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Abstract
We discuss procedures for sensitivity analysis and warm starting that can be integrated with
modern solvers for mixed-integer linear programming problems. The implementation of the
methods within the SYMPHONY solver for mixed-integer linear programs is discussed and
computational results are presented.

1 Introduction

Duality has long been a central theme in optimization theory. The study of duality has lead to
efficient procedures for computing bounds, is central to our ability to perform post facto solution
analysis, is the basis for procedures such as column generation and reduced cost fixing, and has
provided us with a wide range of useful optimality conditions. Optimality conditions, in turn, can
be used to construct “warm starting” procedures that accelerate solution of a problem instance by
taking advantage of information obtained during solution of a related instance. Such procedures are
useful both in cases where the input data are subject to fluctuation after the solution procedure has
been initialized and in cases where the solution of a series of closely related instances is required. A
variety of integer optimization algorithms consist of solving a series related mixed-integer linear pro-
grams (MILPs). This is the approach, for example, taken by decomposition algorithms, parametric
and stochastic programming algorithms, multi-criteria optimization algorithms and algorithms for
analyzing infeasible mathematical models.

The study of these topics is thus important to the advancement of the theory and practice of
optimization. However, relatively little is known about them with respect to discrete optimization
problems. In this abstract, we extend some of the early work in this area, and discuss the integration
of the resulting methodology with modern solvers. Following the paradigm provided by the theory
of linear programming (LP), our approach is to derive an optimal solution to a particular (strong)
dual problem as a by-product of the branch and bound procedure, as suggested by Wolsey [18].
As in LP, this dual sohution provides a proof of optimality, can be used to determine the effect on
the optimal value when the problem data is perturbed, and can be used as the basis for a warm
starting proecedure.
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2 Integer Programming Duality
2.1  Duals for Integer Programs

We first focus on the theory of duality for integer programming, as this is the basis for all of the
techniques introduced herein. Although the development of duality theory and sensitivity analysis
for MILPs received a good deal of attention in the 1970s and early 1980s, this research area has
seen few papers over the past two decades. In light of recent progress in computational methods
for MILP, the continued development of these ideas is merited. We briefly introduce some notation
and state assumptions. For brevity, we will not define standard terminology, but refer the reader
to [5] for definitions. A linear programming problem (LP) is that of minimizing a linear objective
function represented by ¢ € QP over the polyhedral feasible region

P={x R | Az =baz >0}, (1)

defined by constraint matrix A € """ and right-hand side vector b &€ Q. A MILP is an LP in
which a specified subset of the variables are constrained to take on integer values. Without loss of
generality, we assume that the variables indexed 1 through p < n are the integer variables, so that
the feasible region is PT = PN ZP x R"P, For simplicity, we assume throughout that the feasible
region is bounded and nonempty, although this assumption is easily removed.

The mixed-integer linear programming problem (the primal problem) is to compute the optimal
value
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Generally, any optimization problem
zp = max{g(u) |u € U} (3)

such that zp < zrp is called a dual problem and is a strong dual if 2p = z;p. Obviously, any
feasible solution to a dual problem provides a valid lower bound on the optimal value of a solution
to the primal problem. A more concrete notion of duality is obtained by considering a dual problem
in which one tries to construct a function that return a lower bound on the optimal value, as an
explicit function of the input data. This approach results in the rather general dual suggested by
Wolsey [18]:

#p = max {g(b)|g(Az) < ¢'z,zeP}= max {g(b) | g(d) < zyp(d),d € BT} (4)
Here, z;p(d) = min,cps (@ 'z is the value function, which expresses the optimal value of a MILP
as a function of the right-hand side d and P/{d) = {z € ZP x R*? | Az = d,z > 0}. Solutions
to the above program are functions that approximate the value function from below. Optimal
solutions are those that agree with the value function at b. It is clear that not all optimal solutions
bound the value function equally well. In fact, there are optimal solutions to this dual that provide
arbitrarily poor estimates of the value function, even in a local neighborhood of b.

The dual (4) is strong because setting ¢*(d) = 27p(d) when P7(d) # 0 and g*(d) = 0 otherwise
yields an optimal solution. Blair and Jeroslow [2] derived a closed form for the value function
of a pure integer program, essentially by functionally encoding a Gomory cutting plane proof of



optimality to obtain a so-called Gomory formula. A Gomory formula may be composed of an
exponential number of nested floor functions. Computing such a function for a specific right-hand
side is equivalent to solving the original integer program by Gomory’s cutting plane algorithm. This
result can be extended to MILPs by applying Bender’s decomposition to arrive at a more complex
class of functions known as Jeroslow formulas. The value function is ideal from the perspective of
obtaining good lower bounds, but it does not arise in a natural way as a by-product of branch and
bound. the algorithm most commonly use for solution of MILPs.

It is natural to consider whether it is possible to restrict the class of functions considered
in (4) in some rcasonable way. If we restrict g to be linear, then an optimal solution to (4) is
g*(d) = max{u"d | ' A < ¢}, which is the dual of the continuous relaxation of the original
MILP. Hence, this restriction results in a dual that is no longer strong. Jeroslow showed that
restricting to the class of convex functions still results in the dual above [6]. In a series of papers,
Johnson [9, 7, 8] and later Jeroslow [6] developed the idea of restricting the domain to the set of
subadditive fanctions’. The subadditive functions are a superset of the linear funetions that retain
the intuitively pleasing property of “no mereasing returns to scale” associated with linear functions.
With this restriction, we can rewrite (4) in the pure integer case as the subadditive dual

zp = max{F(b) | F(a'} < ¢;, F subadditive}, (5)

where a' is the i column of the matrix A, Despite the restriction, this dual is still strong since
the value function is subadditive if we restrict the domain to all right-hand sides for which the
original MILP is feasible. Blair showed that the value function can be extended to a subadditive
function defined on all of R [1]. In [18], Wolsey showed that the subadditive dual extends many of
the properties of the LP dual, such as complementary slackness and the concept of “reduced cost,”
to MILP. Unfortunately, there is no general method for efficiently deriving optimal solutions in the
pure integer case and little is known about the mixed-integer case.

2.2  Dual Solutions from Branch and Bound

We now consider methods for producing dual information as a by-product of the branch and
bound algorithm, We restrict ourselves here to consideration of simple branch and bound, in which
the partitioning is done only by adjusting the bounds on variables, so that bound changes arising
from branching can be handled implicitly. We also assume that no preprocessing or other logical
procedure, such as reduced cost fixing or cutting plane generation, is used to tighten the LP
relaxation.

For linear programs solved using the simplex algorithm, dual solutions can be obtained by
constructing an optimal basis, which is a nonsingular submatrix B of 4 for which B~1b > 0 (primal
feasibility) and ¢ —ecg B~ 4 > 0 (dual feasibility), where cp are the components of ¢ corresponding
to the columns of B. For MILPs, this notion can be extended to that of an optimal partition, an idea
explored by Skorin-Kapov and Granot for quadratic programs in [4]. Consider a partition of P into
the subpolyhedra Py, ..., P, in such a way that P! C UL ,P; and asswme that these subpolyhedra
are nonempty. Let LP; be the linear program mingicyp, cTa® associated with the subpolyhedron
Pi. The usual optimality conditions for branch and bound are captured formally in the following
observation.

'A function f:R™ — R is subadditive over domain D if f(z + )< )+ flyyforall 2,y e D.



Observation 1 Let B* be an optimal basis for LP;. Let
U = min{cgi(B) b+ ;|1 <i < 8,8 € P} (6)

and
L=min{cg:(BY) Wb+ 11<i<s}, (7)

where B; and vy; are the constant factors associated with the nonbasic variables fived at nonzero
bounds ond 3° is the BFS corresponding to basis B'. If U = L, then zip = U and for each
1< j < s such that 37 € P! and cpi(BY)"'b = 21p, &7 is an optimal solution.

‘The goal of the branch and bound algorithm is to produce such a partition through s recursive
partitioning scheme. The product of the algorithm is a tree whose leaves represent members
of a partition and whose internal nodes represent subpolyhedra that were subsequently further
subdivided.

Expressing the quantity L above as a function of d, the right-hand side vector yields the following
optimal solution to (4) when it is made real-valued as before:

L(d) = min{cg: (B 'd 4y |1 < i< s} (8)

Unfortunately, this function is not subadditive and is therefore not a feasible solution to (5). How-
ever, it can still be used quite effectively for sensitivity analysis and warm starting. Most impor-
tantly, it can be readily computed from data produced as a by-product of the branch and bound
algorithm and provides a lower bound on the value of an optimal solution for any right-hand side
vector d. A similar function of the objective function vector ¢ can be used $o yield a valid upper
bound after changes to that vector. The function (8) can also be extended to account for empty
subpolyhedra.

3 Sensitivity Analysis

Sensitivity analysis procedures follow naturally from the duality theory just presented. Such
procedures can be broken down into two broad categories, local and global.

3.1 Local Sensitivity Analysis

Local sensitivity analysis is concerned with the effect of relatively small perturbations to the
original data. For certain classes of perturbation, it is easy to show that optimality is retained.
For example, increasing the objective function value of a variable already at its lower bound will
certainly not effect optimality of the current solution. A number of such rules are derived for integer
programmming by Geofirion and Nauss [3]. For other types of perturbations, the most straightforward
approach is to consider the effect on optimality conditions of perturbations to the input data.

Changes to the Right-hand Side. For simple branch and bound, one can examine each member
of the optimal partition to determine ranges over which the right-hand side coefficients can be
changed without affecting the optimality conditions, as in linear programming. Changes to the
right-hand side do not affect the dual feasibility of each basis, so the relevant range is that over
which primal feasibility is maintained. After determining a valid range for each member of the



partition, one must then take the intersection of these ranges to determine an overall valid range.
Since dual feasibility of each basis in the partition is maintained, one can derive lower bounds
outside of the valid range by applying the dual function (8). For a particular right-hand side, one
can improve on this bound by actually calculating new optimal bases, or continuing the partitioning
process (see Section 4). In the case of a change outside the valid range, one must of course account
for situations in which previously nonempty members of the partition become empty. This can
be dealt with in a straightforward manner by considering the result of solving a Phase I LP, in
the case of the primal simplex algorithm, or the proof of infeasibility returned by the dual simplex
algorithm.

Changes to the Objective Function. For simple branch and bound, changing the objective
function vector leaves the bases in the partition primal feasible, but may invalidate dual feasibility.
This means that the upper bound obtained from the optimal partition is still valid, while the
lower bound may not be. Again, valid ranges can be calculated by considering a range for each
basis in the partition and then taking their intersection. Outside the valid range, a lower bound
may still be obtained by computing a new optimal basis for each member of the partition. Since
the feasible region is unchanged and an initial feasible basis is available, this calculation can be
performed efficiently. One may note that the upper bound obtained here may be relatively weak,
since generally few feasible solutions are obtained during the solution process. Even if multiple
solutions are obtained, most solvers return only one. To address this problem, one may want
to explicitly track all solutions found during the search for later use during sensitivity analysis.
Taking this idea a step further, Geofirion and Nauss also suggest modifying the branch and bound
algorithm to explicitly return not just the optimal solution, but the top k solutions [3]. This can
be done in a fairly straightforward manner.

Other Changes. Adding a constraint is similar to modifying the right-hand side, except that
one must expand the current basis by adding the slack or artificial variable for the new constraint
to the basis for each member of the partition. Deleting a constraint is a bit more involved. The
basis for each member of the partition must be reduced in this case. The casiest way to achieve
this is to first rotate the slack or artificial variable into the basis. This variable can then be deleted,
along with the constraint. Adding a variable is similar to modifying the objective function. The
variable is simply added to each member of the partition. The basis remains primal feasible, but
may uo longer be dual feasible. To delete a variable, the variable must be rotated out of the basis in
each partition and then removed. General modifications to the constraint matrix are more difficult
because the basis may not remain valid, i.e., may no longer be nonsingular. We have been able to
show that the basis remains valid under certain structured changes to the constraint matrix that
occur in multi-criteria optimization, but in many cases, it is necessary to construct a new optimal
basis from scratch for each member of the partition.

3.2 Global Sensitivity Analysis

In global sensitivity analysis, one considers how the optimal value of a MILP changes globally
as a function of either the objective vector or the right-hand side vector {or possibly both). For LPs,
the global sensitivity functions are continuous and piecewise linear and can be written in closed



form. For MILPs, the function that expresses the optimal value as a function of the objective
vector remains piecewise linear and continuous, but the value function discussed earlier, although
it has a closed form, is more complex. Nonetheless, there are algorithmic approaches to accessing
information about the global sensitivity functions without actually constructing them by using
parametric programming.

A parametric MILP is defined to be a family of MILPs parameterized by a single scalar 6. For
instance,
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where P1(f) is a parameterized family of polyhedra, is an example of a parametric MILP. One can
also parameterize the objective function or even the constraint matrix. The goal is to determine the
complete set of optimal values that occur as @ is varied. This set characterizes a one-dimensional
“slice” of the global sensitivity function.

A large number of papers have been written on how to analyze parametric programs, especially
those in which the parameterization is on the right-hand side vector. Our approach to analyzing
such programs is to formulate a corresponding bicriteria optimization problem. As an example,
suppose we wish to analyze the family of MILPg¢ with the parametric objective ¢ + 0d for d € R".
To do so, we solve a bicriteria MILP where the two objective functions considered are ¢ and d. We
can analyze MILPs with parameterized right-hand sides in a similar fashion, In [12], we presented
an asymptotically optimal algorithm for determining the set of supported solutions for a bicriteria
MILP. Computational results obtained using this algorithm are presented in Section 6. Methods
for analyzing all family members within a single branch and bound tree have also been suggested
by Rountree and Gillett [16] and Marsten and Morin [10].

Parametric analyses such as these are limited to a one-dimensional slice of one of the global
sensitivity functions. Multi-dimensional slices could be analyzed by extension of these methods to
multiple criteria, although analysis in dimensions above two is likely to be prohibitive without a
specialized method taking advantage of warm starting. Several authors have reported theoretical
results indicating that it may be possible to analyze global, simultaneous changes to the right-hand
side and the objective function vector. For instance, Sturmfels and Thomas [17] showed that for a
pure integer program, there is a finite collection of objective functions that need to be considered
in order to yield all possible sets of optimal solutions as both the right-hand side and objective
functions are varied. This result, however, does not have useful algorithmic content.

4 Warm Starting

Methods for warm starting are useful in cases where either (1) we need to solve a family of
related MILPs of which we have a priori knowledge, or (2) the input data are uncertain and may
change as the solution procedure progresses. Both of these situations arise frequently in practice.
In keeping with our general approach, methods for warm starting can be thought of as being based
on a specific set of optimality conditions. If we view an optimization algorithm as an iterative
scheme for achieving such conditions, then progress of the algorithm can be measured roughly as
“distance from optimality,” ie., the degree of violation of the optimality conditions. From this
point of view, a warm stert can be thought as additional input data that allows the algorithm to
make fast initial progress by starting closer to optimality.



Our warm start procedure follows naturally from our approach to sensitivity and is similar
to a scheme suggested by Roodman for Balas’ additive algorithm [15}. For MILPs, the most
common measure of distance from optimality is the percentage difference between the upper and
lower bounds. As additional input to initialize the algorithm, we provide a branch and bound tree
calculated while solving another (related) MILP, and a list of the differences between the model
used to generate the free and the current model to be solved. We will refer to the input tree as
a warm start tree. The tree provides an initial partition, whose corresponding upper and lower
bounds are generally expected to be much better than those that would be obtained from a cold
start.

To initialize the algorithm from a warm start tree, it is necessary to obtain an optimal basis
for each member of the partition, as described earlier in Section 3. After this, calculations can
continue as they normally would in branch and bound by adding the leaf nodes to the set of
candidate subproblems awaiting processing. Whenever possible, of course, we utilize the previous
optimal basis for each member of the partition to aid in obtaining the new ones. Note that it is
not necessary that the initial partition be the one yielded by the leaves of the previous branch
and bound tree. In fact, internal nodes can also be considered as potential members of the initial
partition. When an internal node is ufilized, all descendants of that node are discarded. This may
be desirable in cases where the branch and bound tree is large and the partition is too fine to be
efficient. In Section 6, we will discuss the determination of a proper warm start tree.

In addition to a warm start tree, we may also provide additional data in some cases. For in-
stance, we may also provide a previously generated global cut pool or a pool of previously generated
solutions useful in establishing a priori upper bounds. In some cases, the best strategy may be to
use only the cut pool in warm starting and throwing away the warm start tree.

5 Implementation

All of the methods described herein have been implemented within the SYMPHONY 5.0 MILP
solver, which is part of the COIN-OR software suite and can be accessed through the COIN-OR
Open Solver Interface (OSI). The OSI provides a uniform API to solvers for LPs and MILPs and
already supports the concept of warm starting and has an associated base class for storing and
loading warm starting information. Using this base class, we have defined a warm start class for
MILPs and have implemented the methods needed for SYMPHONY ifo utilize it. Our current
implementation stores the tree in the native format utilized by SYMPHONY, which is a compact
representation achieved by storing, for each node, only the differences in description between the
node and its parent. This results in an extremely efficient data structure. Our eventual goal is
to develop open standards by which warm start information could be shared between solvers, as
it generally can be with linear programs. SYMPHONY can be stopped at any time and a warm
start tree saved, then reloaded for later use. Only pure branch and bound is fully supported, but
we are working on extensions, as described in Section 7. Details of the use and implementation of
these methods can be found in the SYMPHONY 5.0 User’s Manual [14] and in a recent proceedings
paper [11].



6 Computational Results

We focus here on preliminary computational results with the warm starting procedures we
have described, as implemented in the publicly available SYMPHONY 5.0. The computational
platform for all tests was a 4-processor SMP machine with Intel Xeon 2.4GHz processors and 2G
of memory. All tests were run with the sequential version of SYMPHONY. We tested the warm
starting capabilities for two different applications. In the first set of experiments, we tested the
use of warm starting while using SYMPHONY'’s bicriteria solver to analyze the tradeoff between
fixed and variable costs for a class of network routing problems described in [12] and [13]. Because
the algorithm involves solving a sequence of related single-criteria MILPs, it is natural to consider
the use of warm starting fo accelerate solution of the subproblems. The guestion that arises
immediately, however, is exactly how to generate the warm start information. In contrast to the
linear programming case, we have a wide variety of choices for a starting partition and it is not clear
a priori what makes a “good” starting partition. There are two main questions to be answered.
First, from what previous calculation should we take the starting partition? In the case of multi-
criteria optimization, we have the choice of deriving a starting partition from the branch and bound
trees produced during solution of any previous subproblem. Second, given a particular previously
generated branch and bound tree, what portion of the tree should be used to derive the starting
partition? Again, we can choose any subtree of the given tree, as described earlier.

For multi-criteria problems, the single objective used in each subproblem is a convex combi-
nation of the two original objectives. Therefore, in answer to the first question above, we derive
our starting partition from the previously solved subproblem for which the weight determining the
combination is closest to that of the current subproblem. In answer to the second question, we
choose the warm start tree to be the first o percent of the nodes generated during the procedure
that generated the original tree. Because a starting partition that is too fine may actually be detri-
mental, we tried values of ¢ ranging from 0 to 100. A value of 20 seemed to be the best and resulted
in a uniform improvement in running times. The results reported in Table 1 are for the instances
of size 15 reported in [13]. Note that we did allow cut generation for these runs, but this is not
an issue, as long as the validity of the cuts is not affected by the change in objective function. In
Table 1, the first chart compares « values of 0 and 20, whereas the second one compares « values of
0 and 100. The results with & = 20 show a clear and marked improvement over those with o = 0.
Results with o = 100 show a detrimental effect in some cases, but an overall improvement.

In a second set of experiments, we tested the use of warm starting to solve selected instances
from MIPLIB 3 after randomly perturbing the objective function vector by changing each coefficient
by a random percentage between —« and a. Since the warm starting procedure is likely to have
smaller effect for large perturbations, we report in Table 2 on experiments with values of o equal
to 1, 10, and 20. It is evident that the results are better for smaller values of o, but it is also
clear fhat warm starting has an overall positive effect with some exceptions for larger values of a.
Further experiments with warm starting in stochastic integer programming are reported in [11].

7 Conclusions and Future Work

We have outlined a theory and methodology for performing sensitivity analysis and warm
starting computations that can be integrated with the branch and bound algorithm used by modern
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Table 1: Results of using warm starting to solve multi-criteria optimization problems.
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Table 2: Results of using warm starting to re-solve MILPs with o = 1, 10, 20.
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solvers for mixed-integer ligear programs. This work is intended to lay the foundation for more
significant advances, both theoretical and computational, to follow. In principle, these techniques
can be extended to the more sophisticated variants of branch and bound employed by most modern
solvers, but the implementation of such techniques is challenging and requires a more sophisticated
approach. Even for the case of simple branch and bound, many questions regarding the most
efficient ways to employ these techniques in practice remain to be answered. We have only scratched
the surface so far, but our preliminary results indicate that there are important potential gains to

be made by developing these ideas further.
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