, 12BRAZILS,

k7
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Table 2. Genetic Algorithm Results: Running Times.

CPU Time # Iterations # Impr Ier

Problem B&C Time | Mean Min Max | Mean Min Max | Mean Min Max
10ATT48 2.1 0.2 0.0 6.5 12.0 12 12 1.0 1

10GR48 1.9 0.3 0.2 0.5 12.6 12 14 1.4 1 2
JOHK48 3.8 04 02 0.0 12.0 12 12 1.0 1 i
11EILS1 2.9 0.2 0.1 0.3 12.0 i2 12 1.0 1 1
12BRAZILSS 3.0 0.2 01 0.3 13.4 12 16 1.8 1 3
148T70 7.3 0.2 02 0.3 12.0 12 12 1.0 1 1
16EILT6 9.4 0.2 0.2 0.2 12.0 12 12 1.0 1 1
16PR76 12.9 0.2 02 0.3 12.8 12 14 1.6 1 2
20KROAL00 18.4 04 0.3 0.5 12.0 12 12 1.0 1 1
20KROB100 22.2 04 02 0.5 12.0 12 12 1.0 1 1
WKROCL00 14.4 0.3 0.2 0.4 12.0 12 12 1.0 1 H
20KROD1O0 14.3 04 02 0.8 12.0 12 12 1.0 1 1
HWKROELN0 13.0 06 0.3 0.8 12.0 12 12 1.0 1 1
20RATIS 51.5 0.5 0.3 0.7 12.0 12 12 1.0 1 1
20RD100 16.6 0.5 0.3 1.0 13.6 12 i5 2.2 i 4
21E1IL101 25.6 04 0.2 0.5 12.2 12 13 1.2 1 2
21LIN105 16.4 05 03 0.7 i2.2 12 13 1.2 1 2
22PR107 7.4 04 03 0.5 14.4 12 17 1.8 1 2
24GR120 41.9 06 03 1.0 12.8 12 15 1.4 1 2
25PR124 25.9 0.8 086 1.5 13.0 12 15 1.8 1 3
26BIERI2T 23.6 0.4 04 0.5 14.0 12 17 2.0 1 3
28PR136 43.0 05 0.3 0.7 13.4 12 14 1.8 1 2
20PR144 8.2 1.0 03 2.1 14.6 12 21 2.4 1 4
30KROALB0 100.3 07 0.3 1.3 13.4 12 15 2.0 1 3
S0KROB150 60.6 09 03 1.2 13.4 12 15 2.0 1 3
31PR152 094.8 1.2 09 1.5 15.2 12 17 2.6 1 4
321159 146.4 0.8 04 1.3 12.2 12 13 1.2 1 2
39RATION 2459 1.0 0.7 1.4 17.8 13 27 3.8 2 6
40D198 763.1 16 1.l 2.7 15.8 13 18 3.0 2 4
40KROAZ00 187.4 1.8 11 2.7 144 13 16 2.6 2 4
40KROB200 268.5 1.9 14 2.9 22.4 12 35 4.0 1 6
455225 37875.9 21 1.4 2.6 24.2 18 30 5.2 4 6
46PR226 106.9 1.5 0.8 2.4 13.0 12 14 1.6 1 2
53GIL262 6624.1 1.9 07 3.1 194 13 30 3.4 2 6
B3PR264 337.0 21 1.3 3.5 14.0 13 15 2.4 1 3
G60PR299 812.8 32 18 6.1 26.0 16 42 5.0 3 7
64LIN318 1671.9 35 24 49 20.4 12 33 3.8 1 6
S80RD400 7021.4 59 3.5 3.9 20.8 17 29 5.2 4 7
84FL417 16719.4 53 24 3.6 10.4 15 23 4.4 3 6
88PR439 5422.8 95 53 129 22.8 16 32 5.0 4 ]
9P CB442 A8770.5 9.0 45 145 20.4 15 25 4.0 3 7
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and 24GR120) as it does for those with Buclidean distances. We were unable to test
problems with non-geographic clusters {for example, in which nodes are grouped ran-

domly) since no optimal objective values have been published for such problems.

4.4 Comparison to Other Algorithms

Table 3 compares the performance of the GA with that of several other algorithms {four
heuristics and one exact algorithm) on the same TSPLIB problems. The first is the G
heuristic proposed by Renaud and Boctor [32]; the second is Noon’s generalized nearest
neighbor heuristic [27] combined with the improvement phase from the GI® heuristic
(results cited in {32]). Renaud and Boctor omit the great-circle problems, as well a8
several others. The heuristics labeled “FGT-Lagz” and “FGT-Root” in Table 3 are the
Lagrangian procedure and the root-node procedure described in [14]; these procedures
produce initial bounds at the root node of the branch-and-cut tree. Table 3 lists both
the solution quality (percent above optimal) and CPU time for all five heuristics, as
well as the solution time for the branch-and-cut procedure {an exact algorithm, not a
heuristic) in [14]. The solution value and times reported for our GA heuristic are for
the first trial (of the five trials reported in Tables 1 and 2) for each problem, so that
we are comparing a single run of our procedure with a single run of each of the others,
Minimum values for the “Pct” field in each row are marked in bold. Problems for which
the GA did not find the best solution (among all heuristics) in the first trial but did
find it in one of the other trials are indicated with an asterisk (*}.

The columns are as follows:

Problem: As in Table 1.

G A: The percentage error of the solution returned in the first of five GA trials and the
corresponding CPU time (in seconds) on a Gateway Profile 4AMX with Pentium IV
3.2 GHz processor and 1 GB RAM.
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4 COMPUTATIONAL RESULTS

GI%: The percentage error of the solution returned by the GI® heuristic and the corre-
sponding CPU time (in seconds) on a Sun Sparc Station LX, as reported in Table
3 of [32].

NN: The percentage error of the solution returned by the NN heuristic (followed by

the improvement phase of GI®) and the corresponding CPU time (in seconds) on
a Sun Sparc Station LX, as reported in Table 3 of [32].

FGT-Lagr: The percentage error of the solution returned by Fischetti, Gonzéles, and
Toth’s Lagrangian heuristic and the corresponding CPU time (in seconds) on an
HP 9000,/720, as reported in Table T of [14].

FGT-Root: The percentage error of the solution returned by Fischetti, Gonzélez, and
Toth’s root-node heuristic and the corresponding CPU time (in seconds) on an HP
9000,/720, as reported in Table I of [14].

B&C: The CPU time (in seconds) of the branch-and-cut algorithm on an HP 9000,/720,
as reported in Table II of [14].

The first trial of the GA found the best solution among all five heuristics {allowing
for ties) in 36 out of the 41 problems tested (88%). The best solution was found in a
trial other than the first for two other problems. Two-sided paired {-tests confirm that
the objective values of the solution returned by the GA are statistically smalier than
those returned by GI® (P = 0.002), NN (P = 0.001), and FGT-Lagr (£ = 0.005}. The
GA also outperforms FGT-Root on average, but a two-sided t-test could not prove a
significant difference (P = 0.685). (FGT-Root seems to be a much slower procedure
than the GA, even allowing for differences in CPU speeds.)

A direct comparison of solution times is not possible since the procedures were coded
and tested on different machines. However, even assuming (conservatively, we feel—see
[10]) that the machine used to test the GA is 50 times faster than the Sun Sparc Station
LX used to test GI® and NN and 100 times faster than the EP 9000/720 used to test
FGT-Lagr, FGT-Root, and the branch-and-cut algorithm, our times are competitive
with the other methods and in some cases greatly outperform them. Moreover, our GA
is simple to code anc% can easily be modified to incorporate alternate objective functions

and constraints.
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4 COMPUTATIONAL RESULTS 21
Table 3. Genetic Algorithm vs. Other Algorithms.

GA G NN FGT Lagr FGT Root B&C
Problem Pct Time | Pet Time | Pct  Time | Pet  Time Pet Time Time
10ATT48 0.00 0.0 0.00 0.9 | 0.00 2.1 2.1
10GR48 0.00 0.5 0.00 0.5 | 0.00 1.9 1.9
10HK48 0.00 0.2 0.00 1.1 6.00 3.8 38
11EIL51 0.00 0.1 1 0.00 0.3 | 6.00 0.4 ; 0.00 0.4 | 0.00 2.9 2.9
12BRAZIL5S | 0.00 0.3 0.00 1.4 | 0.00 30 3.0
145T70 0.00 0.2 | .00 1.7 7 0.00 0.8 | 0.00 1.2 ¢+ 0.00 7.3 7.3
16EILT8 (.00 0.2 { 0.00 2.2 | 0.00 1.1 1 6.00 14 | 0.00 9.4 9.4
16PRT6 0.00 0.2 | 0.00 2.5 | 0.00 1.9 | 0.00 0.6 | 6.00 12.9 12.9
20RATH9 0.00 0.7 | 9,00 5.0 j 0.00 7.3 | 0.00 3114 0.00 51.4 51.5
20KROA100 | 0.00 0.4 1 0.00 6.8 | 0.00 3.8 1 0.00 2.4 | 0.00 18.3 18.4
20KROB10O | 0.00 0.4 | 0.00 6.4 | 0.00 2.4 | 6.00 3.1 1 0.00 221 22.2
20KROCI00 | 0.00 0.3 0.00 6.5 § 0.00 6.3 | 0.00 2.2 1 0.00 14.3 4.4
20KRODL00 | 0.00 0.4 i 0.00 8.6 | 0.00 56§ 0.00 2.5 | 0.00 14.2 14.3
20KROE100 | 0.00 0.8 | 0.00 6.7 | 0.00 2.8 | 0.00 0.9 | 0.00 12.9 13.0
20RD100 0.00 0.3 0.08 7.3 ] 0.08 83| 0.08 2.6 | 0.00 16.5 16.6
21EIL101 0.00 021 040 521 040 3.0 § 0.00 1.7 | 06.00 25.5 25.6
21LIN105 0.00 031000 14410.00 3.7 | 0.00 2.0 | 0.00 16.2 16.4
22PR107 0.00 0.4 | 0.00 8.7 | 0.00 52 | 0.00 2.1 | 0.00 7.3 7.4
24GR120 0.00 0.5 1.99 4.9 | 0.00 41.8 41.9
26PR124 0.00 06 043 122 0.00 12.0 | 0.00 3.7 1 0.00 25.7 259
26BIER127 0.00 0.5 | 555 361 | 9.68 78| 0.00 112 | 0.00 23.3 23.6
28PR136 .00 051§ 128 125 | 554 9.6 : 0.82 7.2 1 0.00 42.8 43.0
20PR144 0.00 0.3 1000 163 ] 0.00 11.8 | G.00 2.3 1 0.00 8.0 8.2
30KROA150 § 0.00 1.3 | .00 17.8 | 0.00 22.9 | 0,00 7.6 | 0.00 100.0 100.3
30KROB150 | 0.00 1.0 : 0.00 14.2 | 4.00 20.1 1 0.00 9.9 | 0.00 60.3 60.6
31PR152 0.00 1.5 | 047 i7.6 | 18O 16.3 | 0.00 9.6 | 0.00 51.4 94.8
32U159 0.00 06| 260 185 2.79 26.5 | 0.00  10.9 | 0.00 139.6 146.4
39RAT195 0.00 0.7 000 3721 129 86.0 ¢+ 1.87 3.2 | 0.00 245.5 245.9
40D198 0.00 12| 060 604 060 1188 048 12.0] 0.00 762.5 763.1
40KROA200 § 0.00 2.7 | 0.00 297 ] 525 53.0 | 0.60 153 | 0.00 183.3 187.4
40KROB200 | G.00 1.4 1000 358|000 1352 0.05 19.1 | 0.00 268.0 268.5
45T5225 0.0G 24 ] 061 89.0]|0.00 1178 0.09 194 000 12084 ! 37875.9
46PR226 0.00 1.0 0.00 255§ 217 67.6 | 0.00  14.6 | 0.00 106.2 106.9
53GIL262 0.79 19! 503 1154 | 1.88 1227 3.75 15.8 | 0.80 14435 6624.]
53PR264 0.00 1.3] 036 644 573 1472 033 243 0.00 336.0 337.0
60PR299 0.02 611 2923 09031 201 2818|000 332 4.00 811.4 8123
GALIN3LE . 0.00 35| 459 2068 492 3170 036 525 .36 847.8 | 1671.9
8CRD400 1.37% 351 1.23 4035 | 398 1137.1| 3.16 59.8 : 2.97 50315 1 70214
84FL417 0.07 94| 0.48 427.1% 107 13410 013 77.2 | 0.00 167144 | 167194
88PR439 0.23% 91! 352 6110 402 12389 | 142 1466 0.00 54189 | 54228
29PCB442 1.31 10.1 | 591 5677 0.22 8384 | 422 7838 0.2¢  5353.9 | BBTT0.5
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4.5 Contribution of Algorithm Features

Tn this section we examine the relative contribution of each of the features of the GA to
the heuristic’s overall performance. Table 4 reports the mean cost of the best solution
found (out of 5 trials) both before and after the improvement heuristic was performed.
Tt also reports the number of 2-opts and swaps, as well as the breakdown of swaps by
type: changing which city from a cluster is included on the tour but not the position
of the city, changing the position of a city but not which city is included, and changing

both. The columns are as foliows:

Problem: As in Table 1.

GA Value: The mean objective value {out of 5 trials) returned by the GA, replicated
from Table 1.

Pre-Impr Cost: The mean pre-improvement cost (out of 5 trials) of the best solu-
tion found by the GA. (That is, the mean pre-improvement cost of the & post-
improvement solutions considered in the “GA Value” column.)

9%, Diff: The percentage difference between “GA Value” and “Pre-Impr Cost.”

# 2-Opts: The mean number of 2-opts (out of 5 trials) performed during the GA’s
execution,

# Swaps: The mean number of swaps (out of 5 trials) performed during the GA's
execution.

# City Swaps: The mean number of swaps (out of 5 trials) that involved changing a
cluster’s included city (but not the position of the cluster on the tour).

# Pos Swaps: The mean number of swaps (out of b trials) that involved changing the
position of a cluster on the tour (but not the cluster’s included city}.

# City-Pos Swaps: The mean number of swaps (out of § trials) that involved chang-
ing both a cluster’s included city and its position on the tour.

Clearly, the improvement heuristics play a large role in the overall performance of
the GA. The quality of the solution returned by the GA is due in large pari to the
improvernent heuristics, and each heuristic is performed many times during the GA's
execution. Moreover, each type of heuristic (2-opt and all three types of swaps) is used
with some frequency. The success of the improvement heuristics led us to test their

performance in isolation (without the GA), as well as the GA’s performance without
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Table 4. Performance of Improvement Heuristics.

Pre-Impr # City # Pos # City-Pos
Problem GA Value Cost % Diff | # 2-Opts 4 Swaps  Swaps Swaps Swaps
10ATT48 5304.0 9044.4  40.4% 3959.4 8010.6 46530  B26.2 2531.4
10GR48 1834.0 3748.2  51.1% 4528.8 8005.2 4387.2 743.0 2875.0
10HKA48 6386.0 10053.6  36.5% 45454 100266  6343.0 8156 2868.0
11EIL5E 174.0 260.2  33.1% 2364.4 33852 16944 426.0. 1264.8
12BRAZIL5S 153320 25461.8 39.8% 2615.8 3447.8 1409.8 713.4 1324.6
143T70 316.0 434.4 34.8% 2737.0 3094.6 1869.2 484.6 1845.8
16EILT6 209.0 3146 33.6% 2251.6 2935.0 1092.6 500.6 1341.8
16PRTE 64925.0 1062194 38.9% 2594.2 4286.8 2180.6 589.6 1506.6
20KROALG0 9711.0 20368.2  66.9% 3044 .4 6667.2 3589.2 746.8 2331.2
20KROB100 103280 27505.6  62.6% 3097.2 T7111.2 4045.8 700.4 2356.0
20KROC100 0854.0 277134 65.5% 3188.0 5127.6 26620  553.8 1911.8
20KRODI0G 0450.0 270316 65.0% 4431.0 7213.0 37156 7986 2698.8
20KROE100 9523.0 28711.6  66.8% 5291.2 0157.2 48112 10872 3288.8
20RATG9 497.0 845.0 41.2% 5504.8 8418.0 38036  9565.6 3658.8
20RD100 3650.0 6078.0  39.9% 4386.4 7213.2 36204 8804 2712.4
21EIL101 249.0 4486 44.5% 3162.0 4319.6 1581.8 773.6 1064.2
21LIN10S 2213.0 220454  64.2% 4542.2 77046 40032 9396 2761.8
22PRI0T 27898.0 46041.4  40.6% 3606.0 4735.2 2314.4 615.0 1805.8
24GR120 2769.0 8184.8 66.2% 5707.8 8488.0 37794 1176.6 3532.0
25PR124 36605.0 1173032 68.8% 8044.8 12951.6 6078.4 1468.4 4504.8
26BIER 2T 724:8.0 1628462 55.5% 32274 5149.4 22226 11144 18124
28PR136 42570.0 995962  57.3% 4062.6 6230.8 27694 9232 2547.2
29PR144 A5886.0 1274674 64.0% 9113.0 14302.4 78794 1640.2 4782.8
30KROAL50 11018.0 32882.6  66.5% 5428.2 86054  3979.6 10014 36244
30KROB150 12166.0 320710 63.0% 7082.6 116414  5802.6 10344 4304.4
31PR152 51576.0 118768.0 56.6% 10866.0 170246 91282 2514.2 5382.2
320159 22664.0 756514 70.0% 6074.0 9875.2 4092.8 1464.0 3418.4
39RAT105 854.0 1060.8  19.5% 6739.8 9787.4 38224 12212 4743.8
40D198 10557.0 19425.2  45.7% 11089.2 17112.4 77682 2858.2 6486.0
40KROA200 13406.0 476252 71.9% 12220.8 20880.0 10162.0 2404.8 7813.2
40KROB200 131116 24748.2  47.0% 12661.6 20705.8 104178 2282.6 8005.4
4518225 68352.0  154058.8 55.6% 13614.6 19805.8 0040.6 2484.6 8280.6
46PR226 64007.0 84406.6 24.2% 9035.4 125016 48990 3756.2 3846.4
53GIL262 1020.6 29346 54.3% 9653.0 13945.0  5780.0  1920.0 6236.0
53PR264 20549.0 669104 55.8% 192157.8 172364 72760 206472 7313.2
60PR299 99638.8 471196  52.0% 12483.0  19081.6  8680.0 2627.2 7765.4
641IN318 20803.6 587460 64.4% 13654.4  20418.6  9082.8 33424 7993.4
80RD400 6436.4 14723.0  56.3% 15313.6 24164.4 10858.0 2966.2 10340.2
84FL417 9655.6 15636.2 38.2% 17842.2 200766  Th42.8 6554.2 6879.6
88PR430 60258.4  120506.4 50.0% 23230.4 34484.0 15683.0 5660.6 13140.4
89PCB442 29025.8  B2006.6 57.6% 99462.2 331042 140596 4514.6 14530.0
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the improvement heuristics. The results are reported in Table 5, whose colummns are as

follows:

Problem: Asin Table L.

G A-Improve: The mean objective value {out of 5 trials) returned by the GA with the
improvement heuristics, replicated from Table 1.

GA Only: The mean objective value (out of 5 trials) returned by the GA with no
improvement heuristics applied (in the “Value”) column, and the corresponding
percentage above the “GA-Improve” value (in the “Pct” column).

Improve Only: The mean objective value (out of 5 trials} found by generating a pop-
ulation of 100 individuals and performing level-Il improvement on the best pN
of them and level-I improvement on the rest (in the “Value”) column, ard the
corresponding percentage above the “GA-Tmprove” value (in the “Pct” column).

Table § confirms that the improvement heuristics are essential for the success of the
GA; without them, the solutions found are anywhere from 8% to 573% worse than those
of the full GA. The improvement heuristics by themselves attain values within 10% of
the full GA with negligible CPU times (generally less than 0.1 seconds, even for the
largest problems). This suggests the use of & standalone “build-and-improve” heuristic
in which a population is generated and improved and the best solution is taken with no
application of the GA. Such a heuristic could not be relied upon to produce solutions
that are as close to optimal as those from the hybrid GA, but it would execute very

quickly,

5 Conclusions and Future Research Directions

This paper presents a heuristic to solve the generalized traveling salesman problem. The
procedure incorporates a local tour improvement heuristic into a random-key genetic
algorithm. The algorithm performed quite well when tested on a set of 41 standard
problems with known optimal objective values, finding the optimal solution in the ma~

jority of cases. Computation times were small (under 15 seconds), and the GA returned
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TFable 5. GA-Only and Improve-Only Results.

GA Only Improve Only
Problem GA-Improve Value Pct Value Pct
10ATT48 5394.0 6313.4 17.04 539640 0.04
‘ 10GR48 1834.0 2079.4  13.38 1861.4 1.4%
10HK48 6386.0 6921.6 8.30  6386.0  0.00
11EIL5Y 174.0 2274 30.69 175.0  0.57
12BRAZIL5S 15332.0 191240 24.73 154586  0.83
148770 316.0 4508  42.66 3184 Q.76
1BEILT6 209.0 352.0 68.42 2134 2.11
16PRT6 $4925.0 853852  31.5]1 653156  0.60
20KROAIL00 9711.0 201910 107.92 9711.8 0.01
20KROB100 10328.0  18537.4  79.49 10362.6 (.33
20KROCI100 0554.0 178716  87.06 9554.0 0.00
20KROD10G 0450.0  18477.0 9552 94842 0.36
20KROE100 9523.0 10787.6  107.79  9644.8 1.28
20RAT99 497.0 1090.0 119.32 506.0 1.81
20RD100 3650.0 7353.4 10146 37184  1.87
21EIL101 249.0 526.4 111.41 2406  0.24
2iLIN105 8213.0 14559.4 77.27 82418 035
22PR107 278980 577246 106.91 27930.2 0.12
24GR120 2769.0 %5628.4 103.26  2866.6  3.52
25PR124 366050  82713.0 12596 368354 0.63
26BIER127 72418.0 154703.2 113.63 766662  5.87
28PR136 49570.0 1126746 164.68 454214 670
20PR 144 45886.0  94969.2 106.97 46543.0 1.43
30KROCAILB0 11018.0 31190.2 183.17 11020.0 Q.10
JOKROBI130 12195.0 346852 18440 12549.0  2.89
31PR152 51576.0 118813.4 130.37 5/2772.8  2.32
320159 296640  59099.2 i60.76 228802  0.99
39RATL95 854.0 2844.2  233.04 901.0  5.50
40198 105570  26453.0 150.57 10704.0 1.39
40KROA200 13406.0  46866.4 24059 142094  5.99
40K ROB20C 131116 473032 260.77 13543.6  3.29
45T8225 68352.0 2204052 23575 TG77H4  3.58
46PR226 64007.0 263699.0 311.98 662506  3.51
53G11,262 1020.6 4233.6 31481 10914 6.94
53PR264 205490.0 145789.4 393.38 30603.6  3.57
S80PR299 22638.8 110977.8 390.21 245200 831
64LIN318 20893.6 044692 352.14 222728 6.60
SO0RDA400 6436.4  34502.2 436.05 67804 548
84FLA417 0855.6  65025.6 57345 101684 5.31
83PR439 60258.4 3642824 504.53 66364.0 10.13

§9PCB442 220258 131711.8 497.99 235860  7.08
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fairly consistent results among trials.

Our GA performs competitively with other heuristics that have been published, both
in solution quality and computation time. Moreover, our heuristic has two main advan-
tages over others. First, it is quite simple to implement. Second, it can be extended
easily to incorporate alternate objective functions and constraints. For example, one
could allow r; > 1 nodes to be required for set V;. Thus, we might require the tour to
visit two nodes from Vi, five nodes from V3, and so on. This would require r; genes
for set V;. Crossover would operate on all r; genes as a group, rather than individu-
ally, to maintain feasibility. Or, by including demand-weighted “medial” distances in
the ohjective function, one could solve the Median Tour Problem [8, 34]. Similarly,
by including secondary tours that connect the customers in each cluster to the main
tour one can solve the Traveling Circus Problem [34]; this problem would require fur-
ther modifications to the encoding scheme, but it is perticularly appealing because it
has as a special case the vehicle routing problem {VRP) and the multi-depot VRP. Of
course, the success of our algorithm for the classical GTSP does not imply its success

for these variations; further computational tests would need to be performed to judge

its applicability to these problems.
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