An Augmented Petri Net Approach for
Error Recovery in Manufacturing Systems Control

Nicholas G. Odrey
Lehigh University

Gonzalo Mejia
Universidad de Los Andes

Report No. 04T-021

An Augmented Petri Net Approach for Error Recovery in Manufacturing
Systems Control

*Nicholas G. Odrey and **Gonzalo Mejia

* Department of Industrial and Systems Engineering Lehigh University Bethlehem, PA, USA **Department
of Industrizl Engineering Universidad de Los Andes, Bogots, Colombia

Abstract

The construction of error recovery Petri subnets and similar representations have received considerable
attention in the literature. Previous work has presented a multi-agent system representing various levels of
control in a reconfigurable architecture. Agents pertaining to production, mediation, and error recovery
within such an architecture were considered. Our focus here is on the workstation level of a hierarchy where
the workstation has the capability for recovery from physical errors, The implications of error recovery tasks
from the perspective of control are also discussed. The approach is based on integrating Petri subnet models
within a general Petri net model for a manufacturing system environment. In essence, the error recovery plan
consists of a trajectory (Petri subnet) having the detailed recovery steps that are then incorporated into the
workstation control Jogic. The logic is based on a Timed Petri Net model of the total production system. The
Petri subset models consist of a sequence of steps required to reinstate the system back to a normal state.
Once generated, the recovery subnet is incorporated into the Petri net model of the original expected (error
free) model. Petri net augmentations pertaining to various issues are discussed in detail throughout the paper.
Issues include the implication of generated error recovery irajectories in the production activities, linking of
production activity net and the error recovery subnet, potential deadlocks, the role of resources, and part
handling.

Keywords: Petri Nets, Error recovery, Flexible manufacturing systems, Manyfaciuring systems control

provide a reactive and adaptive response to errors
1. Intreduction and other disturbances [1].

Petri Nets have been successfully used for
modeling and control the dynamics of flexible
manufacturing systems. Several modeling
approaches based on Petri Nets that include those
of [1][2] and {3] have been proposed. Generally,
the operations required on a part are modeled with
combinations of places and transitions. The
movement of tokens throughout the net models the
execution of the required operations. In this paper
we follow the modeling approach previously
presented by [1] and [4]. The Petri Net formalism
can handle the complexities of the highly detailed
activities of a manufacturing workstation such as
patallel machines, buffers of finite capacity, dual
Tesources (multiple IE80Urces required
simultaneously on one operation), alternative

In this paper we focus on the workstation level
of a hierarchical manufactaring systermn. A
workstation is typically a set of paralle! machines
linked by material handling devices that perform
one or more manufacturing and assembly
operations. The workstation controller is the entity
responsible for the coordination, execution and
regulation of the activities at the physical
workstation. The workstation controller receives a
higher level command, generally form a higher
level controller that issues a set of operations to be
performed by the workstation with desired start
and finish times. The workstation controller
decomposes such a command into a lower level set
of coordinated activities, In addition to executing
activities, the workstation controller should also

" Corresponding autor: email: ngo0@lehigh.edu. Phone Number: (610) 758-4036 FAX (610) 758-4886

routings, and material handling devices to name a
few.

The characteristics of physical error
occurrence impose difficult challenges to the
workstation controller. The controller must first
handle simulitaneously production and recovery
activities, and second, errors that appear
unexpectedly must be treated in real-time to avoid
a dramatic decrease of performance. The error
recovery problem has been extensively studied:
Examples of autornated reasoning systems for
error recovery procedures, such as expert systems
and neural networks have been proposed over the
years and include [7], [8] and [9].

Previous work pertained to addressing the
issue of monitoring, diagnostics, and error
recovery within the context of a hierarchical multi-
agent system [5]. The system consists of
production, mediator, and error recovery agenis.
Production agents contain both planner
(scheduler) and control agents. Here we address
the error recovery agent within the hierarchical
system at the workstation level in more detail. It is
assumed that raw sensory information has been
processed and is available. For complex systems
the diagnostics task may be performed by a
mediator agent. When an error is detected, the
conirol agent diagnoses the error and requests the
action of a recovery agent. In return, the recovery
agent devises a plan to bring the system out of the
error state. Such an error recovery plan consists of
a trajectory having the detailed recovery steps that
are incorporated into the control agent logic. In the
context of Pefri Nets, a recovery trajectory
corresponds to a Petri subnet which models the
sequence of steps required to reinstate the system
back to a normal state. After being generated, the
recovery subnet is incorporated into the
workstation activities net (the Petri Net of the
muiti-agent system environment). In this research,
we follow the designation of others [3], and denote
the incorporation of a recovery subnet into the
activities net as net augmentation. The terms
“original net” or “activities net” refer to the Petri
Net representing the workstation activities (within
a multi-agent environment) during the normal
operation of the system. The net augmentation
brings several problems that require careful
handling to avoid undesirable situations such as
deadlocks.

2. Background

The construction of emor recovery Petri
subnets and similar representations is a topic
which has received considerable attention in the
literature. an abnormal state can become a normal
state after other actions are finished or some
conditions are met. Backward recovery suggests
that a faulty state can become a normal state if an
early stage in the original trajectory can be
reached. The forward recovery trajectory consisis
of reaching a later A forward trajectiory is the most
desirable but at the same time, it is the most
difficult to implement with automated reasoning
systems [6].

For example, {107 presented a typical Petri Net
representation for machines breakdowns and
alternative routings. Extensions to such model
representations to handle a more complicated logic
including requests for recovery actions and
temporary storage in buffers were also
accomplished [11]. This work was extended [12]
with a representation to handle a more
complicated logic that included requests for
recovery actions and temporary storage in buffers.

Perhaps the most complete description of error
recovery frajectories was developed by [3] who
proposed three possible error recovery
trajectories: input conditioning, backward error
recovery and forward error recovery. The concept
of input conditioning is that an abnormal state can
become a normal state after other actions are
finished or some conditions are met. Backward
recovery suggests that a faulty state can become a
normal state if an early stage in the original
trajectory can be reached. The forward recovery
trajectory consists of reaching a later state in the
original trajectory after satisfying some
operational constraints. Zhou and DiCesare [3]
developed 2 formal description of these three
possible trajectories in terms of Petri Net
constructs. See figure 1 for an example. The input
conditioning example shows a trajectory that
“returns” to the state where the error occwred
(figure l.a). The backward recovery trajectory
aims to reach a state visited prior to error
occurrence (figure 1.b). Finally, the forward
recovery trajectory aims to reach a state reachable
from the state where the error occurred. Figure Lo
illustrates a forward recovery trajectory.

Input conditioning recovery
subnet

Backward recovery subnet

Forward recovery subnet

(a) Example of input conditioning

(b) Example of backward
eITOY TECOVery.

{c) Example of forward
error recovery

Figure 1. Error Recovery Trajectories (following Zhou and DiCesare [3])

Obviously not all trajectories are applicable in
all cases due to operational or logical constraints.
For instance, if the operation “process part” fails,
the state “part processed” cannot be reached
unless the operation “process part” is re-attempted
and satisfactorily completed. Backward recovery
trajectories can only be applied to reversible
processes [6]. A forward trajectory is the most
desirable but at the same time, it is the most
difficult to implement with automated reasoning
systems ag pointed out by [6]. The three recovery
strategies developed by [3] were intended to
model the specifics of low level control typified by
the equipment level of a hierarchical control
systern. In the research presented here, the three
recovery trajectories are applied to the workstation
level. The main contributions of this paper are (i)
the incorporation and deletion of such types of
trajectories in real time and (ii) the handling of
resources In error recovery sitwations. In
particular, the handling of resources implies a
difficult task since error recovery may bring
undesirable situations such as deadlocks and
frreversible states.

The control logic workstation of the controller
must be able to handle both production and
recovery activities. For this reason the degree of
detail in the command structure and the time
horizons of both recovery and production must be
compatible. For example, if the workstation
production activities include the action *‘unload
part”, a possible recovery action at this level
would be “re-attempt part unloading”.

The enormous number of etrors and the
corresponding ways to recover that can occur at
the physical workstation implies unlimited
possibilities for constructing recovery subnets.
The ifmportant issue in this research is that any
error and the corresponding recovery steps can be
modeled with any of the three strategies mentioned
above. Without loss of generality, this research
limits the types of errors handled by the control
agent to errors resulting from physical interactions
between parts and resources (e.g. machines and
material handling devices). The reason for this
assumption is to facilitate the simulation of
generic recovery subnets. An exarople of errors
handied by the control agent is the incorrect
positioning of a part in a fixture. This error
represents the failed physical interaction part-
fixture (the fixture is the resource).

Although not explicitly modeled in this
research, the following examples are typical errors
corresponding to interactions part-resource.

* Parts missing in input buffer
= Part missing in machine

= Part positioning in machine or inspection
table

» Incorrect or defective parts in buffer
» Part jammed in machine

* Gripper slippage

* Part requiring additional processing

* Incorrect fixturing of parts

Prior work recovery sirategies [3] were
intended to model the specifics of low level
control typified by the equipment level of a
hierarchical control system. In the research
presented here, the three recovery trajectories can
be applied to the workstation level within a
hierarchical model as developed at NIST [131L
The application of these trajectories implies that:

(i) The level of task decomposition is the same for
the recovery and production commands, and

(iiy A careful handling of allocation and release of
resowrces is performed in order to guarantee
maintainability of the net properties.

Since in this research the execution of both
production and recovery activities is assigned to a
workstation control agent, the control logic of
such an agent must be able to handle both
activities. For this reason the degree of detail in
the command structure and the time horizons of
both recovery and production must be compatible.
For example, if the workstation production
activities include the action “unload part”, a
possible recovery action at this level would be “re-
attempt part unloading”. Likewise the sequence of
tasks for the comtrol agent may be “process part
A", “unload part A", “re-attempt part A
unloading”™, and “process part B”. Here the
advantages of Petri Net modeling can be fully
appreciated.

3. Real Time Control of Flexible
Manufacturing Workstations

A mathematical representation of a General
Petri Net (GPN) was first reported by Murata [14]
which described the state evolution of a system as
a result of firing enabled transitions. Approaches
for a state space representation of a timed Petri net
have been reported by Sifakis [15], Chretienne
[16], and Liu, Ma, and Odrey [121. The state
equa- tions developed by Sifakis were expressed
within a continuous time domain and were used
for performance evaluation. Chretienne [16]
introduced the concept of controlled executions to
accommodate the addition of time delays. Several
classes of confrolled executions including finite,
complete, periodic, and limited executions were
identified to describe the corresponding system
evolution. Both approaches are limited to
applications with a single machine assumption.

Liu et.al.{12] developed a cell level timed, colored
Petri nets (TCPN) state space representation for
systems with parallel machining capability. His
TCPN state representation extended Murata's
generalized Petri net (GPN) state equations by
modifying the token marking state equations to
accommodate different type of tokens. In
addition, a new set of state equations was
developed to describe time-dependent evolution of
a TCPN model, As a result, the system states of a
cell level TCPN model were defined by two
vectors:

» Systemn marking vector (Mp): This vector
indicates the cuwrent token positions. A token
type may consist of a job token, a machine
token, or a combined job-machine token.

» Remaining processing times vector (Mr) : This
vector derotes how long until a specific job,
machine, or job-machine token in an operation
place can be released (i.e. an operation is
completed)

The TCPN workstation state equations
provide a omathematical evaluation of the
workstation performance at a higher level. After
evalnation, a decomposed Timed Petri net (TPN)
can then be constructed according to the
evaluation results along with more detailed
workstation operations. Subnets are viewed as
alternative paths to the discolored TPN. This
approach is similar to bottom-up synthesis
methods in the sense that submets are
connected/related to a discolored TPN through
several transitions. The difference is that instead
of fusing transitions together, external places are
created to link iransitions together. Although the
total number of transitions and places generated in
this approach is increased, the resulting graphical
representation is not as complicated as the
substitution approach due to the preservation of
modular structure that distinguishes each subnet
from the discolored TPN. In addition, the
aliernative-path approach is more flexible than the
substitution approach in the sense that changes in
subnets can be made without changing the
configuration of the discolored TPN.

The system state equations for TPN
workstation medel may be represented by the
following model. The reader is referred to [4] and
[9] for detailed explanations of these equations.

{M‘“(k +1)} _

{ a1l [ofjarm { c }U(k)
Mge+1)| |88 Q [| | TC
Where

» M"(k) is the system marking vector at stage k.
» M'(¥) is the remaining time vector at stage k
w Uik} is the control vector at stage k

» 3 k) is a scalar representing the time elapse
between the &-th and the (k+D)-th transition
firing

= ("'is the incidence matrix

x () represents the operation places matrix (O
=1 for timed places (operational); 0 otherwise)

T is a diagonal processing time matrix for
TPNs (T; = time delay associated to place 7)

= [} is the identity matrix and [0] is a 0 matrix

The TPN workstation state equations provide a
mathematical evaluation of the workstation
performance at a lower level where primitive
activities are coordinated to achieve desired task
assignments, Process plans, assembly plans and
error recovery can be modeled by subnets and be
evajuated independently through individual TPN
state equations.

Our overall interest is in optimizing the
performance of a manufacturing workstation in the
context of dynamic scenarios where errors ocour,
In the event of disruptions, the original activity
plan devised off-line by the workstation controller
may require adjustments. The question that arises
is which is how to re-construct the activity plan. A
first alternative would be to build a completely
new plan to execute the pending jobs. The other
extreme would be waiting until the disturbance is
fixed and continuing with the original plan. In
general, the literature (e.g. [17]) has shown that a
completely new plan provides the best
performance. However, the completely new plan
may be costly in terms of computational time. The
other extreme which resumes the original plan as
soon as the disturbance is fixed does not require
major calculations but may deteriorate the overall
performance of the system [17]. An intermediate
measure between these two extremes is also
possible. This would be partially constructing a
new plan to a point where the original plan can be
resumed. In terms of the Petri Nets this

corresponds to find a marking (state) in the
original plan reachable from the distupted state
and the question to be answered is the selection of
marking that should be reached. Figwe 2
itlustrates a view of the issue of “match-up” state
in a manufacturing system. Figure 2 shows a
desired “trajectory” constructed out of normal
states, a distupted state and the possible transient
trajectories (dotted lines) to return to the original
trajectory. The disrupted state is reached
involuntarily. From there, a number of possibilities
exist to refurn to the original plan. The best plan
irmplies the trajectory with minimum cost to reach
the final state. Notice that the minimum cost plan
to the final state may include a combination of
transient and steady state trajectories. The maich-
up point is the point in time where the transient
and the steady state schedules are compatible [18].
Details on performance optimization are givenina
companion paper [19].

Final state

State Space

Initial state

e Steady-state trajectory
e v e NOTINE] (planned) states
............... » Error recovery trajectory

Normal (planned) states O
Disrupted state @

Figure 2. Error Recovery trajectories from a disrupted
state

The issue of the match-up approach from the
perspective of the Petri Net terminology uses the
following definitions:

Definition of Final Marking (M): It is the state
represents the state where all operations in all
operations have been completed.

Definition of Intermediate Marking (M,,): An
intermediate marking (M, # M) is a state of the
Petri Net reachable from the initial marking M,
after following a pre-planned sequence of
transition firings.

Definition of the List of Markings
(Listmarkings): Listmarkings is an ordered list
that contains My, all intermediate states M, and
the finai marking M; Any transition on
Listmarkings (except M) is reachable from the
previous one on the list by firing one transition.
Listmarkings corresponds to the sequence of states
of the Petri Net generated offiine by the
workstation controller that lead from the initial to
the final marking. This sequence of states
corresponds to the activity plan at the workstation,

Definition of Error Marking (M, »: M, is a
marking of the Petri Net that contains one or more
tokens in places representing error states and the
corresponding error recovery subnets if available.
An example is given in figure 6.2¢.

Definition of Match-up Marking (M,): M, is the
intermediate marking selected to be the end of the
transient activity plan.

In terms of the Petri Nets, an error occurs
when a transition fires outside a predetermined
time frame [19). When a transition fires earlier or
iater (if the transition fires at alf) than expected, an
alarm is triggered and an error state is produced.
After the error is acknowledged and diagnosed, a
recovery plan is generated. This is accomplished
by linking an error recovery subnet to the activity
net as shown in figuwre 1. Linking the error
recovery subnet to the activities net produces an
aungmentation of the original net. At this stage the
controller must devise a plan to reach the final
marking M; based on the status of the augmented
net. Reaching the final marking M, is
accomplished by constructing a plan to reach some
pre-defined intermediate marking M, from
Listmarkings and then firing the pre-determined
sequence of transitions from such an intermediate
marking to the final marking. If a path to the
intermediate marking can be found, then the
original execution policy (sequence of transition
firings) can be employed from the desired
intermediate marking M, to reach the final
marking My The issue of selecting the appropriate
intermediate marking is the subject of the
companion article [19]. Our focus here is to

demonstrate the construction of recovery subnets
prior to detailed mathematical analysis.

4. Construction of Recovery Subnets

Yor the construction of recovery submets, a
number of important issues must be considered.
An example demonstrating backward error
recovery is presented here but note that a similar
approach can be applied to the other types of
trajectories. Figure 3 illustrates the events during
an error occurrence and the corresponding
recovery in terras of Petri Net constructs. Figure
(3.a) represents the Petri Net during the normal
operation. In figure (3.b), an error occurs in the
operation “move part” represented by the
operational place p;. The error is represenied by
the addition of a new transition t; and a place p.. A
similar approach was previously employed by [15]
to handle machine breakdowns. The transition t;
represents the start of the event “error occurs” and
p. represents the error state. Firing tr removes the
residing token in p, resets the remaining process
time corresponding to the place p,, and puts a
token in the new place p..

The next step pertains to the incorporation of
the recovery subnet: In the example, such a
trajectory consists of two places (p,; and po) and
three transitions (f, to t3). Here p,; represents the
recovery action “find part” and p, the recovery
action “pick up part”. The transitions t; to ta
represent the change of states of these two
recovery actions. Having the recovery trajectory
incorporated into the original net by the recovery
agent, the workstation control agent is required to
execute the recovery actions. In figure (3.b),
returning to the normal state requires the firing of
transitions 4, t» and s After firing ts the
scheduled transition firings in the original net
resume. Notice that the augmented net now
contains an Operational Elementary Circuit (OEC)
= {ps t Pe> tris Pris b2y Pr2s b3 Pos fo, Poo b1, P2}
This is an elementary circuit that has only
operational (timed) places.

OFECs describing the error recovery plans may
result in infinite reachability graphs since tokens
can infinitely loop around the OECs. This can be
troublesome in a search strategy The strategy
adopted in this research to overcome this
drawback consists of the following: Every

Po P Pz Ps

L§!

{(a) Petri Net of during normal
operation. A part is being
processed by a resource 1,

(b) Incorporation of an error/error recovery net.
The error/error recovery net is shown with
thicker lines.

Po P P2 P

t

I

P tﬂ Pr1

{d) Firing and deletion of tr1, the place
pe and the corresponding atcs.

Pm

{e) Firing and deletion of t;, the place
Pr1, énd the corresponding arcs.

Remarks:
P. represents an error state,

(f) Firing and deletion of t,, the place py,
and the corresponding arcs.
The original net has been restored.

Po to p; represent arbitrary operational places; ; to t, are changes of events in the original net

P and p, represent recovery steps

tyis the transition that represents the initiation of the fajlure.

1,y 0 tq represent the start and end of the recovery step

Figure 3. Construction and Deletion of Recovery Paths

time that a transition on the recovery subnet fires
such a transition, its input places (except those
places belonging to the original net) and the
connecting arcs are eliminated from the
augmented net. Thus, the elementary circuit which
would be created during the generation of the
recovery subnet will only be partially constructed.

For example, in (b), as soon as the transition t;
fires, the transition t; and the arc I (py, t;) are
removed from the net. Subfigures (¢) to (f) of
figure 3 illustrate the sequence of firings and
elimination of transitions, places and arcs from the
net. The original net is restored when the last
transition (t;) of the error/error recovery subnet

has been fired. After firing ts, the part token
returns to the original net and the resource token
to the resource place. The workstation control
agent records which elements (places, transitions
and arcs) belong to the original net and which
elements correspond to the recovery subnets, This
record allows that every time that a transition of
the augmented net fires the workstation control
agent searches for such a transition on the agenda.
If the tranmsition is found, it means that the
transition belongs to a recovery subnet and all the
transition input places and all its input and output
arcs are deleted from the recovery agenda and
from the augmented net {with the exception of arcs
and places belonging only to the recovery subnet
and not to the original net).

4.1 Linking the Activity and Recovery Neis

The next step relates to resuming the normal
activities after an error is recovered. In terms of
Petri Nets this implies finding a non-error state
where the activities net and the recovery subnet
are linked. The desired non- error state may not
the same as the state prior to the ocoumrence of the
error. For example, the state {marking) in figure
3(f) is not the same as the state shown in figure
3(a). The example described in Figure 3 illustrates
a possible trajectory (backward frajectory) which
“started” (according to the arc directions) in p..
Defining the non-error state is the task of the
recovery agent and depends primarily on the
characteristics of the error and its recovery. In the
event of an input-conditioning strategy, the
corresponding net originates and terminates at the
same place [3]. This research assumes that a part
token that goes through either a backward or a
forward recovery trajectory is placed in a storage
buffers after an error is fixed. Figure 4 illustrates
the application of a dynamic backward recovery
trajectory to this research.

4.2 Handling of Resources in Recovery
Trajectories

An important issue is the handling of resource
tokens. This research assumes that, when an error
occurs, all resources involved in the operation that
failed, as well as the part that was being
manipulated become temporarily unavailable. For

example, assume that two recovery actions, “find

part” and “pick up part”, are required to overcome
the error “robot dropped part” occurred in the
course of the pre-planned activity “move part”.
During the execution of such recovery actions
both the robot and the part remain unavailable for
other tasks. This is a major difference compared to
approaches [11] which consider machine
breakdowns in which only the machine that failed
temains unavailable during the failure and repair
period. At the workstation level, the actual
manipulation of the part during the failure states is
considered in the logic of the control agent. If the
selected trajectory is an input conditioning subnet,
the resources that intervened in the operation that
failed remain unavailable until the operation is
successfully completed. The cases of backward
and forward recovery are more complex: All
resources required to execute the operation that
failed may need to be released at some point (to be
determined by the recovery agent) in the recovery
trajectory.

Backward Recovery Subnet

Description of places and transitions
Po: part available

Py: part in buffer 1

Py part being moved to resource i

pa: part being processed by resource 1
Py’ part processed

rl: resource 1 availabie

bl: buffer 1 available

ty and i Recovery fransitions

Figure 4. Example of Backward Recovery Trajectory
with Buffer

4.3 Issues on Deadlocks with Augmented Nets

In the case of net augmentation, the deadlocks
may occur: Consider the case of a part transported
by a robot and that the operation “part moved by
robot” fails because the robot dropped the part.
Suppose that the error recovery agent finds a
trajectory that returns the part to a previously
visited buffer but the buffer is full,
Simultaneously, parts located at the buffer are
waiting for the robot to become available for
transportation. This situation is depicted in figure
5(a) which shows the incorporation of a backward
recovery net into the activities net. The activities
of the recovery net are represented by the places
P (pick up part) and p,. {drop part in buffer). As

{a) Potential deadlock

in previous figures, the thicker arcs highlight the
recovery net. After the execution of the activity
“pick-up part”, the transitions t;, t and tp and the
places p, and p, are eliminated from the net. The
resulting net is shown in figure 5(b). Notice that
neither transitions t; nor t, can be enabled and the
net is deadlocked. A circular wait (deadlock)
situation is encountered and the control agent must
adopt a policy to maneuver out of the undesired
state. During the execution of the normal
(production) activities, deadiocks can be avoided
with an adequate control policy (i.e. sequence of
transition firings). For the error recovery activities,
the deadlock prevention or avoidance may be
more difficult due to the aforementioned
characteristics of the error recovery nets.

(b} Deadlocked net

Remark. When the token in place p, reaches the place py,, a deadlock will oceur. Place description in figure 4.

Figure 5: Example of Deadlock Wait in an Error Recovery Situation

Deadlocks might be unavoidable and
provisions must be taken to handle such
undesirable situations. The policy adopted in this
research to maneuver out of such deadlock states
consists of allowing teraporarily a buffer overflow.
Figure 6 illustrates an example of maneuvering out
of the deadlock situation using a Petri Net model.
In the Petri net, the transition t, in figure 6 will be
allowed to fire even if no tokens are available at
place bl (i.e, the buffer bl is full). In that case, the
place pl, representing the “parts in buffer”
condition, would accept a token overflow (two
tokens instead of one) only for the case of tokens
coming from recovery subnets. The advantage of
this policy is that clears the deadlock situation in
an efficient way that addtionally can be automati-

cally generated in computer code. If this policy is
not feasible in real systerns due to buffer
limitations, human intervention may be required.

This deadlock maneuvering brings another
undesirable situation: Consider figure 6 where
firing t1 twice would put two tokens in place bl
and the original buffer capacity would be
permanently doubled. To compensate for this
situation, the following measure was tzken in this
research: When a token coming from a recovery
net arrives to a buffer, one token is substracted
from the buffer place (in this case, the place bl
that represents the buffer availability) even though
the buffer place has no available tokens. If the
buffer place has no tokens available then a buffer
place will contain a “negative” token representing

the teraporary buffer overflow. Negative tokens
for Petri Nets have been proposed for antomated
reasoning [20]. In this research, the concept of
negative tokens indicates that a pre-condition of an
action was not met but still the action was
executed. The overflow is cleared when
transitions, which are input to the buffer place, are
fired as many times as negative tokens reside in

bi

the buffer place. The storage buffer remains
unavailable for other incoming parts from the
original net until both the overflow is corrected
and one slot of the buffer becomes empiy. In terms
of the Petri net of figure 6, the buffer will be
available again only when there is at least one
place bl.

token in the “buffer”

(b} Firing and deletion of t, and the corresponding arcs and
places. Overflow of tokens occurs at the buffer to avoid a

P2
deadlock. X represents a negative token

(a) Deadlocked net before
firing &,

(¢} Firing of t] restores the original

buffer capacity

Figure 6. Deadlock Avoidance by Allowing Temporary Buffer Overflow

5. Conclusions

This paper has discussed the issues of
incorporating recovery trajectories into the confrol
logic of a workstation control agent. A
contribution is the real-time error treatment which
involves the addition and deletion of recovery
paths from the control logic. In terms of Petri
Nets, the recovery activities are modeled with a
Petri subnet that is attached to the existing
activities net. In this research, three types of
recovery actiops, namely input conditioning,
backward recovery and forward error recovery
were investigated from the perspective of the
workstation level in a hierarchical intelligent
based architecture. Since the recovery actions

were previously developed for very low levels of
control (i.e. equipment level), modifications have
been proposed to the three types of recovery
action features that characterize the workstation
level. Such features are the preservation of the
level of detail workstation commands and the
handling of resource allocation during the
execution of recovery actions. The incorporation
of recovery subnets at the workstation level brings
two undesirable situations:

1. The reachability graph becomes infinite with
the incorporation of elementary circuits that
model the recovery activities.

2. The new augmented net may bring deadlock
situations that cannot be prevented or avoided.

Since the augmented net (recovery and
activities net) can produce unavoidable deadlocks,
a strategy rust be designed to maneuver out of the
deadlock situation. The strategy proposed here to
counteract the deadlock situation is to allow
temporary overflows at the storage buffers. In
terms of the Petri Nets this overflow is modeled
with the concept of negative tokens. This simple
but effective strategy solves the problem and
avoids the verification of structural properties. As
noted, the dynamic incorportion and deletion of
recovery nets is given in a concurrent paper [19].
The primary idea is that given a Petri Net and an
initial marking, it is possible to reach the desired
unaugmented final marking when errors and their
recovery nets are randomly generated. This
involves the generation of execution plans that
include both recovery and normal operation
activities.

References

[11 Odrey, N. Ma, Y. Intelligent Workstation
Control: An Approach to Error Recovery in
Manufacturing Operations. Proceedings of
the 5™ International FAIM Conference, June
28-30, Stuttgart, Germany 1995; 1: 124-41.

[2] Hillion, H. Proth, JM. Performance
Evaluation of Job-Shop Systerns Using Event
Graphs. IEEE Transactions on Automatic
Control 1989; 34(1): 3-9.

[3] Zhou, M. DiCesare, F. Petri Net Synthesis
for Discrete Event Control of Manufacturing
Systems, USA: Kluwer Academic
Publishers; 1993,

f4] Mejia G. Odrey, N, Petri Net Models and
Heuristic Search for Scheduling of
Manufacturing Systems: A Comparative
Study. Proceedings of the 17% ICPR
Conference, Blacksburg (USA) 2003; In CD
ROM.

[5]1 Odrey,N Mejia G. (2003). A Reconfigurable
Multi-Agent System Architecture for
Error Recovery in Production Systems.
Robotics and Computer and Integrated
Manufacturing 2003; 19 (1-2): 35-43,

[6] Fielding, Paul J., DiCesare, Frank
Goldbogen, Geof. Desrochers, Alan,
Intelligent Automated Error Recovery in
Manufacturing Workstations. Proceedings of

the IEEE International Symposium on
Intelligent Control 1987; p. 280-285.

[7] Seabra-Lopes, L. Camarinha-Matos, L. M.
Towards Intelligent Execution Supervision
for Flexible Assembly Systems. Proceedings
of the IEEE International Conference on
Systems, Man and Cybernetics, Beijing,
China: 1996; 2:1225-1230.

[8] Xokkinaki, A 1. Valavanis, K P. Error
specification, momitoring and recovery in
computer-integrated manufacturing: an
analytic approach. IEE Proceedings: Control
Theory and Applications 1996; 143 (6): 499-
508.

[9] Ma, HY. Flexible Manufacturing
Workstation Control with Error Recovery
Capability. PhD. Dissertation. Lehigh
University. Department of Industrial
Engineering 2000.

[10] Barad, M., Sipper, D, Flexibility in
Manufacturing Systems: Definitions and
Management of Manufacturing Systems,
New York: Johm Wiley and Sons; 1996.

[11] Liu C. S. Planning and Control of Flexible
Mamofacturing Cells with Alternative
Routing Strategies. PhID. Dissertation.
Department of Industrial Engineering,
Lehigh University 1993,

[12] Liu, C, Ma, Y. Odrey, N. Hierarchical Petri
Net Modeling for System Dynamics and
Control of Manufacturing System,
Proceedings of the 7% FAIM Conference,
Middlesbrough, UK: 1997; p 220-231

[13] Albus, J, RCS: A Reference Model
Architecture for Intelligent Control. [EEE
Journal on Computer Architectures for
InteHigent Machines 1192; 46-59.

[14]Murata,T., Petri Nets: Properties, Analysis,
and Applications, Proceedings of the IEEE
April 1989; 77(4): 541-580.

[15}5ifikas, J., Use of Petri Nets for Performance
Evaluation, in Measuring, Modeling and
Bvalvating Computer Systems, H. Beilner
and E. Gelenbe (Eds.), North-Holland Pub.
Co.; 1977

[16] Chretienne, P., Controlled Execution of
Timed Petri Nets, Technology and Science
of Informatics 1984; 19-26,

[17}Sabuncuoghy, I. and Bayiz, M. Analysis of
Reactive Scheduling Problems in a Job Shop
Enviromment. European Journal of
Operational Research 2000; 126(3): 567-86.

[18] Alturk, 8. Gorguiv, E. Match-up Scheduling
under a Machine Breakdown. European
Journal of Operational Research 1999; 112
(1): 80-96.

[19]Mejia, G., Odrey, N., Real Time Control and
Error Recovery of Flexible Manufacturing
Workstations: An Approach Based on Petri
Nets, Proceedings of the 14¢h International
Conference on Flexible Automation and
Intelligent Manufacturing, June 12-14,
Toronto, Canada: 2004; 1:824 — 831,

[20]Murata, T. Yamaguchi, H., A Petri Net with
Negative Tokens and its Application in
Automated Reasoning. Proceedings of the
33 Midwest Symposium on Circuits and
Systems. Chicago, USA: 1991; 2; 762-5.

