A Note on the Robust International Sourcing Algorithm of
Gutiérrez and Kouvelis

Lawrence V. Snyder
Lehigh University

Report No. 05T-004

A Note on the Robust International Sourcing Algorithm of

Gutiérrez and Kouvelis

Lawrence V. Snyder*
Department of Industrial and Systems Engineering, Lehigh University

February 2, 2005

*Please send correspondence to Lawrence V. Snyder, Dept. of Industrial and Systems Engineering, Lehigh Uni-

versity, 200 West Packer Ave., Bethlehem, PA 18015, lvs2@lehigh.edu, 610 T58 6696.

1

Abstract

We discuss an error contained in Gutérrez and Kouvelis’s (1995) branch-and-bound algo-
rithm for a robust international sourcing problem, which reduces to a robust version of the
uncapacitated fixed-charge location problem (UFLP}. The algorithm takes parameters p and N
and attempts to find either the N most robust solutions (i.e., the N solutions with smallest
maximum regret} or all solutions with maximum regret less than or equal to p if there are fewer
than N of them. The crux of the error is that optimization is performed based on one objective
{expected cost) while fathoming is performed based on another (robustness).

Keywords: robust optimization, regret, international sourcing, facility location

Gutiérrez and Kouvelis (1995) present a model for choosing among a set of global suppliers
in an environment in which currency exchange rates (or, equivalently, transportation costs) are
uncertain. Using several reasonable assumptions and transformations, the authors show that the
deterministic international sourcing problem is equivalent in form to the uncapacitated fixed-
charge location problem (UFLP). They model uncertainty using discrete scenarios and seek to
find the most robust solution, where robustness is measured by the minimax regret criterion.
{The regret of a solution in a given scenario is the percentage difference between the cost of the
solution in that scenario and the cost of the optimal solution for that scenario. The minimax
regret solution is the one that has the smallest regret across all scenarics.} The model that
Gutiérrez and Kouvelis finally arrive at, then, is 2 minimax-regret version of the UFLP.

The authors present a novel branch-and-bound algorithm for solving this problem, which
they call the robust international sourcing algorithm (RISA). RISA maintains multiple branch-
and-bound trees {one for each scenario), and the trees are branched and fathomed simultaneousty
so that they all have the same structure at the same time. The algorithm takes parameters p and
N (an integer) and returns the N “most robust” solutions (i.e., the N solutions with smallest
maximum regret), or all solutions with maximum regret less than or equal to p if there are fewer
than N of them. RISA is presented as an exact, i.e., not heuristic, algorithm.

1t is our contention that RISA uses incorrect fathoming rules, ceusing the algorithm to return
solutions that are suboptimal. There are two sources for the error in the algorithm. The first is
an implicit assumption that child nodes never contain “more robust” solutions than their parent
nodes. This essumption is false, as we will show below. Second, when a node is fathomed from
one tree, the corresponding nodes are fathomed from all trees, meaning that in some cases good
branches may be inappropriately thrown out with bad ones.

In Section 1 of this note, we briefly describe RISA and introduce the required notation.
Then, in Section 2, we provide a numerical example showing that RISA returns a suboptimal

solution.

1 The Robust International Sourcing Algorithm (RISA)

Let [be the set of potential suppliers that the firm is considering establishing relationships
with, and let P be the set of factories operated by the firm. Establishing a relationship with a
supplier entails a substantial fixed cost, and once relationships have been established, the set of
available suppliers remains fixed for the duration of the model’s time horizon. For each supplier
i€ I, let P; be the set of factories that supplier 7 is eligible to serve.

Let S be the set of scenarios, each of which determines both fixed and variable costs. In
particular, let F¥ be the fixed cost of establishing a relationship with supplier ¢ € I under
scenario s € § and let ¢f; be the variable cost to procure and transport all product required by
factory j € P from supplier 4 € I to factory j in scenario s € 5. {These costs are derived in
Gutiérrez and Kouvelis (1995) by transforming different cost parameters, but for the purposes
of this note, it is sufficient to assume that these are the given ‘cost;s.)

Define decision variables

{ 1, if a relationship is established with supplier i € [
Yi =

0, otherwise

and
xj; = the fraction of factory j's demand that is served by supplier ¢, for i € I,j € P.

Note that suppliers must be chosen now, before it is known which scenario will occur, but
factories may be assigned to suppliers once the scenario is known.
For a given scenario s € S, the deterministic international sourcing problem (DISP) is then

formulated as follows:

(1) (DISP) rinimize Z Z i + z Fiy

iel jePl: 1274
{2) subject to ngﬂ >1 vie P

iel
(3) % < Viel, jeP
(4 0<ay <1 viel jeP
5) v € {0,1} viel

This is equivalent to the uncapacitated fixed-charge location problem (UFLP; Balinski 1965).
(The summation over j € P; in (1) is nonstandard for the UFLP, but this can easily be replaced
by j € P by setting c; == oo for all s if j € F.)

For a given vector ¥ of y; variables, let Z,(Y') be the cost of the solution under scenario
s. (The essignment variables xj; can be determined easily once the y; variables are known.)

Let Y3 be the optimal vector of y; variables for scenario s; then Z,{Y,*) s the optimal cost for

(DISP) under scenario s. The relative regret of solution Y in scenario s is

Zo(Y) — Z(¥5')
Z.(YS)

The robust international sourcing problem (RISP) is then

. Z&(Y} . ZS(Y;*)
(6) (RISP) min {Té‘sx W}

The robust international sourcing algorithm (RISA) maintains |S| separate branch-and-
bound trees, each representing (DISP) for a given scenario. A node ks in the tree for scenaric
s is said to correspond to node k. in the tree for scenario ¢ if they occupy the same place in
their respective trees. Branching is done in all trees simultaneously, i.e., if node k, is branched
on, then node k; is branched on in scenario ¢'s tree for all t € § \ {s}. Similarly, if node k; is
fathomed, then k; is fathomed for all t € §'\ {s}, as well. The algorithm maintains a list of
nodes under consideration at any given time; branching means adding the child nodes to the
list and fathoming means removing nodes from the list.

We will describe the steps of the algorithm in brief here; the reader is refereed to Gutiérrez
and Kouvelis (1995) for the details. The algorithm involves computing a lower bound z‘; at a
given node k for a given scenario s. Gutiérrez and Kouvelis suggest using the “weak relaxation”
proposed by Efroymson and Ray (1966). The lower bound takes into account the variables
currently forced to 0 or 1. Any all-integer solution to the lower-bound problem is feasible for
(DISP). In addition, as a pre-processing step, (DISP) must be solved to optimality to obtain
Z.(Y2}) for each s; Gutiérrez and Kouvelis suggest using Efroymson and Ray’s algorithm for the

UFLP to solve these problems.

For parameters p and N, RISA attempts to return every solution with maximum regret less

than or equal to p if there are fewer than N of them, or the N solutions with smallest maximum

regret otherwise. (In RISA, p is progressively reduced so that there are only N sclutions with

maximum regret less than or equal to p.)

Step 0.

Step 1.

Step 2.

Step 3.

Step 4.

Initiolization. Select parameters N and p and initialize an empty list of solutions Lg.
(Lg will contain potential “most robust” solutions.) Compute the optimal solutions Y
to (DISP) for each scenario s and the corresponding costs Z5(Y*). Create node 1 in each

{ree.

Branching. Select a scenario §, a node ks in scenario 3's tree, and a variable ¢ to branch on
(using a straightforward branching rule we will omit here). This entails removing ks and
its éorresponding nodes from ali trees, creating two child nodes for the node corresponding
to ks in each tree, and storing the child nodes in a new list called Lew. (Let kg); represent
the “y; = 0” child of node k, and kLI] the “y; = 1" child.) If fofcing y; = 0 means that
there is now some factory all of whose eligible suppliers are forced closed, then forcing
y; = 0 results in an infeasible problem, so remove Ic,[;oj from Lyjew for each s.

Robusiness test for [0} nodes. If the £ nodes were not removed in Step 1, then for each
& compute _Z,":Log, a lower bound on (DISP) for scenario s given the current suppliers forced
open or closed. If (,Z_fiu} — Z (Ys*}) [Zs(Y}) > p for any s, then the regret for scenario s

in any feasible solution will exceed p, so remove kéo} from Lpew for all s.

Robustness test for [1] nodes. For each s, compute Z’:L”. I (_Z_?LH - ZS(Y;‘)) [Z Y5y > p

for any s, then the regret for scenario s in any feasible solution will exceed p, s0 remove
k?] from Lyew for all s. If Liey is now empty, go to Step 1. Otherwise, let Ly, be the
list of nodes in Lyew whose lower-bound solutions happen to be all-integer. {Note that ks

may be in Ly, while k; is not, even if ks and ks correspond to each other.)

Robustness test for integral solutions. For each k € Lng, compute the maximum regret of
the solution for node k across all scenarios. If the maximum regret exceeds p, then remove

k from Ly (Note that dropping & from Ly, does not mean fathoming node k.} Tf Lyge

6

is now empty, go to step 1.

Step 5. Update list Ly of robust solutions. For each k € Ly, add k to Lg. If |Lgr| > N, then we
have too many robust solutions. Drop the [Lgr| — N solutions with the largest regret from
Lz, remove the corresponding nodes (for all scenarios) from all trees, and set p equal to

the largest maximum regret of any solution in Lg. Go to step 1.

The algorithm terminates when there are no unexplored nodes left. The authors state:

Notice that the algorithm only eliminates nodes from the different scenario trees
when a given lower bound does not meet the robustness criterion (step 2}, or when
we tighten the robustness criterion {reduce p) because we have already identified N
robust solutions (step 4).> Hence when the algorithm finishes executing, for a given
prespecified robustness parameter p, it will either have identified the best N robust
solutions, or if it identifies n < N, possibly n = 0 robust solutions, then we can

guarantee that these are the only robust solutions for the given p. (p. 184)

We disagree with the conclusion of this quote. In the next section, we give an example in which

the algorithm will return a solution even though a more robust solution exists.

2 Counterexample to RISA

Consider the network pictur;:d in Figure 1. There are 5 suppliers, 2 factories, and 2 scenarios.
The figure shows supplier eligibility and costs. The numbers next to the links give scenario-
specific transportation costs (scenario 1, then scenario 2). All suppliers have fixed costs of 50
{in both scenarios), and both factories have a demand of 1. There are no minimum procurement
requirements of the type described in section 3.1 of Gutiérrez and Kouvelis (1995).
[Insert Figure 1 Here.]

Let p =1 and N = 1 (that is, we want to find the single solution with smallest maximum

regret, and start with relatively large p.) By inspection one can confirm that the optimal scenario

solutions are ¥7* = (1,0,1,0,0) with objective value Z; (Y7} = 200 and Y5’ = (0,1,0,1,0) with

Z2(Yy¥) = 200. The minimax regret solution is ¥ = (1,0,0,0,1) with Ry = Rz = 0.125 (where

R; is the percentage regret if scenario ¢ occurs). Since each supplier is eligible to serve only a

single factory, the weak relaxation of (DISP) is equivalent to (DISP) itself, so Z* is simply the

optimal objective value of the LP relaxation of (DISP) for scenario s when variables are fixed

as in node k.

We will walk through the RISA algorithm step by step. The branch-and-bound trees are

shown in Figure 2, with (single-scenario) objective value, solution vector, and regret displayed

next to the nodes. One can essily verify that the solutions to the LP relaxations discussed in

the example below are correct.

Step 0.

Step 1.

Step 2.

[Insert Figure 2 Here.]

Solve the root nodes (with no variables fixed). The optimal solution for scenario 1 is
to choose suppliers 1 and 3, with cost 200 and regret Ry = 0 if scenario 1 occurs and
Rs = 0.375 if scenario 2 occurs, since the cost of this solution if scenario 2 occurs is 275.
Similarly, the optimal solution for scenario 2 is to choose suppliers 2 and 4. This solution

has cost 200 and regret By = 0.4 and Ry = (.

Choose a scenario, node, and variable to branch on. We'll choose scenario 1, node 1,
and the variable y;. (These choices are consistent with the branching rules described
on p. 182 of Gutiérrez and Kouvelis {1995).) We remove node & = 1 from both irees
and create nodes ILOJ and 1{31} for s = 1,2, with g3 fixed to 0 and 1 in these nodes,
respectively. Since setting y; = 0 does not make the problem infeasible, at the end of this
10]! 11l

step Lew = {17+ 11, 1{20], 1[21]} and we proceed to step 2. (Recall that the notation 1;0],

for instance, means child node {0] of node 1, scenario 2.)

The optimal solution at node 1[1[}} {child O for scenario 1) is Y = (0,1,1,0,0) with cost 205
and regret R; = 0.025, Ry = 0.35, For scenario 2, the optimal solution at the root node
already had y; = 0, so this solution remains optimal for the child node. Both solutions
pass the lower-bound robustness test since the lower bounds are within p (= 1) of the

optimal solution for the scenario.

Step 3. The optimal solution for scenario 1 is the same as af the root node since this solution
already had y; = 1. For scenario 2, the optimal solution s ¥ = (1,0,0,1,0) with cost
205 and regret By = 0.375, R = 0.025. Both solutions pass the lower-bound robustness
test. All nodes are added to their respective trees, and since all solutions are integral,
Lint = LNew-

Step 4. The maximum regret for all solutions across all scenarios is fess than p, so no nodes are
removed from L.

Step 5. Set Ly = Lyy. Sinee |Lg| =4 and N = 1, 3 solutions must be dropped from the list. The

best solution is at node 1[101 with maximum regret 0.35, so we drop nodes 1[11}, 1i20}, and

1

When we drop 1%0], we must also drop 1[101 since nodes are dropped from all scenario {rees

simultaneously. Therefore, there are no nodes left to explore, and the algorithm terminates,
returning ¥ = (0, 1,1, 0,0) with maximum regret 0.35 as the “optimal” solution.

Two problems arise at this point. The first is that dropping 1[101 because we've dropped 1[20 }
is throwing out the good with the bad. Had we continued to explore this branch, we would have
found the solution ¥ = (0,1,0,0,1), which has maximum regret 0.15 (R; = 0.15, Ry = 0.1).
This solution, while not optimal, is still better than the solution returned.

Second, when we drop nodes l%f] and 1[22}, we fathom the section of the tree that contains
the optimal (minimax regret) solution, so the solution returned is not optimal. The fa;thoming
rule in step 5 implicitly assumes that child nodes never contain more robust solutions than their
parents do. In the standard integer programming branch-and-bound algorithm, for example, it
is true that the LP bound at a node is never strictly better than the LP bound at its parent
node. This reasoning does not apply in RISA, though the algorithm is designed as though it
does. The crux of the error is that optimization at each node is performed based on one ohjective
{expected cost) while fathoming is performed based on another {robustness).

The fathoming rule in Step 5 is therefore incorrect. One could modify the algorithm so that

nodes were not fathomed in step 5, but one would suépect that the algorithm would require

9

much more branching and much larger computation times than those reported by Gutiérrez and

Kouvelis.

10

3 Notes

1This actually occurs in step 5.

11

References
[1] Balinski, M. L. (1965). “Integer Programming: Methods, Uses, Computation,” Management
Science 12, 263~313.

{2] Efroymson, M. A. and T. L. Ray. (1966}. “A Branch and Bound Algorithm for Factory

Location,” Operations Research 14, 361-368.

{3] Gutiérrez, Genaro J. and Panagiotis Kouvelis. (1995). “A Robustness Approach to Interna-

tional Sourcing,” Annals of Operations Research 59, 165-193.

12

4 Figure Legends

Figure 1. Example network,

Figure 2. Branch-and-bound trees for example network.

5 Figures

Figure 1:

50, 125

13

Figure 2:

Scenario 1 Scenario 2
z = 200 z =200
y= {1a0’1>010) Y= (0,1,0,1,0)
RI=0 Ri=04
R2 = 0.375 R2=0

z =205 z =200 z = 200 z =205

y = (0,1,1,0,0) v~ (1,0,1,0,0y y~(0,1,0,1,0) y = (1,0,0,1,0)
R1=0.025 Rl=0 Ri=04 R1+=0.375
R2=0.35 R2=0.375 R2=0 R2 =0.025

minimax regret minimax regre!
solution is this way solution is this way

14

