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Abstract

The parallel replacement problem considers the individual replacement schedule of each asset in a
group of assets that operate in parallel and are economically interdependent. Economies of scale, in-
cluding a fixed charge in any period in which an asset is purchased, are a common cause of economic
interdependence. Valid inequalities are derived for the parallel replacement problem with both fixed and
variable costs for integer programming formulations considering constant and non-decreasing demand.
The cuts are motivated by the “no-splitting rule” in the literature which states that an optimal solution
exists such that assets of the same age in the same time period are kept or replaced as a group. The
constraints are shown to be valid for cases of non-decreasing demand, which include traditional replace-
ment and capacity expansion problems. Experimental results illustrate the effectiveness of the cuts with
‘respect to solving the integer programs in a branch-and-cut framework.
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1 Introduction

The paraliel rebla,cement problem is concerned with determining minimum cost replacement schedules
for each individual asset in & group of assets that operate in parallel and are economically interdependent.
The replacement of assets is generally driven by economics, including increased operating and maintenance
costs (O&M) of deteriorating assets and the availability of newer, more efficient assets in the marketplace.
Unlike serial (single asset) replacement problems (see Fraser and Posey [5], for example), parallel replacement
problems are combinatorial as groups of assets must be analyzed simultaneously.

A variety of parallel replacement problems have been studied in the literature. This paper is concerned
with the parallel replacement problem under economies of scale, as first examined by Jones et al. [10], which
assurnes that a fixed charge is incurred in each period that an asset is purchased. Jones et al. [10] examine
the problem with the use of dynamic programming and show that in the optimal solution, groups of same
aged assets in the same time period are either kept or replaced in their entirety assuming constant demand
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and no capital budgeting constraints. This “no-splitting” rule greatly reduces the complexisy of the problem.
Chen {4] reformulates the problem as a 0-1 integer program and solves it using Benders’ decomposition while
McClurg and Chand {11] provide a forward algorithm and forecast horizon result.

Further generalizations of this problem (with fixed charges) have also been studied. Rajagopalan {13],
with integer programming and a dual-based solution procedure, and Chand et al. [3], with enumerative and
heuristic algorithms, examine the problem under the assumption of non-decreasing demand, also termed
replacement and expansion. Hartman [6] further generalizes the problem to include demand and capital
budgeting constraints with the use of integer programming. The “no-splitting rule” is generslized to the
case of non-decreasing demand in all three of these papers.

This paper presents valid inequalities and a branch-and-cut solution procedure to an integer programming
formulation for the deterministic, parallel replacement problem under economies of scale (PRES) in which
a number of assets are required for operations in each period over a finite horizon of length 7. Under the
assumption of constant demand, all assets are utilized each period while they may be stored in the case of
non-decreasing demand to take advantage of economies of scale in purchases. At the end of each period,
an asset may be salvaged or retained, assuming it has not reached its maximum physical life V. at which
time it must be retired. Assets may be replaced through the purchase of new assets. The purchase of assets
is subject to a fixed charge, regardless of the order size. At the end of the finite horizon, all assets are
salvaged. The solution consists of purchase and salvage decisions for each asset over the finite horizon with
the objective to minimize discounted purchase and O&M costs less salvage values.

This paper is motivated by the integer programming results of Hartman [6] and the successful use of
cutting planes in solving lot sizing problems (Barany et al. [1]). Conceptually, the parallel replacement
problem and the lot sizing problem are similar. In the lot sizing problem, inventory purchases are made by
trading off a fixed charge {setup cost) against inventory carry charges. In the paraliel replacement problem
under economies of scale, additional fixed charges are incurred if assets are not replaced simultaneously.

Hartman [6] illustrated that the linear programming relaxation of a restricted subproblem of PRES
has integer extreme points. Specifically, if the binary variables (required for imposing a fixed charge with
asset purchases) are fixed, then the optimal solution to the linear programming relaxation of the resulting
formulation is integer-valued, if a feasible solution exists. Thus, branch and bound procedures must only
focus on the T binary variables. In this paper, we provide valid inequalities which focus on these T" variables
to further reduce the difficulty of solving PRES under constant or non-decreasing demand constraints. (The
results in Hartman [6] are valid for any demand.)

The valid inequalities are useful from a computational standpoint but they are also inferesting as they
are derived from the “no-splitting rule” which has been used to reduce the computation in earlier dynamic
programming approaches to the problem. The rule states that an optimal solution to PRES exists such that
all assets of the same age in the same time period are either kept or replaced as a group. This fact is used
to tighten constraints which enforce the fixed charge in each period of an asset purchase. _

This paper makes three contributions to the replacement analysis literature, First, we prove that PRES is
NP-Hard, as it has not formally been stated in the literature. Second, a set of valid inequalities is defined for
PRES. It is shown that these are valid for both constant and non-decreasing demand cases. Their relationship
to the “no-splitting rule” is made clear in their development. Third, computational results show that the
incorporation of these cuts into a branch-and-cut procedure drastically improves the solution time of both



constant and non-decressing demand cases of PRES. This is especially true for large problem instances, such
as those from the railroad industry analyzed in Hartman and Lohmann [7]. As it is commonly assumed that
the horizon should be at least twice the maximum age of an asset (Bean et al. [2]) to ensure optimal time
zero decisions (for an infinite horizon problem), problems with maximum ages of 50 periods and horizons of
100 periods are not uncommon, leading to the need to solve large-scale problems.

2 PRES under Constant Demand

We now formulate PRES as a finite horizon integer program. The program is modified from PRP in
Hartman [6] with no budgeting constraints and constant demand. It is further assumed that the number
of assets in inventory at time zero is equal to demand and no asset in the initial inventory is equal to its
maximum service life. This eliminates the automatic decision of having to replace an asset af time zero.
Assuming constant demand and no capital budgeting constraints eliminates the need to store assets, as in
Hartman [6].

An asset is defined by its age, ¢ = 0,1,..., N at the end of time period 7 = 0,1,...,7. An asset may
be retained or salvaged after each period unless it reaches age N at which time it must be salvaged. The
problem is solved over T' periods, with purchases allowed at the end of periods 0,1,...,T ~ 1. All assets are
sold at the end of time period T. The decision variables are summarized as follows:

Xy = the number of i-period old assets in use from the end of period j to j + 1, where Xp; also denotes
asset purchases;

Si; = the number of i-period old assets salvaged at the end of period j;

Z; == 11f a purchase is made in period j, else Z; = 0.

The deterministic costs associated with each of these decisions are defined as follows:

p; = discounted per-unit cost for a new asset purchased at the end of period j;

k; = discounted fixed cost for any asset purchase at the end of period j;

e = discounted O&M cost for an i-period old asset in use from the end of period 7 to j + 1;
ry; = discounted revenue for an é-period old asset salvaged at the end of period j.

Other relevant parameters include:

n; = the number of i-period old assets available (in inventory) at time zero;
d = number of assets demanded in each period such that d = %, n;.

To aid in the discussion, part of the formulation may be visualized as a network, as flustrated in Figure 1.
The network is drawn on two axes, with the y-axis representing the age of an asset (i =0,1,..., N) and the
r-axis representing the end of the time period (j = 0,1,...,T). Figure 1 represents a problem with N =3
and T = 5. The nodes are labeled according to the age of an asset and the end of the time period, (¢,7),
although the labels have been removed from the figure for clarity.

Referring to Figure 1, the number of i-period old initial inventory assets (n;) is represented by the supply
at each node (4,0), ¢ > 0 and ¢ < N. (Allowing ny > 0 forces a replacement at time zero, which can be
incorporated easily.} Flow between nodes (4,7) and (i + 1,7 -+ 1) represents assets in use (X;;) from the
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Figure 1: Network representation of PRES under constant demand with flow representing purchase (Xo;),

utilization (X} and salvage (S) variables and initial inventory supply {n).

end of pericd 7 to the end of period 7 + 1, at which time the assets are ¢ + 1 periods old. The variable
Xo; denotes the purchase and one period use of a new asset. For this model it is assumed that a purchased
asset is new and it must be retained for a minimum of one period before being eligible for salvage. Note
that under the assumption of constant demand, any asset that is salvaged must be replaced, and thus a
purchase must occur. The sale or salvage of an asset is represented as flow, Sy, from any node (é,7), 4 > 0
and j = 0 to node (0,7), denoting the subsequent purchase. All salvage arcs are represented with dashed

lines to distinguish from utilization arcs in Figure 1.
With these variables and parameters, the integer programming formulation for PRES follows.
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X.,;j,sij S {0,1,2,...} (7)
Zz; € {0,1} (8)

With constant demand, PRES is a fixed charge minimum cost flow problem. The objective function (1)
minimizes discounted purchase and O&M costs less salvage values. Constraints (2) through (5) ensure flow
throughout the network. Constraint (6) includes the fixed charge variable Z; such that if any assets are
purchased, the fixed charge is imposed. As demand d is constant and the number of initial assets in the
system is 4, the maximum number of assets that can be purchased in any period is d. All decision variables
are general integers with the Z; being restricted as binary.

For this formulation, there are T binary variables representing the periods of purchase, N x T" utilization
variables and (N x (T + 1)) - 1 salvage variables, totaling (T + 2NT + N ~ 1) variables. There are T
constraints to connect the purchase decisions with the binary variables and ({N + 1) x (T + 1)) — 2 flow
balance constraints, totaling (27" + NT + N — 1) constraints.

3 Difficulty of PRES

In this section, we illustrate that a restricted version of the PRES problem under constant demand is NP-
Hard. While this may have been assumed, it has not been shown previously in the literature. To prove this,
we transform an instance of the minimum directed Steiner network problem (Hwang et al. [9]), known to be
NP-Hard (Hsu et al. [8]), to PRES. The minimum directed Steiner network problem is defined as follows:
given a set of starting vertices S and a set of terminating vertices V' on a directed, seyclic graph G{V, E),
we want, to find a subgraph G* with the minimum total edge weight such that G* is S, T—connected. We
consider the case where there is one terminating node, v, and no nodes in § are connected. Nodes in §
and v are referred to as terminal nodes while the remaining nodes are referred to as non-terminal nodes.
Finally, define w;; as the weight {length) of arc (4,7) in G.

Theorem 1 PRES with p; = ¢y = 845 = 0 Vig, 7 =1 is NP-Huord.

Proof. Given an instance of the minimum directed Steiner network problem, define the following sets:
starting vertices § and non-terminal nodes Vi U V3 U V5. These are shown schematically in Figure 2 such
that nodes in V) are connected to S, nodes in Vi are connected with vy, and nodes in V5 are connected with
both § and vg.

Before constructing an instance of PRES, we provide a different graphical representation than previously
defined, as given in Figure 3. The nodes in the left column, labeled ¢, represent the possible ages of initial
clusters of assets. As in our previous formulation, flow from these nodes is defined as n;, or the number of
i-period old assets at time zero. Flow is from a node i to a node j, representing the time period that the
initial cluster is replaced. An arc (7, 7) exists if 147 < N. The nodes in column 7 represent the time periods
that a cluster is replaced. Note that not all arcs are shown for clarity. An arc (j,7 + k) exists if & < N.
Finally, arcs (7,7 exist if assets are retained from the end of period j to the end of the horizon 1", when
they are replaced. These arcsexist for j 2T~ Nand 7 <T 1,

In our previous formulation, costs were defined according to periods. In this formulation, costs are defined
accordingly by the length of time an asset is held. For example, arcs (4,7) carry the cost of retaining an



Figure 2: Schematic of sets of nodes and arcs in directed, acyclic network.

i~period old asset for j periods before salvaging the asset. Ares (4,7 + &) represent the cost to purchase an
asset at time period §, utilize it for k periods, and then salvage the asset. Finally, there is a fixed charge
associated with each (7, /4 k) arc. We will use the term ¢;; for costs between arcs and k; for the fixed charge
associated with flow from node j.

I-1

Figure 3: Different graphical representation of PRES. Note that all arcs are directed (from left to right} and
arcs are omitted from nodes § > 0 to §+ k, 7+ k < NV for clarity.

Note the similarities in Figures 2 and 3. This provides the motivation for the new graphical representation.
Intuitively, our approach to constructing an instance of PRES from the minimum directed Steiner network
problem is as follows: the nodes in § in Figure 2 correspond to those defined as ¢ in Figure 3. The nodes
in V7 and Vo correspond to those defined as § in Figure 3 where j £ N — 1. The nodes in V3 correspond to



those § where § > T — N. Finally, vy corresponds to 7", The difficulty in performing the transformation from
the Steiner network to PRES is due to the systematic number of arcs emanating from each node in PRES.
We accomplish this by adding nodes and ares to the Steiner network.

Given the Steiner network, we construct a network for PRES as in Figure 3 as follows. First consider
the nodes we defined as 7 in the PRES network. Given the V] + V3 nodes in the Steiner network, then there
are at most Vi + Vai arcs emanating from any node in S. Define the § nodes in PRES as j' + V3 where
§' = Vi + Vo plus an additional |Vi + Vol — 1 nodes. We label these nodes from 0 to §'. The remaining nodes,
from Va, are labeled from 5/ to T~ 1.

The nodes in § in the Steiner network correspond directly with the nodes defined as ¢ in the PRES
network. For the node in § with highest degree (break ties arbitrarily}, connect an arc in the PRES network
from 1 to all nodes in j/. For the node with next highest degree, connect to all nodes 0 to j° — 1. Continue
in this manner noting that each node in & will contain its original arcs (from the Steiner network) and
additional arcs. For each original azc from the Steiner network, define the cost ¢zy = wy; and for each newly
created arc, define c;; arbitrarily high. In PRES, the nodes i now have degree 2|V -+ V3| —1 to [V} -+ V2] and
correspond to initial asset ages of N —j' to N — j/ — V1 + Vo| — 1, respectively. We assume one asset in each
initial asset cluster in PRES as the Steiner network is only concerned with fixed (not per unit) charges.

We continue construction of the network for PRES by defining arcs connecting Vi, Vo, Vs, and v from
the Steiner network in exactly the same manner in PRES. Note that in PRES, we define a single fixed charge
for an asset purchase in a given time period. However, in the Stelner network, it may be possible that there
are multiple arcs emanating from a node in V3, V3 or V3 with different costs. As all paths from Vi, V2 and
Vs are directed and acyclic towards node vg, we can determine which of the multiple arcs emanating from a
node is on the shortest path o ve. Thus, for a given node, we can eliminate the inferior arcs at that node
as it cannot be in the optimal solution (due to acyclic network). After this reduction, we define the per unit
cost as ¢;; = 0 and the fixed charge k; = wy; for the remaining ares.

Finally, we complete the network by assuming the maximum asset age N is arbitrarily large such that
there is an arc from each node 7 = 0,1,...,T — 1 to each node k, where k¥ < T. (Note that some of these
arcs are already present from the previous transformation steps. This step creates arcs not present.) The
costs on these new arcs are arbitrarily large, as they are not present in the original Steiner network.

Thus, we have transformed our instance of the minimum directed Steiner network problem to an instance
of PRES. This is done in polynomial time as we have added |V] + V5 — 1] nodes and a polynomial number
of arcs based on the total nmurmber of nodes.

Solving this instance of PRES provides the optimal solution to the minimum directed Steiner network
problem. This is because the Steiner network is embedded in the PRES network and additional arc costs
are arbitrarily high such that they will not be included in the solution. As we assume that the initial asset
clusters are of size one, the sclution of PRES produces a cost which correlates directly with the Steiner (per
arc) cost. Thus, PRES is NP-Hard. O

This provides further motivation for our research. We now return to our original formulation of PRES
and present our sclution approach.



4 Valid Inequalities for PRES

As shown in Hartman [6], if the Z; variables are either 0 or 1, the remaining X and S variables are integer
as the extreme points of the linear programming relaxation are integer. This is clear in the constant demand
formulation as it is & minimum cost fiow problem with fixed charges associated with the Xy; arcs which are
enforced in Constraint (6). The valid inequalities in this paper are designed to tighten these constraints,
forcing the Z; variables to be 0-1.

Although we derive one class of valid inequalities, we present one subset separately for clarity as follows.

Theorem 2 The following inequality:

Sip Sni—yZ; Vj<N, Vi>j (9)

is valid for PRES.

Proof. First note that with § < N and 4 > j, this refers to the sale of an initial inventory cluster. As
the number of assets in an initial inventory cluster of age ¢ is ny, then:

S;.;j Sm__j Vj <N, VE)_?

If Sy > 0, then Z; = 1 as the sale of an asset requires the purchase of a new asset. Thus, Constraints (9)
are valid for PRES. O

We refer to these inequalities as “Lower Triangle Cuts,” or LTC, because if one were to draw a line
through nodes (0,0), (1,1), ..., (N, N} in Figure 1, the nodes for which one can write Constraints (9) form
a triangle below the line. They are illustrated in the following example.

Example 1:

Consider an example with T = 20, N = 8 and 4 = 31 with an initial inventory of assefs such that rn; =9,
ne = 8, na = 2, ns = 8 and ng = 4. The linear programming relaxation of this problem is such that each
asset cluster is kept umtil its maximum age N = 8. This results in the following:

z; = {0,0,0.13,0.26,0,0.06,0.26,0.29,0,0,0.13,0.26,0,0.06, 0.26, 0.29, 0, 0, 0.13, 0.26}.

The six-year old initial asset cluster is kept such that Xgo = X7; = Ssp = X2 = ... = 4. This results in
Zy = 4/31 = 0.13. The pattern is similar for all clusters as they are all kept to their maximum age. The
optimal solution to the linear programming relaxation is 45,470

We introduce the lower triangle inequalities (9) now. For example, for the six-year old cluster, we include:

Ss0 £ 4%
S71 £ 42
Sgs < 44

Ll

Introducing all LTC (35 in total) results in a linear programming relaxation solution of 48,208 with:

Z;=1{0,0,1,0,0,1,0,0,0,0,0.39,0,0,0.61,0,0,0,0,0.39, 0}.



This objective function represents a 6.22% improvement on the lower bound produced by the linear pro-
gramming relaxation without L'T'C. In the new solution, the initial clusters of age five and six are retained
for two years while the remaining ciusters are retained for five years. This results in two clusters of 12 and
19 assets that are retained for 8 years in each replacement cycie through the end of the horizon. The first
13 periods of the solution with the LT'C is given in Figure 4. O
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Figure 4: Solution network for first 13 periods of the example with LTC.

Our second class of valld inequalities are similar to the traditional flow cover inegualities derived for
fixed charge networks {[12]) in that they are derived by isolating some flow through a node (or set of notes).
However, the cuts are tailored to the parallel replacement problem in that they are a direct result of the
no-splitting rule {NSR). NSR, first proved by Jones et al. {10] for constant demand and homogeneous assets,
states that an optimal solution to PRES exists such that any cluster of same aged assets in the same $ime
period are either kept or replaced in their entirety.

Given NSR and constant demand, it should be clear that every time there is a sale of assets (cluster or
clusters), an ensuing purchase must occur. Thus, examining Figure 4, we can trace the sale of any cluster
throughout the horizon T back to time period 0, when it was merely an initial cluster in inventory. This is
critical, as we know the number of assets in each cluster at $ime zero, and thus we have some information
to bound flow through the network. It is these bounds that can be used to tighten Constraints (6).

Flow cover inequalities ([12]) are derived when the capacity of inflow arcs exceed the capacity (demand) at
anode. These are used to write cover inequalities in order to improve the lower bounds of linear programming
relaxations. In our application, there is no situation in which the capacity of inbound ares exceed the demand
at a node (or equivalently, the capacity of outbound arcs). However, we take a similar tactic by isolating
the flow of clusters {on arcs) and identifying their original source, inventory at time zero. We motivate the
approach by continuing the previous example.



Example 2:

Given the solution posed in the previous example, we note that the 12 assets sold at time period 10
are comprised of the 4 six-year old assets and 8 five-year old assets at time zero which are both replaced
at the end of time period two, as illustrated in Figure 4. These correspond to parameters ng and ng,
respectively. Consider nodes, labeled (4, 7), {0,2),(1,3},...,(8,10) as one “super” node. The flow into this
node is Zi\;x S; 2 while the flow out is 513, 82.4,..., S5 10, such that by conservation of flow:

N N
> Sia=3 Siie
PEED) gl

We can write this out to be clear in our discussion, such that:
S12+ S22+ ...+ 8r2+ 8= Sig+ Sa+ Ss,5 -+ Sy + 85,7+ Ses + Sr9 + Ss,10
Now if we only consider a subset of the inflow to this super node, such as S7,5 and Sg o, then:
S72+ 852 < 51,3+ 824+ S35+ Sa6 -+ S,7 + Se.8 + Svi0+ Ss,10
Further, we know that S7 2 and Sz o are bounded by the initial assets at time zero, such that:
Sy + 85,2 < 15 + N,

Our fractional value of Z:p resulted from the purchase of assets in time period 10, which was precipitated
by asset sales in the same period, or Sg10. We isolate this value of Sg 10, which is clearly bounded by the
demand d, such that:

Sra+S2—813—54— 55— 86— Ss7v— S8 — Sro <810 T dyp
However, we know that S7 s and Sz o aze bounded by ns and ng, respectively, such that:
Sy 4+ Ss2— 81,3 824— 835 — 546 — 85,7~ S8 — 7,9 < (n5 +ng) Z15 = 12210

Including this constraint cuts off the fractional value Zy9 = (.39 in the linear programming relaxation. To
cut off the fractional Z3 value, the following constraint can also be added:

S5+ S75 + Sg5 — S1,6 — So7 — Sag — Sa9 — 55,00 ~ Ss,11 — S0 < 19213

Including these two constraints increases the lower bound to 48,555, a 0.532% improvement over the previous
lower bound. The network solution is given in Figure 5. 0O

As illustrated in the example, each inequality requires three components:

1. A super node which is a set P of nodes (0,7) with all of their associated “diagonal nodes” (1,7 -
D,(2,7+2),...,{N,j+ N) for each § defined by all (0, 7) nodes.

2. A set I of inflow nodes with at least one {4,7), i > § for each (0,7) € P.

3. A set O of outflow nodes (4,7}, j =dand O C P.

10
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Figure 5: Solution network for example with LTC two NSRC.

Given these definitions, we can write the following.
Theorem 3 The following ineguality:

S Sy 3. Sy < ( > niw,-) ( > zj) (10)

el (LiyeP\O (&.7yel {1.7)e0

15 valid for PRES.

Proof. To prove that this inequality is valid for PRES, one must note that, by definition:

D Su= D fueg,

(i.5)el (Lhel

S Sy D S < > niey,

(i.5)el (tL.NEP\O {i.5)el

and thus:

ag all variables are non-negative.
Further note that the sales of assets in O result in a purchase, such that:

> si<d >z

(3,50 {4iye0
As:
S 8- > 85 Y Sy,
(4,5)el {,5)eP\C (i.5)e0
and:
Z ni_; < d,
(4,53l
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we can write our valid inequality:

Z Sa'j- Z Sij < Z L Z Zj

{npel (t.9)eP\C {Li)el (t,Ne0

We define these valid inequalities as NSRC, or “no-splitting rule cuts.” We continue our previous example
to illustrate the diversity of this class of cuts.

Example 3:
As shown in Figure 5, we can see that the three oldest clusters are sold at time period 2. This leads to
the following ineguality:

Ss2 -+ S72+ Ss2 — S1,3 — S24 — Sa5 — Sa6 — Ss,7 — Seg < (ng +ns + ng) (g + Zio) = 14(Zy + Z10)

Notice that the above constraint merely combines $wo constraints that could have been written on Zg and
Z19 individually. This can also be extended over two replacement cycles:

Ss2+4+ Sr2+Ss2— 818 — 524 — S35 — Sa6 — Ss7 — Ses—
81,10 = So,31 =~ 83,12 ~ Sa,13 ~ 85,14 — 88,15 — S7,16~
81,11 = 2,18 =~ 83,13 — S4,14 — 55,15 — Ss,16 < 14 (217 + Z1g}
The following constraint can also be added:
Sre+ Sz — 51,7 — Sog — 53,9 — Sa,00 — 85,11 — Ssi2 — Sv,13 S 17214

Including $hese constraints increases the lower bound to 48,766 (0.435% improvement) and results in the
linear programming relaxation solution partially depicted in Figure 6.

This leads to another valid inequality from this class, as the initial clusters are splitting. This only
complicates the input flow to the super node. The following can be written:

Se,1+ 71+ 572+ Ss2— S1,0— S5 — Ss,4 — 545 — Ss6 — Sev — Sra—

51,3 — 824 — 835 — Sae — Ss,7 — Se8 £ 12(Zy + Zyp)

0
Similar constraints can be written for the other set of clusters and for extending these to two replacement
cycles. We now illustrate our implementation in a branch-and-cut framework.

5 Branch and Cut Implementation

We have implemented a branch-and-cut framework to solve PRES using our two sets of valid inequalities,
LT'C snd NSRC. For problems that are not excessively large in parameters N and T, the LTC can be included
in the root node formulation. However, the NSRC cuts must be dynamically generated.
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Figure 6: Solution network for first 10 periods of the continued example with LTC and NSRC.

Asset Age

We have performed numerous experiments, as there is clearly a tradeoff between the number of cuts
generated at each node (in the branch-and-bound tree) and the entire solution time of the algorithm. The
solutions are highly dynamic as changes in the solution in the first few periods of the horizon have a drastic
effect on solutions in the latter portion of the horizon. This is due to the cyclic nature of the solution (as
evident in the network). This fact, along with the fact that costs are discounted, motivate us to generate valid
inequalities early in the horizon before generating cuts later in the horizon. Thus, in our implementation, we
generate & single valid inequality, re-formulate the linear program, and solve it instead of generating multiple
cuts in a single iteration. If no cuts can be generated after solution of the re-formulated linear program, we
branch on the first non-integer valued Z variable in the horizon and repeat the cut generation procedure.

6 Computational Results

We follow the computational design of Chen [4]. Specifically, we generate data as follows: We use five different
sizes for the horizon T = 20, 40, 80, 80, 100 and four sizes for the number of initial clusters, g = 5, 10, 20, 30.
The physical life of the asset is given as

N =g+ [G»A(T~g)}+

where parameter A € 0.2,0.6. For problems with smaller A, the physical life N is relatively small, compared
with the solution horizon T, while for problems with larger A, the physical life NV is relatively large. Other
parameters used to generate the problem data are given in Table 1. For each of the 20 possible combinations
of g and T, 10 problems, five with A = 0.2 and five with A = 0.6, are randomly generated.

The branch-and-cut procedure was implemented on a laptop computer with a Pentium II and 768 MB of
memory running Windows XP. The slgorithm was implemented in C++ using Visual C+-+ 6.0. All linear

13



Table 1: Data generation for computational experiments.

Parameters Data
Age of assets in cluster o; | U[C, N]!
Size of cluster n; U[2,10]
Fixed cost K 1711660, 5000]
Unit purchase cost p; U[100, 5300]
Unit O&M cost ¢ «eP?, where o = U[10,50], 8 = U[0.01,01]
Unit salvage value sy Dj e~1/2 where v = UJ1, 10]

programs were solved with CPLEX 8.1 through the callable library.

Tables 2 and 3 summarize our computational results. Table 2 provides the average solution time, nodes
evaluated in the branch-and-bound tree, and cuts generated, from the five randomly generated instances for
each set of problem parameters when solving PRES using default CPLEX and when incorporating the LTC.
On average, including the LTC reduces the computation time by 47% while reducing the number of nodes
and cuts generated by over 76%. (The improvement in computation time was calculated as the difference
between the solution times with and without LTC divided by the solution time without ITC.) For problems
in which solving the MIP directly resulted in large run times (such as k = 18 and & = 39), the results are
quite impressive as solution times were reduced by nearly 98%. Note that optimal solutions were found in
all cases. ‘

Table 3 provides the average results when solving PRES with both the LT'C and NSRC. These results
are compared with solving PRES directly and with just the LTC. These results lustrate the effectiveness
of the LTC, as the solution times improved an average of only 4.57% over solving PRES with the LTC.
However, combining LTC and NSRC results in solution time improvements by an average of nearly 50%
when compared to solving PRES directly.

7 PRES under Non-Decreasing Demand

We have separated the general case of non-decreasing demand from constans demand because it can no
longer be modeled as a fixed charge minimum cost fiow problem. We introduce the following variable to
allow for assets to be stored (As noted in Hartman [6] and Chand et al. [3], early purchases may be made in
order to take advantage of economies of scale. See Hartman for more discussion.):

Yi; = i-period old assets in storage from the end of period j to 7+ 1;
All costs and parameters remain as before with the exception that demand is periodic, or:
d; = number of assets demanded from the end of period j to j + 1.

The inventory carrying cost for stored assets is defined as ¢/. Further, it is assumed that >, n; < do. The
revised formulation follows:

14



Table 2: Comparisous with solving MIP with default CPLEX and with LTC.

Problem MIP MIP with LTC Reduction with LTC
kX g T Nodes Cuts Time | Nodes Cuts Time | Nodes Cuts Time
1 062 & 20 9.60 1860  0.24 8.20 520 022 | 146% T72.0% 5.9%
2 02 5 40 280.00 30.00 0.74 93.00 10.60  0.54 | 66.8% 64.7% 27.5%
3 02 b 60 267.60 30.00  1.42 111.20 1220 0.98 | 584% 59.3% 30.7%
4 02 b 80 1,385.20  34.80 5.54 732,40  11.20 3.49 | 47.1% 67.8% 37.1%
5 02 5 100 353.60 2520  4.37 74.40 18.00 2.90 | 79.0% 28.6% 33.6%
6 02 10 20 55.40 2340  0.38 10.80 580 0.28 | 80.5% 75.2% 26.0%
7T 02 10 40 373.20 3780 1.02 85.80 860 060 | TT.0% T72% 41.1%
g8 0.2 10 60 515.60 39.80 2.06 282,00 1220 154 | 45.3% 69.3% 25.5%
g 02 10 80 1,805.60 40860  8.60 891.20 14.40 543 | 53.0% 64.5% 36.8%
10 0.2 10 100 2,625.80 b3.60 18.40 805.40 1680 10.90 | 65.9% 68.7% 40.7%
11 02 20 20 64.60 16.60  1.10 3.80 3.80  0.28 | 94.1% TTI% T4.1%
12 02 20 40 4,495.80 4420 T35 66.60 320 0.98 | 98.5% 92.8% 86.5%
13 0.2 20 60 | 11,572.00 51.80 32.17 273.80 020 233 | 97.6% 82.2% 92.8%
14 0.2 20 80 1,087.20 B&O0D 763 532.00 9.20 538 | 51.1% 84.1% 28.5%
15 0.2 20 100 | 9,343.80 56.60 51.34 | 2,082.80 12.80 23.04 | 777% T7.T% 55.1%
16 02 30 20 64.40 16.20  0.57 1.40 1.80 0.34 | 97.8% 88.9% 40.9%
17 0.2 30 40 | 20,367.40 4488 47.83 26.60 2.80 0.84 | 99.9% 93.8% 98.2%
18 0.2 30 60 | 49,503.40 49.80 15743 | 215.00 6.00 3.52 | 99.6% 88.0% 97.8%
19 02 30 &0 216.60 4580  3.88 13.40 2.80 203 | 93.8% 93.9% 47.8%
20 0.2 30 100 | 14,577.20 6260 8075 | 1,151.20 13.00 1829 | 92.1% 79.2% 79.6%
21 06 5 20 18.80 14.40  0.37 5.60 3.80  0.32 | 70.2% 73.6% 12.0%
22 08 5 40 165.80 17.60 1.02 41.60 540 0.83 | 749% 69.3% 18.6%
23 06 5 60 467.00 1940  2.86 135.60 6.20 1.60 | 71.0% 68.0% 44.1%
24 06 B 80 2,113.40  21.00 13.94 821.00 8.00 7.30 | 61.2% 61.8% 47.6%
25 06 5 100 | 2,690.80 2540 31.06 §99.00 6.20 1394 | 74.0% 75.6% 55.1%
26 06 10 20 77.00 1940  0.58 6.20 460 030 | 91.9% T76.3% 47.2%
27T 06 10 40 206.60 2220 0.94 28.60 4.80  0.67 | 86.2% 784% 28.8%
28 06 10 60 J08.53 2480  8.48 184.80 5.40 1.85 | 40.1% 78.2% T7R.2%
29 06 10 &0 1,268.80 2460 11.58 562.40 8.60 8.06 | 55.7% 65.0% 30.4%
30 06 10 100 | 1,192.80 33.00 20.28 | 196.80 13.00 11.78 | 83.5% 60.6% 41.9%
31 06 20 20 63.80 17.00  0.70 5.00 3.80  0.58 | 92.2% 77.6% 18.0%
32 06 20 40 947.00 26.00 2.84 85.20 4.00 111 | 91.0% 84.6% 60.9%
33 06 20 60 1,076.80 31.40 b.76 198.20 500 284 | 81.6% 84.1% 5B0.7%
34 06 20 80 650.40 3540  6.28 74.40 3.80 295 | 88.6% 89.3% 53.0%
35 0.6 20 106 791.40 3740 21.50 281.80 9.40 1567 | 644% T4.9% 27.1%
3 06 30 20 74.20 16.06  0.53 0.80 2.80 043 | 98.9% 825% 19.5%
37 06 30 40 389.20 25.20 1.79 7.80 1.06  0.72 | 98.0% 96.0% 089.6%
38 0.6 30 60 2,332.00 40.20 9.68 170.20 500 3.83 | 92.7% 87.6% 60.4%
39 06 30 80 3,880.40 40.40 302.19 15 477.20 720 890 | 877% 822% 97.1%
40 0.6 30 100 459.80 49.20  13.58 73.40 620 11.98 | 84.0% 87.4% 11.8%

Avg: | 346594 33.01 2244 290.17 734 449 | 76.9% T6.5% 46.7%




Table 3: Comparisons with solving MIP with all cuts versus default CPLEX with and without LTC.

Probiem MIP with LTC and NSRC  Reduction from MIP with L'TC Reduction from MIP

E X g T Nodes Cuts Time Nodes Cuts Time Nodes  Cuts Time
1 02 b5 20 2.60 5.60 0.25 88.3% T 7% -13.5% 72.9% 69.9% -6.8%
2 062 B 40 22,60  38.00 0.51 75.7%  -258.5% 5.2% 01.9% -26.7% 31.3%
3 062 5 60 20,00 37.80 0.92 §2.0%  -209.8% 6.9% 92.5%  -26.0%  35.5%
4 0.2 b 80 124.60 10440 2.15 83.0% -832.1% 38.2% 91.0% -200.0% 61.1%
5 0.2 5 106 0.00 7.20 1.36 100% 60.0% 53.2% 100% 71.4%  68.9%
6 02 10 20 1.20 8.20 0.30 88.9%  -41.4% -4.9% 97.8%  65.0% 22.4%
T 02 10 40 12.60  31.80 0.81 85.3%  -269.8% -34.8% 96.6%  15.9%  20.6%
8 02 10 60 27.20 49.80 1.07 90.4%  -308.2% 30.2% 94.7%  -25.1%  48.0%
9 02 10 30 146.20 248.40 4.43 83.6% -1625.0% 18.5% 92.3% -511.8% 48.5%
10 0.2 10 100 118.41 222.80 6.91 26.8% -1226.2% 36.6% 95.5% -315.7% 62.4%
11 0.2 20 20 1.80 6.60 0.32 52.6% -T3.7% -11.3% 97.2%  60.2% 71.2%
12 02 20 40 7.40 38.40 (.98 88.9% ~1100% 0.0% 99.8% 13.1%  86.5%
13 0.2 20 60 25.00 76.00 1.81 | 90.9% -726.1% 22.4% 99.8% -46.7% 94.4%
14 0.2 20 80 67.20 137.00 3.75 87.4% -1389.1% 30.4% 93.8% -136.2% 50.2%
15 0.2 20 100 143.20 407.80 14.88 93.1% -3136.5% 35.4% 98.5% -620.8% T1.6%
16 0.2 30 20 1.60 1.60 0.52 -14.3% 11.1% -54.5% 97.5%  90.1% 8.7%
17 0.2 30 40 4.60 17.60 1.08 82.7%  -b28.6% -28.8% 100% 60.8% 97.7%
18 0.2 30 60 47.80  102.00 3.30 77.8% -1600.0% 6.3% 99.9% -104.8% 97.9%
19 02 30 80 13.40 19.40 2.33 0.0% ~592.9% ~14.6% 93.8% B7.6%  40.1%
20 0.2 30 100 202.60 244.40 16.93 22.5% -1780.0% 7.5% 98.6% -2004% 81.1%
21 06 & 20 2.20 8.60 0.34 80.7%  -126.8% -5.6% 88.3%  40.5% 7.1%
22 086 b 40 7.80 13.20 0.76 81.3%  -144.4% 8.2% 95.3%  25.0%  25.3%
23 086 5 60 28.80 3440 1.42 78.8%  -454.8% 11.1% 93.8% -77.3% 50.3%
24 06 5 80 229.80 129.00 5.01 72.0% -1512.5% 31.4% 89.1% -514.3% 64.0%
25 06 5 100 209.80 170.60 14.29 57.1% -2651.6% -2.5% 88.9% -B7T1.7% 54.0%
26 06 10 20 1.00 4.80 (.32 83.9% ~4.8% -3.9% 98.7%  T5.3%  45.2%
27r 06 10 40 8.20 17.80 0.69 71.3%  -270.8% -3.3% 96.0%  19.8%  26.5%
28 0.6 10 60 33.20 3440 1.88 82.0%  -537.0% -1.8% 89.2% -38.7% TT.8%
29 0.6 10 80 100.60  106.40 4.44 82.1% -1137.2% 44.9% 92.1% -332.5% 61.6%
30 0.6 10 100 42.20  64.60 10.25 78.6%  -396.9% 13.0% 96.5% -95.8% 49.5%
31 0.6 20 20 1.80 4.80 0.65 68.0%  -26.3% -13.2% 97.5% 71.8% 71%
32 06 20 40 23.00 5840 1.60 73.0%  -1360.0% -43.6% 97.6% -124.6% 43.8%
33 06 20 60 69.40  72.00 2.67 65.0% -1340.0% 6.1% 93.6% -1290.3% 83.7%
34 06 20 80 17.80  31.40 2.85 761%  -726.3% 3.5% 97.3%  11.8% 54.7%
35 046 20 100 53.00  97.60 11.38 81.2%  -938.3% 27.4% 93.83% -161.0% 47.1%
36 06 30 20 0.40 1.60 0.57 50.0% 42.9% -33.7% 29.5%  90.0%  -7.6%
37 0.6 30 40 2.00 7.80 0.85 74.4%  -880.0% -17.8% 99.5% 60.0% 52.4%
38 06 30 60 46.60  52.60 3.8q6 72.6%  -952.0% 0.9% 98.0% -30.8% 60.8%
33 06 30 80 115.00 14960 7.03 75.9%  -1977.8% 21.0% 97.0% -270.3% 97.7%
40 0.6 30 100 15.80 34.00 10.48 78.5%  -448.4% 12.5% 96.6% 30.9% 22.8%

Averages | 52.19 72486 3.65 73.7%  -781.9% 4.6% 95.0%  -92.8%  49.6%




T-1 T—1N-1 T N
i > (p;Xoj + kiZy) + (cig X +clg¥is) = 3D gy (11)
AR =15 G0 40 Fowl) gl
subject to:
N-1
S Xy = dy Yie{01,...,T=1} (12)
p—
Xio+Yio+ 80 = ny Vie{l,2,...,N—-1} (13)
N
Zsz'j—XOj-Yéj < 0 VYje{0,1,....7 -1} (14)

tmm

Xii-1)-1) F Yiemyg-1) = Xig = Yoy — Sy

i

0 Vie{l,2,...,N=1}, je{L,2,....,T—1} (15
O0Vi=N, je{l,2,...,Thie {1,2,...,N}, j=T(16)

il

Xi—1y(-2) + Y(im1yg—1) — Sig

Xoj+Yy < miZ; Vie{0,1,...,T7—1} (17)
Z; € {071} (19)

This formulation differs from PRES through the inclusion of a demand constraint (12), as this is no
longer a minimum cost fliow formulation. This is because an increase in demand may lead to the purchase of
more assets than salvaged in a given period, as noted in constraint (13). The storage variables Yj; are added
as a decision whenever a usage decision, X;, Is made. Note that stored assets do not contribute to demand.

The inclusion of the storage variables adds N x T variables to the formulation when compared to the
constant demand case. Additionally, there are T' constraints for demand.

The remaining constraints and conditions are as before (with stored assets), although the maximum
number of assets purchased is no longer d. The following theorem tightens the value of m; such that it is
equal to the greatest demand in any period from the current period to the end of the horizon. Assuming the
solution is bounded, there is no advantage to purchasing more assets than can possibly be used in a period
over the remaining horizon.

Theorem 4 The inequality
Xo; €myZ; Vie{0,1,...,T~1}

is valid for PRES with:

mjx

k:j,jrﬁi?‘.},(.,:r_zdk Vie {0,1,...,7—1}, (20)

if the problem is bounded.

Proof. As the problem is bounded, no asset can be purchased for profit. (Note that if this were possible,
then the optimal solution would be to buy an infinite number of assets. See Hartman {6] for cost conditions
to assure a bounded solution.) This is a proof by contradiction. Assume an optimal solution exists such that
Xo; assets are purchased in some period j and

Xoj > dy Vk’E{j,j-{-l,...,T—-i}.
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Now, from this solution, construct a new solution such that:

. . _
Xajmkzj,jz-i{lf.}.c.,’r—ldk Veke {ji+1,...,7 -1}

Note that this solution is still feasible as there is no period in which there are fewer than the necessary d;
assets. However, the cost of the new solution is lowered by the purchase price of an asset times the reduction
in assets purchased. Thus, X;; cannot be optimal. Furthermore, the maximum number of assets that would
ever be purchased in a given period is defined by m; in (20) and Constraint (17} is valid under this definition
of my. 0

8 Valid Inequalities

The previously defined inequalities LTC and NSRC, shown valid for PRES, are also valid for the case of
non-decreasing demand. This stems directly from the fact that the no-splitting rule is also valid under non-
decreasing demand {see Hartman [6]) and that the valid inequality (10) is defined as a less-than-or-equal-to
constraint. As the flow into a supernode is defined by the initial clusters, the flow out of the supernode can
only be greater than or equal to the inflow under non-decreasing demand. Thus, constraing (10) is valid.
A similar argument holds for LTC. The proofs that LTC and NSRC are valid follow directly and are thus
omitted.

9 Computational Results

We repeat the computational experiments for the non-decreasing demand case to illustrate their use. To
generate the test problems, we follow the previous method except that demand in each period is generated
as follows:

8, probability of increasing demand over the previous period j;

¢; ¢ increase in demand in period j over period j ~ 1.

The value of ¢; is given as follows:

¢; = Ul pdo-+1], if an increase in demand occurs in period 7,

0, otherwise,

where p is a factor that decides the relative size of the increased demand. And the demands over the whole
horizon are calculated ag in the following formula:

dj =djw1 w}“(ﬁj, i=.42,...,T7~1

We generate the testing problems as follows: We use two different sizes for probability of increasing demand
over the previous period, # == (0.2,0.6) and factor p = {0.01,0.1), which indicate the distribution of increased
demands over the whole horizon. We test on two problem sizes, (g, T) = (10,40}, (20,80) and fix the factor
A = 0.2. The other parameters were defined as previously.
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For sach data combination, we randomly generate five problems. The results are shown in Tables 4 and 5.
The figures in the table represent the average of the results of the five generated data sets for each problem
instance. The solution statistics {branch-and-bound nodes, cuts generated and solution time) are the same
a5 in the constant demand case.

Table 4 shows the results of solving PRES under non-decreasing demand directly with and without use
of the LTC. Inclusion of the LTC decreases the solution time an average of 7.8%. However, it requires a
drastic increase in the number of nodes and cuts generated. While the overall statistics are not as impressive
as the constant demand case (which is expected as the initial cluster values provide tighter bounds in the
constant demand case), we are encouraged by the drastic decrease in solution time for the harder instances.
For example, the four problem instances with g = 30 and T = 100 require, on average, 760.2, 331.9, 64.7,
and 202.5 seconds, for solution of PRES directly. These respective times are decreased, on average, to 17.3,
16.0, 15.9, and 16.2 seconds with inclusion of the LTC.

Table 5 illustrates that the NSRC are much more effective (with respect to LTC) in the case of non-
decreasing demand when compared to the constant demand case. Here, the solution time is reduced an
average of 35.4% over solving PRES directly and 18.8% over solving PRES with LTC. In the four large
instances noted earlier, solution with both NSRC and LTC results in average solution time reductions of
97.9%, 94.7%, 78.8%, and 93.0% when compared to solving PRES directly. The results, for both constant
and non-decreasing demand, illustrate that the LTC and NSRC merit inclusion when solving the integer
programming formulation of PRES,

10 Conclusions and Directions for Future Research

We have defined valid inequalities for an integer programming formulation for the parallel replacement
problem with fixed and variable costs. The paraliel replacement problem is concerned with the replacement
schedule (periodic keep and replace decisions) for each individual asset in & group of assets that operate
in parallel and are economically interdependent. Specifically, we examined the case where a fixed charge
is incurred in each period when an asset is purchased assuming both constant and non-decressing demand.
The valid inequalities are motivated from the “no-splitting rule” from earlier research which states than an
optimal solution exists such that assets of the same age in the same time period are either kept or replaced as
a group. This motivated the development of the valid inequalities which utilize this fact when tightening the
constraints used to enforce the fixed charge associated with asset purchases. The work was further motivated
by illustrating the problem was NP-Hard which had not been shown previously in the literature.

Computational results show that the valid inequalities drastically improve the solution time, especially
for large-scale instances. For the case of constant demand, the lower triangle cuts, or LTC, were shown to
be highly effective while the no-splitting rule cuts, or NSRC, were shown to be more critical for the case of
non-decreasing demand,

This paper has focused on the homogeneous asset case in that all assets are similar over time and there
is only one type of asset available for purchase in each time period. It should be clear that the problem
becomes more complicated in the heterogeneous asset case where multiple types of assets are available in
each period for replacement over time. This is clearly a more realistic instance as manufacturers and service
providers generally have a number of suppliers from which to choose their equipment. Current research is
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Table 4: Comparisons with solving MIP with default CPLEX and with LTC for non-decreasing demand.

Problem MIP MIP with LTC Reduction with LTC
k e 8 g T Nodes Cuts  Time | Nodes Cuts Time | Nodes Cuts Time
1 001 062 15 20 7.40 3.40 0.49 | 408.80 3220 1.00 | -b424% -847.1% -103.4%
2 001 02 15 60 241.20 49.60 5.01 8.20 101.80 249 96.6%  -105.2%  50.2%
3 001 02 15 100 507.60  123.40 27.02 3.60  169.40 1260 | 98.3% -37.3% 53.4%
4 001 02 30 20 - 0.80 0.57 | 12480 21.20 1.01 - -2550%  -76.1%
5 001 02 30 60 517.60 28.40 7.99 7.60 84.60  3.00 98.5%  -197.9% 62.5%
6 001 02 30 100 |46,110.6 113.60 760.16 | 440 17760 17.35 100% -56.3% 97.7%
7 001 06 15 20 2.00 2.40 049 | 300.00 35.60 1.03 | -14900% -1383% -110.0%
8 001 08 15 60 99.20 53.80 4.31 11.40 8360 2.69 88.5% -55.4% 37.6%
g 001 06 15 100 846.00 132.00 38.70 1.80  156.40 1437 | 99.8% -18.6% 62.9%
10 001 06 30 20 - 3.80 0.62 20.20 23860 0.72 - -521.1%  -16.1%
11 001 06 30 60 231.60 34.60 5.78 4.20 72.20 2.84 98.2%  -108.7%  50.8%
12 0.01 0.6 30 100 | 155520 110.20 331.91 | 400 210.20 16.04 100% ~90.7% 95.2%
13 01 92 15 20 3.20 2.40 050 | 117.00 25.00 0.92 | -3556% -941.7% -84.2%
14 01 62 15 60 181.60 38.20 4.28 | 442.00 77.60 6.41 | -143.4% -1031% -49.9%
15 01 062 15 100 457.60 116.80 31.84 6.60 188.80 16.73 | 98.6% -61.6% 47.5%
%6 01 02 30 20 19.80 23.20 (.86 - - (.58 100% 100% 32.6%
17 01 02 30 60 515.00 22.60 822 | 344.20 8280 6.91 33.2%  -266.4%  16.0%
18 0.1 0.2 30 100 | 24780 . T6.20  64.67 6.80 140.20 1594 | 99.7% ~84.0% 75.3%
19 01 06 15 20 9.40 1.80 0.55 | 405.40 24.20 103 | -4212%  -1244%  -86.4%
20 01 06 15 60 18.00 32.60 2.18 41.00 6240 277 | -127.8% -91.4% -26.9%
21 01 06 15 100 9560  111.60 1656 | 6.40 11260 12321 93.3% -0.9% 25.6%
2 01 06 30 20 0.40 2.20 (.59 8.00 19.60 072 | -1900%  -790.9%  -21.9%
23 01 96 30 60 16.00 14.00 2.93 1520 5340 4.04 5.0% -281.4% -37.8%
24 0.1 0.6 30 100 | 13,690.4 99.20 20246 | T7.00 156.80 16.16 | 99.9% -58.1% 92.0%
Avg: | 3,400.0 4987 63.28 | 9598 8799 6.65 | -1316% -408.1% 7.8%
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modifying the valid inequalities to this case. This is also expected to produce good results as the no-gplitting
rule is aiso valid in this situation.
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Table 5: Comparisons with solving MIP with default CPLEX and with NSRC and LTC for non-decreasing

demand.
Problem MIP with LTC and NSRC Reduction from MIP with LTC Reduction from MIP
k p 8 g T Nodes Cuts Time Nodes Cuts Time Nodes Cuts Time
1 001 02 15 20 5.20 16.80 0.76 98.7% 47.8% 24.7% 20.7%  -394.1% -53.1%
2 001 02 15 60 0.80  121.00 2.30 90.2%  -18.9% 7.7% 99.7% -144.0% 54.0%
3 001 02 15 100 3.00  195.00 12.52 65.1% -151% 0.6% 904% -58.0%  53.7%
4 001 02 30 20 0.40 0.80 0.58 99.7% 96.2% 41.6% - 0.0% -2.8%
5 001 02 30 60 9.60 92.00 4.189 -26.3%  -8.7% -39.7% 98.1% -223.9% 47.6%
6 001 02 30 100 36.60 193.80 15.82 -731.8% -9.1% 8.8% 99.9% -70.6%  97.9%
7 001 06 15 20 1.40 6.00 0.50 99.5% 83.1% 51.2% 30.0% -150.0% -2.5%
g8 001 06 15 60 - 119.60 1.8% 100% -43.1% 29.6% 100% -122.3% 56.0%
9 90.01 06 15 100 - 207.80 12.06 100% -32.9% 16.1% 100%  -57.4%  68.8%
10 0.01 06 30 20 1.40 7.60 0.62 93.1% 67.8% 14.4% - -100% 0.6%
11 0.01 066 30 60 2.60 84.40 2.43 38.1%  ~16.9% 14.6% 98.9% -143.9% 58.0%
12 601 66 30 100 6.80  228.60 17.39 -T6.0% -8.8% -8.4% 100% -107.4% 94.8%
13 0.1 62 15 20 G.80 7.60 0.48 99.3% 69.6% 47.9% T5.0% -218.7%  4.0%
14 061 02 15 60 5.60 101.80 371 98.7% -31.2% 42.2% 96.9% -1665% 13.3%
15 01 02 15 100 6.20  229.40 16.64 8.1% -21.5% 0.5% 98.6%  -06.4%  47.7%
16 01 02 30 20 - - 0.58 - - 0.7% 100%  100%  33.1%
17 01 062 30 60 8.40 80.40 5.27 97.6% 2.9% 23.7% 98.4% -255.8% 35.9%
18 01 062 30 100 3.60 170.20 13.71 47.1%  -21.4% 14.0% 99.9% -123.4% 78.8%
19 0.1 068 15 20 1.80 10.80 0.50 99.6% 55.4% 51.2% 30.9% -300.0%  9.0%
20 01 06 15 60 1.00 50.40 1.55 97.6% 19.2% 43.9% 94.4% -54.6%  28.9%
21 0.1 0.6 15 100 1.00 149,66 11.30 84.4%  -32.0% 8.2% 99.0% -34.1% 31.8%
22 0.1 06 30 20 - 3.60 0.66 100% 81.6% 7.8% 100%  -63.6% -12.4%
23 0.1 0.8 30 60 1.80 31.40 2.56 88.2% 41.2% 36.6% 88.8% -124.3% 12.6%
24 0.1 0.6 30 100 2.40 173.20 14.12 65.7%  -10.5% 12.6% 100%  -74.6%  93.0%
Avg: | 4.18 95.08 5.92 36.5% 12.8% 18.8% 90.3% -132.6% 35.4%
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