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Two-stage stochastic linear programs can be solved approximately by drawing a subset of
all possible random scenarios and solving the problem based on this subset, an approach
known as sample path optimization. Sample path optimization creates two kinds of ob-
jective function bias. First, the expected optimal objective fanction value for the sampled
problem is lower (for minimization problems) than the optimal objective function value for
the true problem. Second, if the stage-one decision from the solution to a sampled problem
is implemented, the expected objective function value achieved is greater than the optimal
objective value for the full problem. We investigate how two alternative sampling techniques,
antithetic variates and Latin Hypercube sampling, affect these two biases relative to the al-
ternative of drawing samples independently. We focus primarily on the first of these two
types of bias, although we also characterize the bias in expected actual cost. For a sim-
ple example, we analytically express the reductions in bias obtained by these two sampling
methods. We provide a general condition under which using antithetic variates reduces the
bias of the expected optimal objective function value for the sampled problem. For seven
test problems from the literature, we computationally investigate the bias impact of these

sampling methods.

Key words: stochastic programming; sample path optimization; antithetic variates; Latin
Hypercube sampling

History:

1. Introduction

Two-stage stochastic linear programming problems arise in a variety of production and in-

ventory planning settings. At the first stage, values are chosen for a set of design variables;



for example, the design variables may represent a set of line capacities. The objective func-
tion of the first-stage problem requires us to evaluate the expected value of the solution to a
second-stage linear program (LP), some of whose parameters (e.g., demand) are stochastic.
Furthermore, the design variables from the first stage appear in the constraints of the second-
stage LP. Early formulations of this problem were given by Dantzig (1955) and Beale (1955).
The motivation for this paper is the efficient solution of such two-stage design problems. In
the remainder of this introduction we discuss some alternative solution techniques and set
the stage for the results of the subsequent sections. Throughout the paper we adopt a mod-
ified version of the notation for the two-stage stochastic programming problem presented by

Kleywegt and Shapiro (2001):
MP:  zyp %o mmin B, [Q(z,w)] + ¢(z), s.t. Az =b, z =0,

where g(z) is a deterministic function of x, and @Q(z,w) represents the optimal objective

function value of the second-stage problem:
P Qlr,w) ¥ ming(w)Ty, st Tw)s + W(w)y = hw), ¥ 2 0.
K

Here ¢(w) € R, T(w) € RZ™, W(w) € R®", and h(w) € R® may be random (i.e., functions
of the realization w). When g(z) = ¢’z and W(w) is deterministic, we have a two-stage
stochastic linear program with fixed recourse.

For most problems of interest, the objective function of MP,
E., [Q(z,w)] + g(z), (1.1)

is a nonlinear function of the decision vector z, and standard gradient-based nonlinear pro-
gramming techniques may be applied to MP. Given the stochastic nature of the objective
function however, it may be impossible to evaluate I, [@(z,w)] or its subgradient exactly.
For such problems, one might hope to find an unbiased estimator for this subgradient.

Sample path optimization is & common approach for solving MP that avoids this difficulty.
The idea is to draw N realizations (sample paths) of problem MP and to optimize over this
representative sample. More specifically, let M Py(wy,...,wy) denote a realization of the
N-sample path problem. That is,

N
MPy : Z;I\/IPN(M,..‘,WN) def mo}nN”E ZQi(m,wi) +g(z), s.t. Az =b, x>0,

dzm]

2



where @;(x,w;) represents the optimal objective function value of the problem:
Qi(z,w) ¥ ming(w)"y, st T(w)z + Wiy = h(w), ¥ 20

The problem M Py can also be rewritten as the following problem:

N
MPy : m?ﬁlh}m N1 Zq(wi)Tyi + glz), subject to:
[CE NN s=1

Ax = b, z 2 O, T(wi):z: —E—W(Wi)yi = h(wi), Ui 2 O, g = 1,2, ... N.

Problem MPy or MP; can be used as an approximation to the original problem MP, and
both are likely to be easier to solve than MP. (If g(-) is linear, M P! is a linear program.)
Under fairly general conditions, the solution to MPy approaches that of MP with prob-
ability 1 as the number of realizations N increases (Dupagova and Wets, 1988). However,
the solution to M Py is biased in the sense that the expectation of the optimal objective
function value of M Py is less than that of M P. Mak, Morton, and Wood (1999) show that:

]E(WM-“}WN) {ZR&PN{‘*’E;-“#’N}} -<— EE(WI""’MN'QJ) [ZS/IPN.q_l{w;,...,wN_*_l)j] ‘<‘ zi/IP VN (12)
A related issue is that the optimal solution zj(wy, ..., wn) of MPy may be suboptimal with

respect to the objective function E, [Q(z,w)] + g(z) of MP. We refer to:

]Ew [Q(xs’MPN{wlh..,wN)’w)] + g (maﬁ/[PN(wl,...,wN)>

as the actual cost of the sample path problem and zi/_[?N - as the perceived cost.

In Section 2 we present an analytic example of both of t;g;e difficulties based on the
newsvendor problem, and in Sections 2.1 and 2.2 we describe how the situation may be
improved using antithetic variates (AV) and Latin Hypercube (LH) sampling. These are
sampling techniques usually prescribed for reducing the variance of an unbiased estimator.
Suppose X(w) is a random variable {e.g., a component of the data {q, T, W, h}) having
invertible cdf F. Under independent sampling (IS) we generate N independent numbers

{03, ... Uy} uniformly distributed on [0,1], and
» def al
b E N7 [P (13)
dz=l

is an unbiased estimate of E [4(X (w))] for an arbitrary function ¢. Under AV, rather than
drawing N independent values {Uy,... U v}, we draw N/2 antithetic pairs (U, 1= Ui =
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1,2,... N/2} and combine these N values to compute Yav via (1.3). If ¥ is monotone,
Varfibay) < Var[h;y] (Law and Kelton, 2000). Under LH, the interval [0,1] is divided into
N segments, [(¢ — 1)/N,i/N}, i =1..., N, and a sample is generated uniformly from each
segment. These samples are shuffled to obtain Uy,...,Un.

Higle (1998) investigates the use of AV and other techniques o reduce the variance of
N
N7t Z Qi(z,w;) + g(=),
fe=1

which is an unbiased estimate of of E,, [Q(x,w)] + g(z) for an arbitrarily chosen value of .
Tn Section 2.1 we estimate E, [Q(z,w)] + g(x) at the unknown optimal value zyp using
the solution to the sample path problem MPy. The solution to this problem, Zi/iPN’ is by
(1.2) a biased estimate of E, [Q(:C”MP,UJ)} + g(w"MP) (= zi/lP)' However we show that using
AV or LH to compute zvaPN can reduce this bias (as well as mean squared error) for our
analytic example. In a related paper, Linderoth et al. (2002} examine the impact of LH on
the bias of Zl*\/iPN and on an upper bound for zp with a set of empirical examples. This
paper extends that work by providing analytical evidence of bias reduction and performing
more extensive computational work, including results showing bias reduction effects with
antithetic variates.

In Section 3 we demonstrate results similar to those of Section 2 using a series of com-

putational examples.

2. Sample Path Optimization

In this section we discuss the difficulties associated with sample path optimization described
in the introduction. We begin with an analytic example based on the newsvendor problem,
which can be expressed as a two-stage stochastic program as follows. In the first stage we
choose an order quantity «. After demand D has been realized, we decide how many of the
available papers y to sell. Assume demand is uniformly distributed on the interval [0, 1], and

there is a shortage cost @ € (0,1) and an overage cost 1 — . The second stage problem is

Pi QD) Ymin{(l-o)z-y)+aP-y)|yssys D}.



The solution to P is min{z, D). Let TC(xz) be the expected total cost associated with order
quantity z:
TC(z) ¥ E[Q(z, D))

=3 [miﬂ{(l —ofz—y)+aD-y)iy<ny < D}] (2.1)

¥

so MP is min, TC{x). Furthermore:

i

TC(z) (1 —a)E(z — D)* + oE(D — 2)*

= (1~oz)/0m(a:—z)dz+a/:(zwm)dz

72 _ )2
= {1~ oz)—2— + ozg———é—)—m.

The cost-minimizing solution is therefore ¥ = «, and the optimal expected total cost is:

TC* ¥ TC(a) = (1—-04)%i+a(1_2a)2 - &(1;‘”). (2.2)

The N-sample path version of this problem is:

N
® de !
“MP w(Ds..Dn) £ min N7 E (1~ )z~ D)+ a(Ds —2)"]. (2.3)

The optimal solution & to (2.3) is the [aN] thorder statistic of the demands {Dy,..., Dn}.
Therefore 4 has a Beta distribution with parameters [eN] and (N — [aN] + 1), so

laNT(JaN] +1)
(N+1)(N+2)

[aV]

N+1 (24)

E[#] = and E[2%] =

We next examine the expected performance of Z with respect to the original objective

function T'C(-). The expected actual total cost using the sample path optimization solution

is:

B [TC() = / TC(Afele)dz = 5 B[] + 5 (1 - 2B[] + E [#7)
- 2[]WQEM+— (2.5)

The expected perceived cost of the sample path optimization solution (i.e., E[ZI*\/IPN Du DN)])



is:

N
ED;,---DN [N—l Z(l - OZ)(@ - Di)-i— A Q!(D?, - .’fi’)—*—}

il

m/; [(1—05) (W) %/OU(u-z)dz%—a(Nwl,IraNW 1_1muf:(z—u)dz] fa(u)du

- (150‘) (MNII[" 1) B[]+ 5 (%ﬁﬂ) (1-E[2]). (26)

We derive the second line by conditioning on the value of &, the [aNTHorder statistic,
in which case [an] — 1 of the demand values are uniformly distributed below £, and the
remaining N — [aN| are distributed above.
1f oV is integer, the expected actual cost of the sample path solution {SPS) computed
by substituting (2.4) into (2.5} is:
o [ _ ozN2"i~4aN—N}
2 (N+1{N-+2) |’

and the expected perceived cost of the sample path solution computed by substituting (2.4)

into {2.6) is:
a(l — o) N
2 N+1)"
Therefore using (2.2):

Expected Actual Cost SPS 1 _alN 4+ 4alN - N and (2.7)
Optimal Cost T \l-a (N+1)(N+2) /' '

Expected Perceived Cost SPS N
Optimal Cost TN+

Expressions (2.7) and (2.8) approach 1 (from above and below respectively) as N increases.

(2.8)

21 The Use of Antithetic Variates to Reduce Bias

Some of the bias in expressions (2.7) and (2.8) can be reduced with the use of antithetic
variates (AV), a technique usually prescribed for reducing the variance of an unbiased es-
timator. For our newsvendor problem with uniform [0,1] demand, we draw N/2 antithetic
pairs {(D;, 1—Dy),i=1,2,... N/2}, rather than N independent values {D1, ... Dy}. These
correlated values are used in the sample path problem (2.3).

In the subsequent analysis we suppose o > 0.5, although similar computations can be

performed for lower values. Tn this case Zav, the solution to the sample path problem
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with AV, is the [aN — N/2]™ order statistic of N/2 random variables uniformly distributed
on [0.5,1]. Hence £4v = 1/2 + X/2, where X has a Beta distribution with parameters
[aN — N/2] and N/2 — [aN — N/2] + 1. If oN and (aN — N/2) are integers, then
E[#] < E[#av] < @, so the expectation of the AV solution is closer to the optimal solution
of the original problem. Furthermore Var [£4v] < Varlg].

To derive the expected perceived cost under AV, we condition on the value of Z4v. The
three terms in the integrand correspond to the antithetic partner of Z4v, those demand
values lying below #4v, and those demand values lying above Zav (but whose antithetic

partners lie below):

/0 INTHL = @) (u~ (1 —u))

+ N = o) ([aN] = N/2 - 1) (u _11/2) /{}Z((u )+ (u—142))dz

: / (alz =) + (1 — ) — L+ 2))dz | fopy (W)

1—uf,
(—Q.N(l + N+ [(IN-I)]E{.TEAv] - [OAN] +alN
2N '

The expected actual cost under AV is computed from (2.5) using the distribution of £ 4v.

+ N"YN — [aNT])

Figure 1 plots the expected actual and perceived costs as percentages of the optimal cost with
both independent sample paths and antithetic pairs of sample paths, using a cost ratio of
a = 0.8. (To facilitate comparison across sampling methods, this figure and Figure 3 below
include lines for Latin Hypercube sampling which will be discussed in the next section.) Note
that the use of antithetic pairs reduces the gaps between the expected cost of the optimal
solution and both the actual and perceived costs of the sample path solution.

Tn this example, with cost ratio « = 0.8, the use of AV also reduces the variance of the
optimal objective function estimator for the stochastic LP (i.e., the variance of the perceived
cost zR/IPN)’ although we show below that this is not always the case. In a related paper,
Higle (1998) investigates variance reduction in the estimation of E,, [Q(x,w)] for a fixed value
of z. Here we sre estimating I, [Q(z,w)] at the optimal value of z, in other words we are
using zp, 0 estimate K, [Q(:v"MP,w)].

As with the bias, the change in variance for the newsvendor problem can be computed
exactly; a derivation is included in the Appendix. Interestingly, while the use of AV decreases
the bias for all values of « in the range (0.5, 1), it increases the variance for some values of

o and N. The combination of the two effects is reflected in the Mean Squared Error (MSE).
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Figure 1: Expected performance of sample path solution under IS, AV, and LH for the
newsvendor problem, as a function of the number of sample paths



Figure 2 shows the change in MSE obtained by using antithetic pairs. Note that for o = 0.6

and o = 0.7, use of antithetic pairs increases MSE (the “reduction” is negative).
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Figure 2: Change in MSE obtained by using antithetic variates instead of independent
samples for the newsvendor problem, as a function of the number of sample paths

If aN is integer, the expected actual cost of the sample path solution under AV simplifies

v ol —a)N? + (8a— 1)(1 —o)N + 2

2N + 2){N +4) ’
and the expected perceived cost under AV is:
1—aaN+1

2 N4+2
Therefore using (2.2), under AV we have:

Expected Actual Cost N? N (8a—1){(I—a)N-+2 (2.9)
Optimal Cost (N +2)(N+4) a1~ a)(N+2)(NV + 4)’ ‘
Expected Perceived Cost  alN +1 (2.10)
Optimal Cost CalN+2) '
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Expressions (2.9) and (2.10) approach 1 (from above and below respectively) as N increases.

In addition to the expected performance of the sample path solution demonstrated in
Figure 1, we may be interested in the distribution of its actual performance. Figure 3 plots
the probability that the actual performance of the sample path solution will be within 2% of
the optimal solution, for various values of , and with N = 10. Plots for both independent
sampling and antithetic variates are shown, based on the distributional assumptions for Z

and 24y given above and a cost ratio of 0.8.
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Figure 3: Probability that the actual performance of the sample path solution lies within
2% of the optimal solution for newsvendor problem

2.2 The Use of Latin Hypercube Sampling to Reduce Bias

We can also attack the bias in expressions (2.7) and (2.8) using Latin Hypercube sampling
(LH), another technique usually prescribed for variance reduction (McKay et al, 1979). In

this one-dimensional problem, we divide the interval {0, 1] into N equal segments; the ith
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demand value D; is drawn uniformly from the it segment. The solution to the sample path
problem under Latin Hypercube sampling, £14, is the demand value drawn from the {aN1™®
segment, which is uniformly distributed on [([aNT] — 1)/N,[eN]/N]. Under AV we have
E[#] < E[#4v] < o when oV is integer. Similarly we now have E|&py] < «; however the
relationships between I [#;] and the values E[#4v] and E[2] depend on the choice of o and
N.

The derivation of the expected perceived cost under LH is straightforward:

N
IED},---DN [N_1 Z(l e Ol)(:f?LH e Di)+ -+ OA(D%- — C%LI{)+

t==}

[aN}~1 N
= N"'Ep,,.0n [ > (1= a)(Dram — Di) + > a(Di~ Dpam)
i=1 i=={alNT+1
[aN]-1 N
=N ST N - el -0 + S NTafi - [aN])
=l o= [N +1
_ [aN]([aN] —2aN - 1)+ aN(N +1)
B 2N? '

When ol is integer this expression reduces to a(1 — @)/2; comparing this to (2.2) we see

the perceived cost estimate is unbiased. The expected actual cost under LH is computed

from (2.5):
Ep,,.on [#25] /2 — oEp,,..Dy o8] + a/2
_ N [aN]__lwz_ [aN] 1 Lo
BB EVRE N T oN C\NTN TaonN) T2

- g}l\”}“i E + (2[aNT ~ 1)1 - %(zmm — 1)+ %

When oV is integer this expression reduces to ol — a)/2 +1 /(6N?). Figure 1 plots
the expected actual cost under Latin Hypercube sampling as a percentage of the optimal
cost. We see that LI reduces the gap between the expected actual cost of the sample path
solution and the optimal cost more effectively than AV. Furthermore, as shown in Figure 3,
the quality of the LH solution dominates both AV and IS solutions.

As with AV, the use of LH also can also reduce the variance of the optimal objective
function estimator (i.e., the variance of the perceived cost) for the stochastic LP. {Refer to
the Appendix for the derivation.) This is true for any value of & when N is greater than

3. Again, the combination of the two efects is reflected in the MSE, although as we noted
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above, the bias for this particular newsvendor case is equal to zero, so the MSE and the
variance are equal. Figure 4 shows the dramatic reduction obtained in MSE by using Latin

Hypercube sampling.

100.0%
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Figure 4: Change in MSE obtained by using Latin Hypercube sampling for the newsvendor
problem, as a function of the number of sample paths

2.3 A Sufficient Condition for Reduced Bias under AV

Tn section 2.1 we showed analytically that the use of AV reduces the bias of the perceived
performance of the sample path solution to the newsvendor problem. In Section 3 we also
provide several computational examples. We now provide a sufficient condition for a reduc-
tion in bias when AV is applied to one of the variables in a stochastic LP. For the stochastic
LP described in Section 1, generate an N = 2 realization of the sample path problem using
uniform random numbers w; and ug, and let f{u1, uz) be the optimal objective function value

for this realization. Since this is a minimization problem, E [f (w1, ug)] is bounded above by
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the optimal objective function value to the original problem. This is true when u; and ug are
generated independently or under AV; the results of Mak et al. (1999) hold in either case.
We would like a condition under which the expected perceived performance of the sample

path solution under AV is greater than the performance under independent sampling (1S):

Eav [flus,u2)] > Erg{f(ur,ug)]

/ flug, T —uq)du / / flug, ug)dusdu,. (2.11)

To derive this condition, we first define the transformation (v1,v2) = g, ua):

V2 /2
vy = —5‘(“1 o+ ug), v2 = —?2——(’051 — Ug).

This transformation is shown in Figure 5. Let h(v) be the density of v;. Since (g, ug) were

1 X;

0 1

Figure 5: Change of variables from (u1,uz) to (v1,v2)

independent uniforms, h(v) is triangular with support [0,+/2]. For fixed vy, vy is uniformly
distributed on [—vy -+ 2(vy — V2/2)F, v — 2(v1 — v/2/2)*]. Furthermore:

EIS u1 uz / /~U1-—2(U1 TN f(QM1(v1’(U2)) d’l}gh(?)})dﬁl and
’ v+2(m — v/ Q(UE - 2(?)1 '"'" \/5/2)+)

I f(g (V32 0)
B [f(on,0)]) | A

Therefore a sufficient condition for (2.11) is:

‘U1——2(’Ul-—-\/§/2)'!’ —1
/ TR dus is strictly concave in v;. (C)
oy +2(v —V2/2) 2(U1 - 2(/01 - \/5/2)+)

13



Condition (C) is not necessary for (2.11); it is possible to construct examples in which
the condition fails but AV still reduces bias. However (C) holds for the newsvendor problem.

In this case f(uy,us) is derived from (2.3):
mxin(l/Q) [(1 - o)z —w)" +oalw—2)" + (1 -ao)z- up)* 4 alus — 2)7)).
The optimal solution is the [2c] b0 order statistic, which is min(us, ug) if o < 0.5. Therefore:

Fluy, wa) =1/2[(1 — o) (min(us, ug) — ur) " + (i — min(us, ug))"
+ (1 — @) (min(uy, ug) — ug) " + a(us — min{us, ug)) "]

={a/2)((u1 — u2)™ + (ug —w)™).

Translating to (v1,vs) coordinates we have f (g7 vy, v2)) = (af 2)v/2|vg], sor

[ R gy [T
()
—oram—vEy 2(v1 — 201 — V2/2)) w2yt 4 (11 = 2(01v2/2))
/2 (vl — 92 (v — ﬁ/z)*‘)

4

This is strictly concave in v;. A similar result holds if « > 0.5.
Unfortunately the same approach does not yield a condition under which the expected

perceived performance of the saraple path solution with LH is greater than the performance

with IS.

3. Computational Examples

Tn Sections 2.1 and 2.2 we analytically characterized the effects of sampling methods on
the bias and variance of the solution to & simple sample path problem. Here, we present
empirical results of applying these sampling methods to a set of more complicated test
problems. The section contains a brief description of our test problems, a description of our
approach for obtaining statistical estimates for perceived and actual cost, a description of

our computational platform, and the results of the experiments.

3.1 Test Problems

The test problems are two-stage stochastic linear programs with recourse that were ob-

tained from the literature. Table 1 contains detalls about each of the problems. The

14



Name Application Source Scenarios
20term Vehicle Positioning Mal et al. (1999) 1.1x 10"
fleet Fleet Planning Powell and Topaloglu (2005) 8.5 x 10113
ghd Aircraft Allocation Dantzig (1963) 6.5 x 10°
LandS Electrical Investment Planning Louveaux and Smeers (1988) 10°
snip Stochastic Network Interdiction | Janjarassuk and Linderoth (2005) | 3.7 x 108
ssn | Telecommunication Network Design Sen et al. (1994) 10™
storm Flight Scheduling Mulvey and Ruszezyriski (1995) | 6 x 10%

Table 1: Description of test instances

problem fleet is a fleet management problem available from the page http://www.orle.
cornell.edu/~huseyin/research/research.html#Fleet 20_3. The problem snip is a
(linear relaxation) of a stochastic network interdiction problem available at the page http:
//coral.ie.lehigh.edu/sp-instances/. The remaining problems are described in Lin-
deroth et al. (2002) and available from the companion web site http: //www. cs.wisc.edu/

~swright/stochastic/sampling/.

3.2 Methodology

Perceived Cost Estimates As indicated by the inequalities in (1.2), and previously

shown by Norkin et al. (1998) and Mak et al. (1999), the expected perceived cost:

Eowr,owon) }:zf\/IPN(wl,...,wN)}

is a biased estimate of zi,p, the value of the optimal solution. First, we generate M in-
dependent (and identically distributed) samples of size N: (Wi wh)y s (W wl).

We define £;, 7 =1,2,... M, to be the solution value of the jth sample path problem:

def ¥
b = 2MP ol )

and compute the value:

def 1 Mz
LN’M :"E —'—ZEJ
ijl

The statistic Ly pr provides an unbiased estimate of E,,..wn) [ZMPN (w1,...,ww)] . Since the M

samples are 1.1.d, we can construct an approximate (1) confidence interval for B, . wn) [KE/IPN 1ion)

za/23£(M)

EN,M - '\/WM_ a'CN,M%"

Wz“/ii%M )} , (3.1)
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where

M
se(M) % H}:ﬁ ST = L) (3.2)
=z ]

For small values of M, one can use ta/g -1 critical values instead of za/s, which will produce

slightly bigger confidence intervals.

Actual Cost Estimates Since a solution to the sample path problem MPy may be sub-
optimal with respect to the true objective function (1.1), we estimate the expected actual
cost of 2y (w1, ..., wn), an optimal solution to MPy. We estimate the expected actual cost
of a sample path problem of size N in the following manner. First, we generate M samples

of size N: (W, ..., wh), - (W}, ... ,wil) and solve the sample-path problem M Py for each

sample yielding:
N
. - -1 j -
z; € arg szfbl,il?_ON ;Qz(m,wz) +g(z), §=1,2,... M.

Note that this is the same calculation necessary to compute a lower bound on the optimal
objective value, and the computational effort required is to solve M sample path problems,

each containing N scenarios. Next, for each candidate solution x7, we take a new, Latin

Hypercube sample of size N', (Wi, ... ,wf\,,) and compute the quantity:
N '
aj = Qlzj,wl) + g(}). (3.3)
i=1

(Latin Hypercube sampling appears to be superior to the other two methods for variance
reduction; thus, we use this technique to estimate expected actual cost no matter what
sampling method was used to obtain x;.) Since x is fixed, this computation required the

solution of N’ independent linear programs. The quantity:

def 1 M
e
Any = M;%

is an unbiased estimate of the expected actual cost:

E(wl’ T ’wN) []Ew [Q(Q;AMPN(WL...,WN}’M)] + g(xMPN(w-;,,.‘,wN))] '
Since the random quantities o’ are i.1.d., we can construct an approximate (1 —a) confidence

interval for:
]E{wla v awN) {]Ew {Q(m*MPN(w;,...,wN)’w)} + g(mg\/.[PN(wh..‘,wN))}
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a5,

Zasa8 Zo /a8
[AN,M - —\—%?é,AN,M + \;QM,—A] , (3.4)
where:
def 1 M ; 2
salM) = \\ 5777 (08 — Anu)” (3.5)
J=1

3.3 Computational Platform

The computational experiments presented here were performed on a non-dedicated, dis-
tributed computing platform known as a computational grid (Foster and Kesselman, 1999).
The computational platform was created with the aid of the Condor software toolkit (Livny
et al., 1997), which can be configured to allow for the idle cycles of machines to be donated

to a “Condor pool”. Table 2 shows the characteristics of the computing environment used

to solve our test instances.

# of CPUs Operating System Processor Type Clock Speed

110 Linux Opteron 1.8GHz
48 Linux Xeon 1.4GHgz
96 Linux Pentium I11 1.1GHz

Table 2: CPU Resources used for experiments

I order to create the sampled problems, we use the SUTIL software toolkit (Czyzyk
et al., 2005). Specifically for this work, SUTIL was equipped with the ability to sample two-
stage stochastic programs using an antithetic variates sampling technique. An important
feature of SUTIL, necessary when running in a distributed and heterogeneous computing
environment, is its ability to obtain the same value for a random vector w’ on different
processors and at different points of the solution algorithm {say different iterations of the
LShaped method). This is a nontrivial implementation issue and is accomplished in SUTIL
by employing an architecture- and operating-system-independent random number stream,
storing and passing appropriate random seed information to the participating processors, and
performing some recalculation of random vectors in the case that the vectors in a sample are
correlated.

In order to solve the sampled problems, we use the code atr of Linderoth and Wright

(2003). The algorithm is a variation of the well-known LShaped algorithm (Van Slyke and
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Wets, 1969) that has been enhanced with mechanisms for reducing the synchronization
requirements of the algorithm (useful for the distributed computing environment), and also
with a ||- |lec-niorm trust region to help stabilization of the master problem. The initial iterate

of the algorithm was taken to be the solution of a sampled instance of intermediate size.

3.4 Computational Results

Our computational experiments were designed to examine the impact of different sampling
methods on the bias and variance of the perceived cost of 2-stage stochastic linear programs
solved via sample path optimization. Recall that bias and variance reduction combine to
improve the mean squared error of the solution to the sample path problem. In the results
presented here, the optimal solution to the full problem, z\;p» is unknown, so we cannot
calculate the bias. Since we know that for minimization problems, the expected value of
the sample path solution, E [ZI*\/iPN]’ is lese than the true optimal solution, zMP, we can
test whether or not one sampling method reduces bias as compared to another by testing
whether or not the expected value of the sample path solution, E [ZR@PN], is significantly
larger and therefore closer to the true optimal solution, ZT\A{P'

Using samples drawn in an independent fashion, samples drawn using antithetic vari-
ates, and samples drawn using Latin Hypercube sampling, the following experiment was
performed. For each of the instances described in Table 1, confidence intervals for both
expected perceived cost and expected actual cost (as defined in 3.1 and 3.4) were computed
for M = 50 for N € {50,100,500, 1000}, and M = 10 for N € {5000, 10000, 50000}. The
value N used in the calculation of a; (3.3) was N' = 20,000 in each case. The complete
experiment required the solution of 1,134,682,000 linear programs, so the ability to run in
the powerful distributed setting of the computational grid was of paramount importance to
this work.

Tables 5—11 in the Appendix summarize the confidence intervals for expected perceived
cost and expected actual cost, and Tables 3 and 4 show the results of t-tests for bias reduction
and F-tests for variance reduction for the expected perceived cost. (Since each trial was
independently generated, and variances are significantly different in some cases, we use one-
sided, unpaired student ¢-tests, assuming unequal variance.) We use the symbol > to indicate
when a test assumes one method is preferred to another. Note that for this set of problems,

statistically significant bias reduction with AV occurs occasionally. Bias reduction is observed
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with LH slightly more frequently, particularly for problem ssn (more on this in & moment).
Interestingly, any time AV results in bias reduction, LH does as well. Both AV and LH
sampling methods are effective in reducing variance, with LH reducing variance as compared
to IS in almost all cases.

I+ is worth noting that stasistically significant bias reduction may not be detected either
because it does not exist or because there is too much variability in the estimate of ]E{zi/iPN].
Figures 6 and 7 show estimates of expected perceived and expected actual cost with confi-
dence intervals for problem fleet. All confidence intervals shown in the figures and tables use
zoors & 1.96 when M = 50 (N € {50, 100, 500, 1000}) and to.005,8r-1 & 2.685 when M =10
(N € {5000, 10000, 50000}). A horizontal reference line is shown on the perceived and actual
cost figures for each problem. In Figure 7, one can easily see that both AV and LH reduce
variance for smaller values of N. While bias may be reduced also, it is difficult to tell given
the large variance. Figures 8 and 9 tell a different story for problem ssn. It is quite clear
from Figure 9 that LH reduces bias for small values of N, while variance reductions are less
obvious. For ssn with N=50, the reduction in bias is approximately 4.5 (see values in Ta-
ble 10), while the reduction in variance is not statistically significant. For fleet with N=>50,
the variance reduction is approximately 62,690, while the bias reduction is not significant.
Similar perceived and actual cost figures for the other five problems are in the Appendix.

As was shown analytically in Section 2.1, AV can increase variance for the newsvendor
problem with certain values of c. In our computational experiments, we found no cases
where either AV or LH significantly increased variance. We did, however, encounter a few
cases where bias was increased by AV or LH. Table 4 summarizes the four (out of 441) cases
where there was a statistically significant increase in bias. T'wo of the cases are depicted in
Figure 7 with N = 10000 and Figure 9 with N = 1000. Five of the six cases have a small
qumber of observations, M = 10. For these small M cases, we perform Wilcoxon-Mann-
Whitney rank sum tests, noting that two of the five cases are not significant at the 5% level

according to the rank-sum test.
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Bias Reduction (t-test) Variance Reduction (F-test)
Instance N AVs1S LH=IS LH»>AV|AV>IS LH>1IS LH» AV
50 {.0002 0.0001 0.0000 0.0000
160 0.000G (.0000 0.0386
500 0.0000 0.0000
20 1000 0.0000 0.0606
5000 (.0123
10000 0.0009 0.0003
50000 0.0069 0.0011 0.0011
50 0.0078 0.0000 0.0002
100 0.0000 ¢.0000
500 0.0003 0.0000 0.0263
fleet 1006 (0135 0.0000 0.0601
5006 G.0177 0.0028
10000 0.0000 0.0052
50000 0.0025 0.0077
50 0.0112 0.0037 0.9000 0.0000
100 0.0078 0.0213 0.0000 (.0000
500 0.0000 £.0000
ghd 1000 0.0000 0.0000
5000 0.0000 0.6000
10000 0.0000 0.0000
50600 0.0000 .0000
50 0.0000 0.0000
100 0.0000 {.0000 0.00006
500 0.0000 0.0000 (.0000
LandS 1000 0.6600 0.0000 0.0095
5000 0.0012 0.0007 (.0000 (.0000
10000 0.000G $.0000 (.0300
50000 0.0000 0.0000 0.0207
50 (0.0052 0.0432 0.000G 0.0000
160 0.0203 0.0003 0.0000 0.0000
500 0.0006 .0000 {.00C0
snip 100G 0.0000 {.0000
5000 0.0032 0.0008
1006G 0.0001 0.0013
50000 0.0000 0.0024
50 0.0006 0.0000
100 €.0000 0.0000 (10149 (.0001
500 0.0010 0.0000 (.0010 0.0004
ss11 1000 0.0010 0.0000 0.0302 0.0213
5000 0.0052 0.G665
10000
50000 0.6079 0.0204
50 (.0900 .0000 .0060
100 0.00900 0.0000 0.0000
500 0.0000 0.0000 0.0000
storm 1000 0.6000 0.0000 0.0000
5000 0.0060 (.0000
10000 0.0000 0.0000 0.0076
50000 (0.0000 0.0000 0.0321

Table 3: p-values (from ¢ and F test) for cases where LH or AV sampling methods result in
a statistically significant (at 5% or better) reduction of bias or variance
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AV < IS LH < IS
Instance N t-test Rank-sum test | #-test Rank-sum test
20 50000 | 0.0179 0.1212
fleet 10000 | 0.0059 0.01726 0.0121 0.0258
gbd 10000 | 0.0369 0.06402 0.0029 0.02575
ss1 1000 | 0.0176

Table 4: p-values (from ¢ and Wilcoxon-Mann-Whitney Rank Sum tests) for “opposite” cases
where AV and LH sampling methods result in a statistically significant increase in bias

4. Conclusion

Sample path optimization is a convenient method for solving stochastic programs; however a
gap is introduced between the optimal solution and both the expected actual and expected
perceived cost of the sample path solution. We have investigated two variations of sample
path optimization where samples are drawn in antithetic pairs or using Latin Hypercube
sampling. For a version of the simple newsvendor problem, we show that both the anti-
thetic samples approach and the Latin Hypercube approach, techniques comnmonly used for
variance reduction, reduce the solution bias as compared to sample path optimization with
independent samples. For the newsvendor problem, the Latin Hypercube approach reduces
variance of the sample path solution, while antithetic variates may increase or decrease the
variance, depending on the cost parameters. In addition, we provide a sufficient condition
for when sampling by antithetic variates would reduce the bias.

Using a computational grid, we perform extensive computational experiments investigat-
ing these same sampling methods on large-scale, two-stage, stochastic programs from the
literature. We find that both sampling techniques are effective at reducing variance., For
many of our problems, bias reduction is difficult to detect, however, for one of our instances,

ssn, Latin Hypercube sampling dramatically reduces the bias.
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Appendix

In this appendix we compute VaT[zMPN Dy Dw)l’ the variance with respect to demands
Di,..., Dy, of the perceived cost of the newsvendor sample path solution. The analysis 1s

based on the following expression for variance involving random variables X and Y:
Var(X) = Vary[B{(X|Y)] + By[Var(X]Y)].

(See, for example, (Law and Kelton, 2000).) We have:

N
" 1 N ot
Vav"{zMPN(Dh_“:DN)] =Var E (1—a)(@— D))" +alDi — m)*}

+Es

xH L (4)

Recalling that # is the [aN]% order statistic of the demand values Dy, ..., Dy, we analyze

the two terms on the right side of (4.1) when demands are sampled under IS, AV, and LH.

Independent Sampling (IS)

Under independent sampling, & has a Beta distribution with parameters [eN] and (N —

[aN] + 1), so:

B = o) (4.2)
oy ([aN]([eN]+1)
B = w42 (43)
o ([aN)(N ~[aN]+1)
varlt]) = s (4.4)

We condition on the value of Z. Since & is the [aN|™ order statistic, [aN] — 1 of the
demand values are uniformly distributed below &, and the remaining N —[aN1 are uniformly

distributed above. The first term on the right side of (4.1) becomes:

Vars []E {% i(l — &)(F - D) +o(Ds - &) xH
= Vars {(1 — ) (W) %/:(5: — z)dz + (N m]\E_aNU 1_1_“% /;(z —:&)dm}
- ([C"m - ;; o O‘N)2 Var(#). (4.5)
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The second term on the right side of (4.1) becomes:

N
Es {Va,r [:% Z(i — )& - D)+ oDy~ )+

d==l

1 Z ;

=E; [W {(z — 2)*([aN] - 1)~E +o?(N - [oeN])(l - AV” . (4.6)

N? 12 12
Combining (4.1) through (4.6) gives Var[zf\/ipN Do DN)]'

Antithetic Variates (AV)

Under antithetic variates, 4y = 1/2-+X/2, where X has a Beta distribution with parameters
[aN — N/2] and (N/2)} — [aN - N/2] +1, s0

Elfav] = % (4.7)
and
Varlo ] = ([aN] ~ N/2) (N — [aNT+1) (48)

4(N/2+ 1) (N/2+2)
We again condition on the value of £4v. The first term on the right side of (4.1) becomes

(4.9), where the three terms inside the brackets on the right side of (4.9) correspond to the

lying above 4y (but whose antithetic partners lie below):

antithetic partner of #4v, those demand values lying below 24v, and those demand values
1 &
- + s\t
Vmﬂi/nv {E lij_\f ;(1 o a)(xAV . D‘L) -+ Ol(.D?, - CCAv)
[(1 — o (Eav — (1~ 2av))

+ (1 - o) (MN} MNN/Q - 1) ry. 1_ 7 /mw((:ﬁ/w - 2)+ (Bay — 1+ z))dz

=V ars .y

1/2
N — [aN 1 1
+ ( I—Q{ _} " / [a(z — ﬁAv) + (l — Od)(ﬁ\?,qv — 1 4 Z)] sz} (4.9)
N 1 - LAV Eav
Vara,, [(w—QaN + N+ [aN))Eay — [aN] + aN} (4.10)
2N
The second term on the right side of (4.1) becomes:
N
1 N . .
[P [Var {—ﬁ ;(1 — o) ay — Dy)* + (D - Zav)t mAV”
(1~ @Av)g
S
=§—~§2—*][\’%j—\ﬂ (VCLT[C?JAv] -+ EifﬁAvP - QE{QASAvl + 1) (4.11)
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Combining (4.1) with (4.7), (4.8), (4.10), and (4.11} gives Var[z}*\/IPN(Dl ...DN}]'

Latin Hypercube Sampling (LH)

Under Latin Hypercube sampling, the it" demand value D); is uniformly distributed on

(i — 1)/N,i/N], and we compute Vorlzp ] directly:

-----

VGT{ZMPN(DZ;N.DN}]

N
1 . . .
=Ver | ;U wo){Epg — D)t + el D; - mLH)*}
| (TN ~1 N

= —j\"%VaT Z (1 =~ a}(Diany — D;) + Z o(D; — Dran)

| =l i=laN|+1

i faN] -1
R N|—1+4a—aN)*Var|D (1—a)? ) Varl
= 5V o ([aNl|-14+a—a ar|Diany] + o) ar|D

i==1

MN]([QN] — 20N ~ 1)+ aN(aN -~oz+2)

12N4
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Table 5: Instance: 20 Sampling Experimental Results

Sampling

Method N Expected Perceived Cost | Expected Actual Cost
1S 50 2E3515 8454  + 336.8140 | 254353.3385 £ 11.4169
AV 50 254203.1410 4+ 136.6106 | 254351.0447 <+ 9.3779
LH 50 254215.2160 + 118.9508 | 254330.0586 £ 6.9906
IS 100 554031.3360 + 273.0644 | 254337.9853 £ 8.6909
AV 100 754331.8362 4+ 101.0049 | 254340.0692 <+ 6.7947
LH 160 254231.5488 & 74.8851 254328.8424 = 50718
1S 500 5540781028 4 1452045 | 254321.9324 L 3.8601
AV 500 254341,3324 4+ 42.3029 254320.6661 +  3.3099
LH 500 254316.1232 & 39.2008 954316,1177 £  2.2652
IS 1000 | 254286.1589 4 90.7834 254318.2108 -+ 3.1933
AV 1006 254269.6213 £ 28,9737 254316.9865 -+ 1.9282
LH 1000 | 254201.9907 £ 23.4488 254315.4244 & 2.0295
1S 5000 | 254345.5616 4 01.7814 254314.9654 +  3.8992
AV 5000 | 254326.1383 & 36,9586 254310.5078 £ 9.3001
LH 5000 | 254316.2795 L 52.2501 254317.2209 <+ 5.5867
15 10000 | 9E4287.1841 & 108.3197 | 254314.8506 = 5.7181
AV 10000 | 2543055082 x 309672 954313.807¢ X 60928
LH 10000 | 254313.7684 + 27.3360 254315.3482 X+  5.4347
15 50000 | 254337.0962 £ 34.4324 254312.28%84¢ + 5.7661
AV 50000 | 254304.9466 + 10.0011 754315.8427 +  6.0459
LH 50000 | 254319.3118 £ 10.0143 2543149763 4+ 5.6158
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Table 6: Tnstance: feet Sampling Experimental Results

Sampling

Method N Expected Perceived Cost | Expected Actual Cost
18 50 84856407 £ 75.3407 -8420.2251 £  9.9445
AV 50 -8482.8612 4 BL.1TH0 -8447.9424 & 6.3037
LH 50 -8474.2256 4+ 29.3190 -8442.4515 £ 0.4585
IS 100 -8503.0462 + 55.3921 L8458.7741 = 4.5802
AV 100 -8484.06098 £ 27.1713 -8463.3326 4+ 3.8583
LH 100 -8469.5738 -+ 21.0250 -8470.7080 4+ 2.1371
1S 500 -8501.2678 &+ 22.4279 -8474.6087 4 1.5976
AV 500 -§494.8387 £+ 13.1892 _8476.1345 4+ 0.9500
EH 500 -8486.5738 +  9.5603 -8477.9370 4+ (.6748
s 1000 | -8492.4291 -+ 14.2548 -8477.0147 + 1.1371
AV 1000 | -8481.4679 + 9.9610 -8478.3750 + 0.6165
LH 1000 | -8482.8327 £ 5.6025 _8478.0745 £ 0.5679
I8 5000 | -8471.2606 + 24.4252 BATR.2T66 L+ 1.8874
AV 5000 | -8479.9744 £ 10.3676 -8478.3836 4+ 2.1887
LH 5000 | -8475.0336 + 8.0231 -8478.2846 +  1.2404
18 10000 | -8464.0084 + 14.8897 84785433 £ 14171
AV 10000 | -8482.4463 £+ 8.2533 84796614 £ 1.8777
LH 10000 | -8479.1817 £+ 2.9475 -8479.0759 £+ 0.9389
Is 50000 | -8480.4352 £ 6.7220 -8479.3574 4+ 1.1808
AV 50000 | -8478.9275 & 5.7735 -8478.2568 & 1.473]
LE 50000 | -8478.4742 + 21767 -8478.4915 £ 0.6477

Table 7: Instance: gbd Sampling Experimental Results

Sampling

Method N Expected Perceived Cost Expected Actual Cost
15 50 1662.2025 + 31.0094 1661.3680 £ 2.0441
AV 50 16495162 & 20.3102 1659.0115 £ 1.5372
LH 50 1655.2688 + 0.7773 1655.62890 L+ 0.0011
IS 100 1633.8430 <+ 169782 1658,4205 < 1.3132
AV 100 1649.9295 £+ 12.1617 1656.6244 = 0.3530
LHE 106 1655.6283 £ 0.0001 1655.6283 -+ 0.0001
IR 500 1650.6305 =+ 7.7778 1655.9825 4+ (0.1749
AV 500 16547028 & 7.0706 1655.7606 =+ 0.1016
Ly 500 1655.6283 -+ 0.0001 1655.6283 4 0.0001
IS 1000 | 1652.6645 £ 56258 1655.7667 & 0.1011
AV 1000 | 1654.5455 4 44724 1655.6793 = 0.0629
LH 1000 | 1655.6283 £+ 0.0001 1655.6283 4 0.0001
18 5000 | 1664.4786 £ 6.6078 1655.6204 + 0.0041
AV 5000 | 1658.2503 + 5.8087 1655.6278 £ 0.0000
LH 5000 | 1655.6284 £+ 0.0000 16556285 £ 0.0000
s 10000 ; 1658.0433 + 7.1031 1656.6278 &+ 0.0000
AV 10000 | 1656.9337 £ 3.09622 1655.6278 4 0.0000
LH 10000 | 1655.6285 -+ 0.0000 1655.6285 X 0.0000
IS 50000 | 1655.7737 £ 2.2005 1665.6278 £+ 0.0000
AV 50000 | 16557645 & 1.5347 1655.6278 + 0.0000
L 50000 | 1655.6285 4 0.0000 1655.6285 £ 0.0000
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Table & Instance: LandS Sampling Experimental Results

Sampling

Method N Expected Perceived Cost Expected Actual Cost
s 50 2955090 £ 1.8534 225.7178 4+ 0.0195
AV 50 2252518 *+ 0.4522 235.6885 = 0.0153
LH 50 29254086 4+ 0.1069 29056718 + 0.0096
18 180 2247467 L+ 1.3817 2066777 4+ G.0150
AV 100 925.6273 4 0.2776 225.6706 + 0.0104
LH 100 2256038 =+ 0.0708 225.6446 & 0.0037
IS 500 295.8406 + 0.7661 295.6447 = 0.0040
AV 500 225.5915 + 0.0830 2256354 X 0.0025
LH 500 225.6350 4+ 0.0299 2256315 &+ 0.0017
IS 1000 | 225.7752 £ 0.5853 225.6379 L 0.0023
AV 1000 | 2255082 £+ 0.0353 225.6335 =+ 0.0020
LH 1000 | 225.6277 4 0.0242 225.6311 & 0.0016
IS 5000 | 225.1825 £ 0.2695 2956271 £+ 0.0039
AV 5000 | 225.5088 4 0.0472 2956312 <+ 0.0039
LH 5000 | 225.6333 £ 0.0287 225.6280 £+ 0.0043
IS 10000 | 225.8143 & 0.4435 2256312 £ 0.0053
AV 10000 | 225.6274 + 0.0282 225.6283 & 0.0050
iH 10000 | 225.6400 + 0.0130 295.6326 = 0.0020
1S 500G | 225.6558 4 (.1345 225.6314 £ 0.0054
AV 50000 | 225.6315 £ 0.0159 2256308 £ 0.0054
LH 50000 | 225.6244 £ 0.0069 225.6297 = 0.0050

Table 9: Instance: snip Sampling Experimental Results

Sampling

Method N Expected Perceived Cost Expected Actual Cost
1S 50 R6.7560 + (.8627 88.0335 + 0.3354
AV 50 §7.1225 &4 0.9321 88.8618 &+ 0.2891
LH 50 88.0046 £ 0.3398 88.1592 £ 0.0679
1S 106 86.6793 & 0.7723 88,5825 -+ 0.1328
AV 100 87.7957 £+ 07176 88.2050 + (.0908
LH 100 %8.1680 £ 0.1924 88.2457 <+ 0.0878
s 500 87.0032 4 0.3421 28,1996 £ 0.0594
AV 500 87.9938 £ 0.2068 88,1439 <+ 0.0207
LH 500 88.1638 £ 0.0950 88,1480 =+ 0.0260
IS 1000 | 87.9584 £ 0.2275 88,1207 £ 0.0071
AV 1000 | 88.0234 £ 0.2022 88,123¢ £ 0.0046
LH 1600 | 88,1152 <+ 0.0516 88.1238 <+ 0.0042
is EOGC | 88.1936 4+ 0.2808 2831244 4+ 0.0128
AV 5000 | 88.0438 4+ 0.3386 88.1273 & 0.0156
LH 5000 | 88.1572 + 0.0941 88.1225 + 0.0098
IS 10000 | 8R.0736 + 0.2214 881234 + 0.0121
AV 10600 | 88.1650 + G.1558 88.1215 + 0.0094
LH 10000 | 88.1285 4 0.0461 88,1199 £ 0.0122
15 50000 | 88.1425 + 0.1308 88.1303 £ 0.0144
AV 50000 | 88.1134 + 0.0784 88,1241 £ 0.0081
LH 50000 | 88.1053 £ 0.0253 88.1201 + 0.0062
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Table 10: Instance: ssn Sampling Experimental Results

Sampling

Method N Expected Perceived Cost Expected Actual Cost
13 50 45057 4= 0.5450 14.0593 4 0.3396
AV 50 48005 4 0.5866 14.1261 £+ 0.3873
LH 50 9.0045 £+ 0.4887 10.2504 4+ 0.0791
1S 100 60230 £ 0.4918 12.0752 & 0.1766
AV 100 6.9832 X 0.6046 122632 4+ 0.2061
LH 160 9.8333 £ 0.3454 10.2244 £ 0.0592
IS 500 0.0208 <+ 0.2139 10.3871 £ 0.0483
AV 500 9.02068 4 02221 10.3596 £ 0.0464
LE 500 0.9076 + 0.1822 100181 £ 0.0217
13 1000 | 9.4323 =+ 0.1508 10.1897 <+ 0.0289
AV 1000 | 9.1977 £+ 0.1538 i0.1620 + 0.0274
LH 1000 {97371 + 01102 10.6186 + 0.0115
18 EG00 | 97719 £ 0.2473 09522 £  0.0173
AV 5000 | 9.6999 -+ 0.1787 9.9363 & 0.0242
LH 5000 | 9.9226 + 0.09i0 9.9153 4+ 0.0245
18 10000 | 9.8007 £ 0.1407 00236 4 0.0200
AV 10000 | 9.8716 £ 0.1064 4.0307 4+ 0.025
LH 10000 | 9.9125 + 0.1610 9.8088 & 0.0278
IS 50000 | 9.8224 4+ 0.0654 90174 & 0.0181
AV 50000 | 9.8916 £ 0.1016 0.804% £+ 0.0206
LH 50000 : 9.9036 £ 0.0441 0.8879 + 0.02i9

Table 11: Instance: storm Sampling Experimental Results

Sampling

Method N Expected Perceived Cost Expected Actual Cost
18 50 15498.1040 £+  14.1757 15499.0077 4 01084
AV 50 15497.8955 + 2.5719 15498.8736 £ 0.0467
LH 50 15408.5191 £ 0.3829 15498.8026 -+ 0.0367
IS 100 155005301 =+ 8.2347 154089087 4+ 0.0708
AV 100 15409.8339 + 1.3689 1654988177 £ 0.0404
LH 106 15490.0448 + 0.2643 154987357 &+ 0.0189
15 500 15406.6425 - 3.8410 TF408.7721 £ (.0246
AV 500 15408.647% £ 0.4858 15498.7355 £ (.0065
LH 500 15498.7878 £+ 0.1381 15408.7281 &+ 0.0056
1S 1000 | 15499.7652 + 2.5354 15408.7368 &+ 0.0110
AV 1000 | 15498.7001 + 0.1510 15408,7281 <+ 0.0062
LH 1000 | 15498.7242 £+ 0.0711 15408.7248 £ 0.0057
Is 2000 | 15499.2379 & 2.9851 15498.7285 4 0.0138
AV 5000 | 154987462 £ 0.1444 15498.7343 £ 0.0171
LH 5000 | 15498.7515 £ 0.1100 15498.7322 + 0.0170
IS 10000 | 15409.1428 + 2.1525 15408.7328 4 0.0158
AV 10000 | 15408.7847 & 0.1868 15408,7416 + 00148
LH 10000 | 15498.7181 + 0.0702 15408.7186 + 0.0192
5 ED0O0 | 15408.8456 + 1.5608 154987153 4+ 0.0215
AV 50000 | 154987431 £ 0.0784 15498.7348 -+  0.00690
LH 50000 | 15408.7214 4+ 0.0364 15408.7208 £ 0.0192
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Figure 11: Expected Perceived Cost Estimates for 20
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Figure 12: Expected Actual Cost Estimates for ghd
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Figure 13: Expected Perceived Cost Estimates for ghd

34



2275 T T T T ¥ T T
Independent Sampiing ~—a—t
Anlithetic Variates &
2976 - tatin Hypercube +——t |
2285 - -
2260 + -
Braw nE o s - e -
22535 R
‘a
=]
4]
2250 i .
2245 | e
740+ -1
2235 _
9230 E i 1 1 b 1 1
- N=50 N=100 N=500 N=1000 N=50Q00 N=10000 N=50000

Figure 14: Expected Actual Cost Estimates for LandS
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Figure 15: Expected Perceived Cost Estimates for LandS
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Figure 16: Expected Actual Cost Fstimates for snip
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Figure 17: Expected Perceived Cost Estimates for snip
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Figure 18: Expected Actual Cost Estimates for storm
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Figure 19: Expected Perceived Cost, Estimates for storm
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