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Abstract

We consider a continuous-review inventory model for a retailer who faces constant, de-
terministic demand but whose supplier is unreliable. The supplier experiences “wet” and
“dry” (operational and disrupted) periods whose durations are exponentially distributed. The
retailer follows an EOQ-like policy during wet periods but may not place orders during dry pe-
riods; any demands occurring during dry periods are lost if the retailer does not have sufficient
inventory to meet them.

This paper introduces a simple but tight approximation for such a model that maintains
the tractability of the classical EQQ and permits analysis similar to that typically performed
on the EOQ. We provide analytical and empirical bounds on the approximation error in both
the cost function and the optimal order quantity. We prove that our cost function behaves
similarly to the classical EOQ cost function in several important ways and derive an expression
for the increase in cost if a sub-optimal solution is used that is similar to the classical EOQ
sensitivity analysis result. We examine power-of-two policies under our cost function and prove
& worst-case bound of 6% for such a policy. Finally, we show that using the classical EOQ

model when supply uncertainty exists can be quite costly.
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1 Introduction

Despite the careful attention paid to inventory planning in a supply chain, supply dis-
ruptions are inevitable. Inventory managers who ignore the risk of supply disruptions
will encounter excess costs when such disruptions occur, in the form of stockout costs,
expediting costs, and loss of goodwill. On the other hand, disruptions are typically
infrequent and unpredictable, so holding too much extra inventory is costly, as well. An
effective inventory policy should strike a balance between protecting against stockouts
during disruptions and maintaining Jow inventory levels.

Supply disruptions may come from a variety of sources including labor actions, ma-
chine breakdowns, and natural or man-made disasters. For example, a labor strike at
two General Motors parts plants in 1998 halted the auto maker’s North American pro-
duction operations, cansing a 37% drop in sales due to a lack of inventory (White 1998).
Similarly, a fire in 2001 at a plant owned by Ericsson’s primary supplier of gemiconduc-
tors brought Ericsson’s production lines to a standstill, costing the cell phone company
an estimated $400 million in lost revenue (Latour 2001). Moreover, effective inventory
planning can mitigate the negative effects of such disruptions: despite relying on the
same semiconductor supplier, Nokia’s superior planning allowed it to weather the supply
disruption and even to steal a substantial portion of Ericsson’s market share.

In this paper, we examine & model for setting order quantities in a continuous-
review inventory system with deterministic demand and random supply disruptions.
The durations of the supplier’s “wet” and “dry” (operational and disrupted) periods are
exponentially distributed. Orders cannot be placed during dry periods, and demands
occurring during dry periods are lost if the retailer does not have sufficient inventory to
meet them. We refer to this problem as the economic order quantity with disruptions
(EOQD). The introduction of supply disruptions into classical inventory models typically
destroys the tractability of those models and the analytical results that follow from them,

and the EOQD is no exception. However, we introduce a tight approximation for the



EOQD that is tractable and lends itself to familiar analysis often performed for the
classical EOQ.

The EOQD was first examined by Parlar and Berkin (1991), whose model was shown
by Berk and Arreola-Risa (1994) to be incorrect. Berk and Arreola-Risa accurately
formulate the cost of the system, but their cost function cannot be minimized in closed
form, nor is it known to be convex. Moreover, the complexity of the exact cost function
makes it difficult to embed into more complex models or to derive analytical results
about the behavior of the optimal solution.

We present a cost function that closely approximates that of Berk and Arreola-Risa

and show that:
¢ our cost function is convex
e our cost function yields a closed-form expression for the optimal order quantity

e the optimal solution to our model is always greater than that of the classical EOQ

model, as is the optimal cost

e our cost function approaches the classical EOQ cost function in the limit as wet

periods become long relative to dry periods

We also prove analytical bounds on the error introduced by our approximation. In

particular:

e we prove that our approximate cost function is greater than the exact cost function
for “reasonable” values of @, including the optimal value, and derive analytical

hounds on the percentage difference between the two cost functions

e we prove that the optimal order quantity for the approximate cost function is
greater than that for the exact cost function and derive analytical bounds on the
percentage difference between the two order quantities given a particular assump-

tion about the exact function

e we derive an analytical bound on the percentage difference between the cost of
the exact and approximate solutions under the exact cost function-—that is, the
error that results from implementing the approximate solution when the exact cost

function prevails



Having established the validity of our approximation, we show that it lends itself to

analysis often performed on the EOQ model:

e we show that the optimal cost is equal to the optimal order quantity times the

holding cost
e we show that the optimal cost is a concave function of the demand rate

o we derive an expression for the increase in cost if a sub-optimal order guantity is
used that is similar in form and magnitude to the classical EOQ sensitivity analysis

result

e we examine power-of-two policies under our cost function and prove that the cost of
the optimal power-of-two pelicy is no more than 6% worse than that of the overall
optimal policy (and we demonstrate empirically that the actual increase in cost is

often ruch smaller)

The remainder of this paper is structured as follows. In Section 2, we provide a
review of the literature on inventory models with supply disruptions. In Section 3, we
introduce the model and our approximate cost function. In Section 4, we derive the
optimal solution to our cost function. In Section 5, we prove analytical bounds on the
approximation error in the cost function and the optimal solution. In Section 6, we
compare our model analytically to that of the EOQ model. In Section 7, we discuss
sensitivity analysis and power-of-two policies. In Section 8, we provide computational
results comparing the actual approximation errors to the analytical bounds, comparing
the approximate EOQD solution to the EOQ solution, and evaluating optimal power-
of-two policies. Finally, in Section 9, we draw conclusions from our analysis and suggest
future research directions. Proofs of all lemmas, theorems, etc. are provided in the

Appendix.

2 Literature Review

Supply uncertainty takes the form of either yield uncertainty, in which supply is always

available but the quantity delivered is a random variable (see, e.g., Yano and Lee 1995),



or disruptions, in which the supplier experiences failures during which it cannot provide
any product. This paper is concerned with supply disruptions.

The earliest paper to consider supply disruptions is probably that of Meyer, Rothkopf
and Smith (1979}, who consider a production facility facing constant, deterministic
demand. The facility has a capacitated storage buffer, and the production process is
subject to stochastic failures and repairs. The goal of the paper is not to optimize the
system but to compute the percentage of time that demands are met.

Parlar and Berkin {1991) introduce the first of a series of models that incorporate
supply disruptions into classical inventory models. They study the EOQD: an EOQ-like
system in which the supplier experiences intermittent failures. Demands are lost if the
retailer has insufficient inventory to meet them during supplier failures. The retailer
follows a zero-inventory ordering (ZIO)} policy. Their cost function was shown to be
incorrect in two respects by Berk and Arreola-Risa (1994), who propose a corrected cost
function. It is their function that we approximate in this paper.

Parlar and Perry {1995) extend the EOQD in three ways. First, they relax the
710 assumption and allow the reorder point to be a decision variable. Second, they
assume that the retailer incurs a cost each time it ascertains the state of the supplier,
so that the waiting time between order attempts is also a decision variable. Third, they
consider both random and deterministic yields (i.e., the amount actually delivered may
be less than the amount ordered). (The ZIO assumption was also considered by Bielecki
and Kumar (1988), who found that, under certain modeling assumptions, a Z1O policy
may be optimal even in the face of supply disruptions, countering the common view
that if any uncertainty exists, it is optimal to hold some safety stock to buffer against
it.) Moinzadeh and Aggarwal (1997) consider an unreliable production system; their
model is like the economic production quantity (EPQ) problem with disruptions and a
fixed cost to initiate production. They suggest a continuous-review (s,S) policy (the
inventory level may fall strictly below the reorder point during a failure).

Parlar and Perry (1996) consider the EOQD with one, two, or multiple suppliers.
They also relax the Z1O assumption, though they do not include a cost for attempting
to place an order as do Parlar and Perry (1995). They allow the order quantity to



depend on the states of the suppliers and show that if the number of suppliers is large,
the problem reduces to the classical EOQ. The suppliers may be heterogeneous in the
sense that their failure and repair processes may be described by different parameters,
but they are homogeneous with respect to price, so as long as at least one supplier is
active, the retailer does not care which one it orders from. (In contrast, Tomlin (2005),
discussed below, allows suppliers to compete on both price and reliability.} Gilirlur and
Parlar (1997) generalize the two-supplier model by allowing more general failure and
repair processes. They present asymptotic results for large order quantities.

Given the complexities introduced by supply disruptions, only a few papers have con-
gidered stochastic demand, as well. Gupta (1996) formulates a (@, B)-type model with
Poisson demand and exponential wet and dry periods. Parlar (1997) studies a similar
but more general model than Gupta—for example, allowing for stochastic lead times—
but formulates an approximate cost function. Chao (1987) and Chao, Chapel, Clark,
Morris, Sandling and Grimes (1989} consider stochastic deman& for electric utilities with
market disruptions and solve the problem using stochastic dynamic programming.

Periodic-review inventory models with supply disruptions have received considerably
less attention in the literature than their continuous-review counterparts. Arreola-Risa
and DeCroix (1998) consider (s, ) models with supplier disruptions. They develop
exact expressions for the expected cost as a function of the system parameters but
use numerical optimization since analytical solutions cannot be obtained. Song and
Zipkin (1996) present a model in which the availability of the supplier, while random, is
partially known to the decision maker. The inventory model is formulated as a dynamic
program whose optimal policy (for linear order costs) is a hase-stock policy in which
the optimal order-up-to level depends on the state of the supply process. Tomlin (2005)
presents a dual-sourcing model in which orders may be placed with either a cheap but
unreliable supplier or an expensive but reliable supplier. ‘The reliable supplier may not
be able to provide additional units instantaneously when the unreliable supplier fails but
experiences a “ramp up” period during a disruption. Tomlin derives explicit optimal
base-stock levels for certain special cases and explores the circumstances under which it

is optimal for the firm to single or dual source.



It is worth noting that with the exception of Bielecki and Kumar (1988) and certain
models in Tomlin (2005), all of the papers cited in this section propose a numerical
approach for optimizing their cost functions—none of them is solved in closed form. In
contrast, the approximate cost function proposed in this paper may be solved in closed

form, and as a consequence, a number of analytical results may be derived for it.

3 Model Formulation

3.1 Original Model

Consider an EOQ model with fixed ordering cost K, holding cost h per unit per year,
and constant, deterministic demand rate D units per year. (Without loss of generality
we assume that the time unit is one year.) Suppose that the supplier is not perfectly
relisble—that it functions normally for a certain period (called a “wet period”) and then
shuts down for a certain period (a “dry period”). During dry periods, no orders can
be placed, and if the retailer runs out of inventory during a dry period, all demands
observed until the beginning of the next wet period are lost, with a stockout cost of p
per lost sale. The durations of both wet and dry periods are exponentially distributed,
wet periods with rate A and dry periods with rate . Every order placed by the retailer
is for the same quantity, @, orders are only placed when the inventory level reaches G,
and orders placed during wet periods are received immediately (there is no lead time).
The goal of the model is to choose ¢ to minimize the expected annual cost. We refer
to this problem as the economic order quantity with disruptions ‘(EOQD).

A typical inventory curve is pictured in Figure 1. Note that the inventory position
never becomes negative since unmet demands are lost.

The BEOQD was first formulated by Parlar and Berkin (1991), whose expected cost
function was shown by Berk and Arreola-Risa (1994) to be incorrect in two respects.
Berk and Arreola-Risa derive the following corrected expression for the expected annual

cost as a function of @

K + hQ?/2D + DpBo(Q) /1t 1
Q/D + B(Q)/ 1
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Figure 1: BOQ inventory curve with disruptions.
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where
Bo(@) = RMA—!"—_H (1 _ 6"’()\+#)Q/D) (2)

is the probability that the supplier is in a dry period when the retailer’s inventory level
reaches 0. We will often suppress the argument Q in (@) when it is clear from the
context.

The first-order condition dgo/dQ = 0 cannot be solved in closed form because it has
the form

01 0% + @ + as + (uQ? + asQ + ag)e” Y =0,

for suitable constants g, for which no closed-form solution is readily available. (The
first-order condition is written out explicitly in equation (16) in the Appendix.) More-
over, Berk and Arreola-Risa prove that go(@Q) is unimodal, but it is not known whether
it is convex.

The first term in B, A/(A + ), is the steady-state probability that the supplier is in
a dry period, while the second term accounts for the knowledge that when the inventory
level hits 0, we were in a wet period as recently as @/D time units ago. The essence of
our approximation is to assume that the system approaches steady state guickly enough
that when the inventory level hits 0, we can essentially ignore this bit of knowledge, i.e.,
ignore the transient nature of the system at this moment. We discuss this point further

in Section 3.3.



3.2 Assumptions

Before introducing our approximation to (1), we impose three mild assumptions on the
problem parameters. First, we assume that all costs and other problem parameters are
non-negative. Second, we assume that A < u, that is, wet perjods last longer on average
than dry periods.

Third, we assume that V2EDh < pD. If there were no disruptions, this model
would reduce to the classical EQQ model, whose optimal annual cost is well known to
equal V2K Dh (sce, e.g., Nahmias 2005). Therefore V2K DF is a lower bound on the
optimal cost of the system with disruptions. One feasible solution for the EOQD is
for the retailer never to place an order and instead to stock out on every demand; the
annual cost of this strategy is pD. Therefore, the assumption that V2KDh < pD is
meant to prohibit the situation in which it is more expensive to serve demands than to

lose them.

3.3 Approximation

We propose approximating Berk and Arreola-Risa’s cost function by replacing Fo(@)

with
A
B = m (3)

The resulting approximate cost function is

K + hQ*/2D + Dpf/p _ huQ®/2+ KDp+ D*pf

= 4
N =05+ pn Q@i t BD @
Note that the functional form of this cost function,
a@?+b
— (5)
e} +d

i similar to that of the EOQ cost function, ﬁ%%tl—’, differing in the constant added to the
denominator. This similarity in structure gives rise to many of the EOQ-like properties
derived in Sections 6 and 7. Indeed, many of the results in this paper hold for any cost
function of the form given in (5).

As noted in Section 3.1 above, this approximation assumes that the system reaches

steady-state quickly, since 8 differs from Gy by omitting the term that accounts for
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transience. Although Berk and Arreola-Risa assume exponentially distributed wet and
dry period durations, other distributions would yield similar cost functions, with the
term 1 —exp(~{A+u)@/ D) replaced by a distribution-specific term. Qur approximation
is applicable to these cases, as well, with the quality of the approximation determined
by the rate with which the system approaches steady-state.

The approximation is most effective when (A+ 1)@/ D is large, a reasonable assump-
tion under many realistic settings. For example, suppose wet periods last, on average,
1 year and dry periods last, on average, 1 month. Further, suppose that 4 orders are
placed per year. Then (A +u)Q/D = (1+12)/4 = 3.25, s0 e~ (MmIQID — o325 ~y 0,039,
Since fo = B8 (1 — e~ (/D) B is a close approximation for Gy, and hence (@) is a
close approximation for go(Q). We provide theoretical evidence for the accuracy of the
approximation in Section 5 and empirical evidence in Section 8.2.

One would expect that as the supplier’s reliability improves, the EOQD begins to
resemble the EOQ more and more closely. In particular, as A gets small or p gets large
{so that wet periods last much longer than dry periods), g approaches the classical EOQ
cost function, as Proposition 1 demonstrates. The proof is omitted; it follows from the

fact that as Ay — 0, 8 — 0.
Proposition 1

lim ¢(Q) = gu(Q),

Af 10

where gelQ) = % 4+ %9* 18 the classical FOR cost function.

The same result holds for Berk and Arreola-Risa’s go, though it does not hold for Parlar

and Berkin’s original (incorrect) cost function.

4 Optimal Solution

In this section we show that our approximate cost function g is convex, and we provide
a closed-form solution for the optimal value of @, denoted Q*. All proofs are given in

the Appendix.
Theorem 2 (a) g(Q) is convex in )

10



(b) The value of Q that minimizes g(Q) is given by

V(BDR)® + 2hu(K Dy + D*pp) — BDR

Q= ”

Note that Q* can be rewritten as

D
Q*=1/%—z-—!—a2+b——a

for appropriate constants a and b, thus emphasizing the relationship between Q* and

the optimal order quantity for the classical EOQ, /2K D/h.

5 Accuracy of Approximation

5.1 Accuracy of Cost Function

In this section, we discuss the accuracy of g as an approximation for gy. Our first result
demonstrates that, for reasonable values of @ (including @*), (@) overestimates g0{@).
Thus a manager using the approximate function to estimate costs will incur lower costs

than expected; that is, the approximation is conservative.

Proposition 3 (a) g(Q) > go(Q) if and only if

(b) 9(Q) > go(Q) if and only if

Dp — +/(Dp)* — 2K Dh Dp + +/(Dp)? — 2K Dh
h < @< A :

(c) g(@*) > 90(Q").

The range of () values specified in part (a) of Proposition 3 is quite wide for reasonable
values of the parameters. We know that V2K Dh < Dp; indeed, we would expect
V2K Dh < Dp since V2K Dh is a lower bound on the optimal cost, while Dp is the

cost of an extremely poor solution (i.e., ordering nothing). The EOQ cost function is

11



known to be reasonably flat, which means that ¢) must deviate substantially from its
optimum before the cost reaches Dp. Put another way, (Dp)? should dominate 2K Dh
in the condition in (b), and /(Dp)? — 2K Dh ~ Dp. Therefore, the lower bound on @
from Proposition 3(b) is close to 0, while the upper bound is quite large. Part (b) of
the theorem confirms that the optimal @ is in the critical range.

Next we show that g(Q) does not overestimate 90(Q) by too much by proving a
worst-case bound on the magnitude of the error. In particular, this bound holds for the

special case of @ = @, but we also prove another bound for this case.

Theorem 4 (a) Let gp(Q) = K—QQ + ’—"5@ be the classicel EOQ cost function. For all
Q > 0 such that (@) < Dp,

9(Q) — 90(@) < B - Bo(@Q) [1 B Q'E(Q)l - 8- 5(Q) _ e~ (HR)Q/D
90(Q) Bo(Q) Dp Bo(@) 1 — e~ @D’

(b)

@) = 0@) _ y (BB, 5@ £=5@)
9o(Q@*) Bol@*) Dp B

The bound in Theorem 4(a) does not have a fixed worst-case value, since Bo(@) — 0
as (A+p)Q/D — 0. Theorem 4(b) does establish a worst-case bound of 1 on the approx-
imation error for Q" via the second bound of (3 ~ Go(Q*))/B, but in our computational
tests the frst bound was smaller than the second for every instance. For reasonable
values of the parameters, both bounds are much smaller than 1, as argued in Section
3.3. We provide computational results justifying this claim empirically in Section 8.2.

Typically, g approximates gy very tightly when Q =~ (Dp—+/(Dp)* — 2K Dh)/h (the

Jeft end-point of the range of interest from Proposition 3(b)). The approximation weak-
ens somewhat as ( increases but tightens again quickly as Q increases. Figure 2 plots
the curves g and go and Figure 3 plots the approximation error (g(Q) ~ go(@))/90(Q)
and the bound @—%3‘1 [1 - 9—%{%] as functions of Q for K = 500, h = 0.5, p =10, D=
1000, A = 1, ¢ = 5. In this example, (Dp — /(Dp)? — 2KDh)[h = 50; as ¢ in-

creases from 50, the error increases to a maximum of 0.1 {10%), then quickly de-
creases virtually to 0. The approximation error is 1% for @ = 575 and decreases

thereafter. By the time Q = @Q* = 1793, the approximation error is 4.0 x 1078 At

12



Figure 2: go (solid curve) and g (dashed curvejvs. .
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Q = (Dp+/(Dp)? — 2K Dh)/h ~ 39950, g(Q) ~ 90(Q) equals 0 and then becomes very

slightly negative as ¢ continues to increase.

5.2 Accuracy of Optimal Solution

In this section we examine the gap between @ and the quantity Qo that minimizes go.
The next proposition demonstrates that Q* = Qo; Theorem 6 then establishes a bound

on the gap between Q* and Qg under a certain condition regarding go.
Proposition 5 Q* > Qq, where Qy is the value of @ that minimizes go(@Q).

Theorem 6 provides an upper bound on {Q* — Qo) /Q", but it relies on the second
derivative of gp being positive at @* and the third derivative of gp being negative on
the range [Qo, @"]. The sign of the second derivative is not known (since go is known
to be unimodal but not necessarily convex), nor is that of the third derivative. If the
derivatives happen to have the correct signs, then the bound holds; otherwise the bound
is likely to hold approximately, since g approximates go closely in this range and the
derivatives of g do have the correct signs: d”g/dQ® > 0 everywhere by Theorem 2(a),

and
d®g  3Dp*(hAD+ 2u*K -+ 2uDpf3)
dQ? (Qu+ BD)*
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Figure 3: Actual (solid curve) and bound (dashed curve) on approximation error vs. (.
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so d®g/dQ® < 0 everywhere.

Theorem 6 If %%7% >0 0t Q=Q" and %% < 0 everywhere on the range [Qo, @1, then
(o) |
Q-G 9lQ")
QT Qg(Q)

0=

(b)
Q—Qo___ %(@)
Qo Qi@+ — (@)

2
where gh(Q") = $8| . and 96(@) = G| _o.

0<

gh(@*) and g§(Q*) are too cumbersome to write out explicitly here, but they can
be computed simply by differentiating go and plugging (B) in for Q. In general, we can
expect the bounds provided by Theorem 6 to be small since ¢'(Q*) = 0 and go(Q) ~ ¢(Q)
in the neighborhood near @*. Figure 4 depicts g (upper curve) and go (lower curve)
near their minima, along with tangent lines for both curves at Q = Q*. Note that the

tangent line to go is nearly horizontal.
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Figure 4: g and go near their minima, with tangents at Q = Q. (Upper curve = g, lower curve =

go-)

5.3 Use as Heuristic

Tt is natural to think of Q* as a heuristic solution for the EOQD in cases for which the
lack of closed-form solution for Qp makes it impractical to compute it exactly. Theorem 7
presents a bound on the error that results from using Q" instead of ¢} when the exact

cost function gy prevails. The bound is subject to the assumption made in Theorem 6.

Theorem 7 Let 0 = gh(Q*)/g5(@*). If the assumptions of Theorem 6 hold, then

00(@) — 60(Qo) _ MR —0)/2 D2pfao(~6) |1 - mg_:z]
Go(@o) = "hp(Q — 0)2/2 + KDy + D*pfo(Q* — B

We argued in Section 5.2 that 6 = 0, so the numerator of the bound in Theorem 7 is
small while the denominator is typically several orders of magnitude larger. Therefore,

the error resulting from using Q* as a heuristic solution is quite small.
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6 Comparison to EOQ

Having established the validity of g as an approximation for gg, we now set gy aside and
examine properties of g itself. We first demonstrate that the optimal order quantity
and cost for the (approximate) EOQD model are always greater than the classical EOQ
quantity and cost, and that the differences may be arbitrarily large. Then we show that
in addition to being more analytically tractable than go, ¢ exhibits several properties
that mirror the behavior of the classical EOQ model. In Section 7, we will show that
the approximate EOQD lends itself nicely to sensitivity analysis and the analysis of

power-of-two policies.

6.1 Comparison of Order Quantities

The next proposition demonstrates that Q* [g(@*)] is larger than the optimal EOQ

solution [cost], and that the difference between them may be arbitrarily large.

Proposition 8 Let Qp = m be the optimal EQQ solution and zg = V2K Dh
its cost. Then
(o) @ >Qr
(b) For any M € R, there exist values of the problem parameters such that
(QF - Q&)/Qr > M.
(¢) 9(Q") > =z

(d)} For any M € R, there exist values of the problem parameters such that
(9(@") ~ z8)/28 > M.

The implication of Proposition 8 is that ignoring disruptions in the EOQ can lead to
serious errors, and the EOQ solution may perform poorly when supply is uncertain; we

demonstrate this empirically in Section 8.3.
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Figure 5: Optimal EOQD and EOQ costs as functions of D.
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6.2 EOQ-like Properties

Recall that the optimal Q in the classical EOQ model is /2K D /h and the correspond-
ing cost is V2K Dh; that is, the optimal cost equals h times the optimal order quantity.
In addition, the optimal cost is a concave function of the demand rate. We next demon-

strate that these results also hold for g(@Q).
Theorem 9 g(Q*) = hQ"

Proposition 10 Let g*(D) = g(Q") be the cost of the optimal solution under g, treated

as a function of D. Then g*(D)} is concave in D.

On the other hand, the EOQD cost function is “less concave” (more linear) than

that of the BOQ {see Figure 5) since we can re-write g*(D) using suitable constants as
¢ (D) = Va2 7 2K Dh — cD = (va - ¢} D.

The implication of this is that economies of scale are less strong in the EQOQD than in
the EOQ.
The concavity property in Proposition 10 is useful in several contexts, including

the algorithm of Shen, Coullard and Daskin (2003) for a joint location-nventory model,

17



which requires the inventory cost to be a concave function of the demand gerved. Snyder
(2005) considers a location—inventory model with supply disruptions by replacing the
EOQ cost function with the EOQD in the model of Shen et al. (2003). The dampening
of economies of scale in the EOQD makes consclidation a less attractive strategy as
supply uncertainty increases, since the benefits of consolidation are partially offset by

the increased uncertainty due to the dependence on a single supplier.

7 Sensitivity Analysis and Power-of-Two Policies

In this section, we derive an expression to compare the cost of an arbitrarily chosen Q) to
that of the optimal @ {paralleling similar results for the EOQ model) as well as bounds

on the cost of the optimal power-of-two ordering policy.

7.1 Sensitivity to @

1t is well known that if Qg is the optimal solution to the classical EOQ model, then the
ratio of the cost of an arbitrary @ to that of Qg is given by

1/Qs , Q )

ol (-~ e N 7

1A ®
We now prove a similar result for g.

Theorem 11 Let Q* be the order quantity that minimizes g(Q) and let @ > 0 be any

order quantity. Then

(Q* Q ) _(@-@)y _pD &

Q@ 20Q°  Qup+pD

Since the bound given in (8) is smaller than that in (7), the (approximate) EOQD cost
function is flatter around its optimum than that of the classical EOQ. However, we can
expect the second term in (8) to be small for the following reason. Our approximation
relies on L’\“L—gl«@« being large (and hence e~*+#?/L being close to 0). But Do %,
and since A < u, we can expect %«5 to be large and Q_fgﬁﬁ to be small. Moreover, if (} is

13



reasonably close to ¥, then (Q — Q*)? will be small relative to 2QQ*. We can therefore
expect f(%% to be quite close to the EOQ sensitivity analysis quantity given in (7).

7.2 Power-of-Two Policies

In our analysis thus far, we have treated the order quantity, @, as the decision variable.
But we could have formulated an equivalent model in which the order interval (call it )
is the decision variable. As in the classical EOQ model, placing orders of size @ means
placing orders every @Q/D years (during wet periods), so T' = Q/D. Then the expected

annual cost can be expressed as a function of T as follows:

huDT?/2 + Kp+ Dpf3
T+ '

It is straightforward to show that f(T) is strictly convex and that the optimal value of

F(T) =g(TD) =

T is given by

%

o \/(Bh)2 + 2 (5 + pB) ~ Bh o

D hii '
which has cost f{T*) = g(@*) = h@".

Following Muckstadt and Roundy (1993}, we define a power-of-two policy to be one
in which the order interval is restricted to be a power-of-two multiple of some base time
period Tg; that is, 7' = 25T for some k € {0,1,2,...}. Tpis fixed; we assume Tz < T™.

Our analysis parallels the classical analysis by first deriving lower and upper bounds
on the optimal 257z and then proving that the cost of each endpoint is less than or
equal to LOBF(T™). Since f is convex, the optimal power-of-two cost is guaranteed to

be less than or equal to this value.
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By the convexity of f, the optimal % is the amallest k that satisfies

f(2FT5) < 7 (251 Tp)
bD (9475)" 4 Kpu+ Dpf _ M2 (2'T5)" + Kpu+ Dpp
FTp + B = T +

huD [ o \2 ( 1 4 )
= 2 (2¢T; - <
o T8 \ G778~ FTent B) ©

1 1
K D -
(. + Dpf3) (2’°+1T3u+ﬁ 2’°TBM"¥“5>

MAD (ohrs)? (21T + 36) 2 (K + DpB) (2*T5)

2
s hyuD (2°T5)" + SOKD (T) = (Ku+ Dp) 2 0 (10)

Viewed as a function of 28T, the expression on the left~hand side of (10) has two real
roots, one positive and one negative. Since 25T > 0, inequality (10) holds if and only

if 2Ty is greater than or equal to the positive root; that is,

~38hD + \/ (261D)* + 4(huD)(K s+ Dpp)

=y QkTB >

2{huD)
g =B+ \/(BR)? + P (B + )
T hu

We also know that the optimal k satisfies
F (21T5) 2  (2*7T)

Using similar reasoning as above, this implies that

jor 3 PBE V (BR)? + Rhys (52 4 pp)
B - .
2 hy

We have now proved the following result:

Lemnma 12 Let

h)2 4 Mhy (B2 — Bh
Tm\/(ﬁ)+gl«;ip+pﬁ) o )

The k yielding the optimal power-of-two policy satisfies

3. 3 .
S <9k < 2
4T_2TB_2T

20



By the convexity of f, the cost of the optimal power-of-two policy is no more than the
maximum of the costs of the two endpoints specified in Lemma 12. In fact, the two
endpoints have the same cost, and that cost is no more than 1.06 times the cost of the

optimal (general) policy, as stated in the next lemma.

Lemma 13 Let T' be defined as in Lemma 12. Then

F(3) s(37) _ava

i) =57 sS4 =z 1.08.

Therefore, we have now proved:

Theorem 14 If 2°Tp is the optimal power-of-two order interval, then

f(2°Ts) < 3v/2

S 2 1.06.

It is not known whether the bound in Theorem 14 is tight. We show empirically in
Section 8.4 that the optimal power-of-two policy is generally no more than a few percent

more expensive than the optimal general policy.

8 Computational Results

8.1 Experimental Design

We tested our model using 10 sets of parameters h, K, p, and D, shown in Table 1.
These problem instances were adapted from sample problems for the (Q, R) model found
in production and inventory textbooks. For each problem, we considered 4 values for
A (0.5, 1, 2, and 5) and 4 values for p (2A, 44, 104, and 20X), resulting in 160 total
instances. For each instance, we computed Q* using equation (6) and found Qo using

MATLARB's fminsearch function.
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Table 1: Problem parameters.

Instance h K P A
1 0.8 30 1296 540
2 15.0 10 40.00 14
3 6.5 175 12,50 2000
4 2.0 50 2500 200
5 45.0 4500 44049 2319
6 5.0 300 50.00 3000
7 0.0132 20 0.34 1000
8 5.0 28 80.00 520
9 0.005 12 0.12 3120

10 3.6 12000 65.73 8600

Table 2: Accuracy of approximation: (8 — Bo(Q@*))/5(@*)-

A Average Max
0.5 0.075 0.381
0.5 0.068 0.339
0.5 0.046 0.248
0.5 0.021 0.127

1 0.026 0.156
1 0.023 0.139
1 0.011 Q.077
1 0.003 0.020
2 0.007 0.042
2 0.008 0.040
2 20 0.001 0.011
2
5
5
5
5

B e ook
o RS e oS o T

40 <0.001 <06.001
10 <0.001 0.604
20 | <0.001 0002
50 ¢ <0.001 <0.00%
100 ] <0.001 <0.001
Average 0.018 0.160

8.2 Approximation Error

We begin our analysis of the approximation error by examining (8 — 5(Q@")}/ Bo(@%),
since our results rely on 8 being a good approximation for Gy(Q), particularly at @ = Q"
Table 2 provides the average and maximum values of (8 — Bo(Q%))/Bo(Q"), taken over
the 10 problem instances in Table 1, for each value of A and p. These results validate
our assertion in Section 3.3 that 3 is a good approximation for f, since the average
error across all instancgs is 1.8%. As expected, the approximation is worse for smaller

values of A and g and improves substantially as A and p increase. This trend persists

throughout our computational study.
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Table 3: Accuracy of cost function: bounds and actual.

Bound 1 Bound 2 Bound 3 Actual
A Average Max Average Max Average Max | Average Max
0.5 0.048 0.2:2 0.060 0.276 0.048 0.212 0.025 0.116
0.5 0.048 0.214 0.056 0.253 0.048 0.214 0.024 0.113
0.5 0.036 0.179 0.040 (.199 0.036 0.179 0.013 0.070
0.5 0.018 0.103 0.019 0.113 0.018 0.103 0.004 0.021

1 0.019 0.110 0.024 0.135 0.019 0.110 0.069 0.055
1 0018 0.107 0.021 0.122 0.018 0.107 0.008 0.049
1 0.009 0.065 0.010 0.071 0.009 0.065 0.003 0.019
1 0.002 0.018 0.602 0.019 0.002 0.018 | <0.001 0.002
2 0.006 0.040 0.007 0.046 0.006 0.040 0.003 0.018
2 0.005 0.034 0.005 0.038 0.005 0.034 0.002 0.013
2 20 0.001 0.010 0.001 0.011 0.001 0.010 | <0.001 0.602
2
5
5
5
5

e —
S ) o S e (RS

40 <0.001 <0.001 <0.001 <0001 <0001 <0.001 ! <0.00f <0.001
10 <0.001 0004 <0001 0.004 <«0.001 0.004 | <«0.001 0.002
20 <0.001 0.002  «0.001 0.002 <0.001 0.002 | <0001 <0.00%
50 <0.001 <0001 <000 <0001 <0001 <0001 | <0.001 <0.003
100 | <0.001 <0.001 <0001 <000l <0.001 <0001 | <0.001 <0.001
Average 0.013 0.069 0.015 0.08% 0.013 0.069 6.006 0.030

Table 3 provides the average and maximum approximation error in the cost function
at Q. Tt lists the actual approximation error and the three theoretical bounds given in

Theorem 4(b), as follows:

y _ B—=Bo(Q" Q>
e Bound 1 = 60(065*)) [1 — g"*’l{)p )]

s Bound 2 = Eﬁ%@

Bound 3 = min{Bound 1, Bound 2}

Actual = (g(@") — 9o(@")}/90(Q")

Table 3 demonstrates that the approximation provided by ¢ is quite tight at @ = .

The approximate cost function differs from the exact function at Q* by an average of
0.6%, with a theoretical bound (Bound 3) of 1.4% on average. From Table 3 it appears
that Bound 1 always provides the minimum of the two bounds. Indeed, this holds for
every instance in our computational set (not just in the aggregate), though we have
heen unable to prove that this holds in general.

Table 4 lists the actual approximation error and the theoretical bounds (from Theo-
rem 6) for (Q* — Qo)/Q* and (Q* ~ Qo)/Qo. The table lists the average and maximurm,

taken over the 10 instances, for each value of A and u.
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Table 4: Accuracy of optimal solution: bounds and actual.

(@~ Qo)/Q" (@ —Qo)/Qo
Bound Actual Bound Actual
A Average Max Average Max § Average Max Average Max
0.5 0.220 1.169 (.146 0.656 -0.461 1.803 0.310 1.905
0.5 0.179 0.969 0.120 0.526 3.212  30.924 0.195 1.109
0.5 0.073 0.372 0.059 0.261 0.098 0.592 0.071 0.353
0.5 0.021 0.088 0.020 0.079 0.022 0.097 0.621 0.086

H 0.071 0.437 0.059 0.343 0.111 0.777 0.081 0.523
1 0.052 0.331 0.043 0.257 0.070 0.494 0.053 (1.346
1 0.014 0.094 0.013 0.084 0.016 0.103 0.034 6.092
1 0.002 0.0:2 (.002 0.012 0.002 0.012 0.002 0.012
2 0.018 0.125 0.016 0.113 0.020 0.143 0.018 0.128
2 6.011 0.082 0.010 0.075 0.011 0.089 0.011 0.081
2 20 0.001 0.012 0.001 0.011 0.001 0.012 0.001 0.011
2
5
5
5
5

BY =
co =Bl i o T

40 <0001 <0001 <0001 <0001 ] <0.001 <0.001 <0.001 <0.001
10 0.001 0.012 0.001 0.012 0.001 0.012 0.001 0.012
20 <0.001 0.004 <0001 0.004 | <0.001 0.004  <0.601 0.004
50 <0001 <0.001  <0.001 <0001 ] <0.001 <0001 <0001 <0.001
100 | <0.001 <0001 <0001 <0001 | <0001 <0.001L <0.001 <0.001
Average 0.042 0.232 0.031 0.152 0.194 2197 0.049 0.291

The average error in @* is 3.1% when using a denominator of @ and 4.9% when using
a denominator of g, with average theoretical bounds of 4.2% and 19.4%, respectively.
The error decreases substantially as A and g increase. There is a single instance for
which the assumptions stipulated in Theorem 6 concerning the derivatives of gy do not
hold, resulting in a negative bound. This bound is reflected in the negative entry for
the bound on (Q* — Qo)/Qo in the first row of Table 4.

Table 5 lists the average and maximum error (actual and bound) that results from
using Q* as a heuristic solution in place of Qg, as discussed in Section 5.3. Clearly, Q" is
an extremely effective solution for the exact cost function, with an actual error of only

0.3% on average.

8.3 Comparison to EOQ

We proved in Proposition 8 that the optimal solution to the {approximate) EOQD, @,
is greater than or equal to the optimal EOQ solution, Q. Table 6 provides empirical
evidence demonstrating the magnitude of the difference. For each value of A and p,

the table lists the average and maximum (over the 10 problems) percentage difference
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Table 5: Accuracy of Q" as heuristic solution for go.

Bound Actual
A Average Max Average Max
0.5 <0.001 1.240 G.017 0.113
0.5 1.561 i5.012 0.013  0.001
0.6 0.043 0.308 0.004 0.027
0.5 0.006 0.038  <0.001 0.003

1 0.064 6.465 0.004 6.030
1 (0.03¢  0.250 0.003 0.021
1 0.005 003 <0.001 0.003
1 <0.001 0004 <0001 <0.001
2 0.010 0074 <0.001 0.004
2 0.005 8.037  <0.001 6.002
2 20 <0.001 0.004  «0.001 <0.001
2
5
5
5
5

Do e =
OO»&OQ%MOU!MWTZ

40 <0001 <0001 <0001 <0.001
10 <0.001 0.006 <0001 <0.001
20 <0.001 0.002 <0.001 <0.001
50 <0001 <0.001 <(.001  <0.001
100 | <0.001 <0001 <0001 <0.001
Average 0.081 1.092 0.003 0.018

between Q* and Qz. By Theorem 9, this is also equal to the difference between g(@*)
and the optimal EOQ cost. The table also lists the “ignorance cost” of applying the
EOQ model instead of the EOQD: the percentage increase in cost if the clagsical EOQ
model is applied when supply uncertainty exists, computed as (9(Qg) — g{@*))/9(Q*).

The EOQ and EOQD solutions can differ radically, and the cost of using the EOQ
model instead of the EOQD can be quite large. On average, the EOQD order quantity
is 160% larger than the EOQ order quantity, and the difference reaches 1912% for one
instance. In addition, using the EOQ solution can be quite costly if supply uncertainty
exists: the EOQ quantity yields a cost 39% larger than the optimal EQOQD cost, on
average, and reaches nearly 300% for some instances. Since the EOQD approaches the
EOQ as A decreases or y increases (Proposition 1), the difference between the EOQ and
EOQD solutions decreases as A decreases or y increases, as does the “ignorance cost.”
(In the table, to see the decrease as A decreases, one must examine different values of
\ while keeping p fixed. For example, with p = 10, the difference in order quantities
is 166% for A = 5, 69% for A = 1, and 43% for A = 0.5. The corresponding ignorance
costs are 49%, 18%, and 9%.)
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Table 6: Comparison to EOQ solution.

@ -Qe)/Qe | (9(Q) —g(Q*)N/9(@")

A 1| Average Max | Average Max
0.5 1 6.031 19.121 1.116 2.777
0.5 2 3.193 10.568 0.864 2.871
05 B 1119 4.170 0.317 1.496
05 10 0.427  1.809 0.093 0.564
1 2 4224 13.673 1.011 2.983
1 4 2.131  7.343 0.625 2.410
1 10 0.601 2747 0.176 0.948
120 0.247 1114 0.043 0.289
2 4 2879  9.618 0.803 2,779
2 8 1.381  5.008 0.403 1.783
2 20 0.412 1,754 0.088 0.542
2 40 0.137  0.686 0.017 0.129
5 10 1.660  5.885 0.490 2.049
5 20 0.7140 2916 0.192 1.016
5 50 0197 0.812 0.030 0.215
5 100 0.060 0.303 0.004 0.035
Average 1.596  5.475 0.392 1.430

8.4 Power-of-Two Policies

For each instance, we computed the bound on the cost of the optimal power-of-two
policy: f (%’f ) /F(T*), which, by Lemma 13, equals f (%T) JF(T™), where T is as
defined in (11). We also computed the optimal power-of-two policy using Tp = 1/52 (1
week) by enumerating k = 0,1,2,.. .. Table 7 lists, for each A and u, the average (over
all 10 problems) of both theoretical bounds, as well as the value of f (28 T}/ F(T™),
where k* is the optimal value of k.

The optimal power-of-two policy is, on average, 2% more expensive than the optimal
policy in our tests. Although 34/2/4 is given as an upper bound on the endpoint cost
in Lemma 13, this bound appears to be tight, as several of the instances produce values
that are quite close to this bound. However, it is not known whether the bound is tight
on the cost of the optimal power-of-two policy itself, since the maximum error found in

any instance in our testing is 1.059.
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Table 7: Power-of-two policies.

F{82) 15Te) | @ TE)/ AT

A p | Average  Max | Average  Max

0.5 1 1.0521 1.0h59 1.0161  1.0377
0.5 2 1.0661 1.0684 1.0175 1.0567
0.5 5 1.0580 1.0601 1.0206  1.0465
05 10 1.0600 1.0605 1.0235 1.0484
i 2 1.0547 1.0575 1.0216 1.0426

1 4 1.0576 1.0593 1.0162  1.0426

1 10 1.0596 1.06G3 1.0177  1.0408

1 20 1.0603 1.0606 1.0168  1.0542

2 4 1.0566 1.0587 1.0128 1.0339

2 8 1.0586 1.0599 1.0261  1.0550

2 20 1.0600  1.0605 1.0224  1.0489

2 40 1.0605 1.0606 1.0216 1.0573

5 10 1.0582 1.0897 1.0237  1.0587

B 20 1.0596 1.0603 1.0186 1.6374

5 50 1.0604 1.0606 1.0186 1.0657

5 100 1.0608 1.0606 1.6230  1.0593

Average 1.0584 1.0598 1.0196  1.0485

9 Conclusions

In this paper, we presented a simple approximation for an EOQ mode! with disruptions
(EOQD). Our approximation is quite tight, especially when the order cycle time is long
relative to the duration of wet and/or dry periods. We presented a closed-form sohation
to our model and provided theoretical and empirical bounds on the error in the cost, the
optimal solution, and the optimality error resulting from using the approximate solution
as a heuristic for the exact one. We then introduced a number of analytical properties
of our exact model, showing that it behaves like the EOQ in several important ways and
deriving sensitivity analysis and power-of-two results that mirror those for the EOQ.
On the other hand, we proved that although the cost functions are similar, the EOQ
solution may be a very poor substitute for the EOQD solution; thus, ignoring supply
uncertainty when it exists can be very costly.

Interest in supply chain models with supply disruptions has been growing steadily
in recent years. A number of papers have appeared in the literature that incorporate
supply disruptions into classical inventory models. Unfortunately, the introduction of

supply uncertainty often destroys the tractability of otherwise simple models, forcing
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a numerical solution to the disruption models. Although these models are interesting
in their own right, their impact is amplified when researchers can obtain analytical
results and insights from them or embed them into more complex models (e.g., the
multi-echelon supply chain design models of Qi and Shen (2005) and Snyder (2005)).
The lack of closed-form selutions often makes both goals difficult to attain. We expect
the formulation of approximations to other inventory and supply chain models with

disruptions to be an active area of future research.
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11 Appendix: Proofs

Proof of Theorem 2. The reader can verify that

dg _ M£Q? 4 pDRuQ — (K Dy + Dpf)

o - 12
a0 (@n ¥ BD) 1)
d’g _ Dp(hB*D + 22K + 2uDpB) (13)
dQ? (Qu+ BD)?
Since all terms in d2g/dQ? are positive, g is convex, proving part (a). To prove part (b}, note
that
d hyi?
5% =0 == mgwcg? + BDhpQ — (KDp+ D?pfu =0
- h)? + 2h 2
— Q= BDh % +/(BDh)? + 2hu(K Dy + D?pp)

by
using the quadratic formula. Clearly, using the 4 sign in the + yields a positive value of Q

while using the ~ sign yields a negative value. M
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Before proving the remaining results, we introduce two lemmas and the proof of Theorem 9

{out of order), all of which are used in subsequent proofs.
Lemma 15 (Q*)? = %‘%(Ku + Dpf — BhQ™)

Proof.

(@) = 2hu(K Dy + D?pB) + 2(BDh)* — 26Dh/(BDR)? + 2h(K Dy + D?pf3)
B (hu)?

2D .
= E(K# -+ Dpf — BhQ")

Proof of Theorem 9.
g(Q") _ KDp+"$3B(Ku+ Dps — frQ") + D*pf

Q* QY (Q*u+BD)
_ 2AKDpu+ D?pB) — BDRQ*
B Q*(Q*p+ BD)
_(@)Php+ BDRQ* .
= 0%t AD) {using Lemma 15 again)
_ Q*hu+ BDh

Q-+ BD

= fy

{using Lemma 15)

Lemma 16 V2K Dh < g(Q*) < Dp

Proof. By assumption,

V2KDh < Dp
— 20huDVIEDR + 2K Dhy? + (8DhY? < 28huDp + 2K Dhy® + (BDh)*

. (,u\/zKDh + ﬁDh>2 < (BDR)® + 2hu(K Dy + Dpp)

. V(BDRY + 2hu(K Dy + D?pf) - BDh
7

= V2KD

= hQ* = g(Q")

31



by Theorem 9. Similarly,

Dp > V2K Dh
— (Dpw)? + 2D%puBh + (BDR)? > 2K Dhy? + 2D%ppSh + (BDhY?
= (Dpu+ BDh)? > (8Dh)? + 2hu(K Dy + D*pf)
(BDR)Z + 2hu(K Dy + D2pB) ~ BDh

== Dp >

1
= hQ" = g(Q").
L]
Proof of Proposition 3.
(2)
KD hG}
T + 5 < Dyp

= %Qz—DpQ%—KD«’O

— 2 2 e
— Dp \/(Di) 2K Dh <0< Dp + \/(Di) 2K .Dh

The result now follows from the proof of part (b).
(b} The reader can verify that

_ (hsQ*/2 + KDy + D*pB)(Qp + foD) — (huQ?/2 + K Dy + D2po)(Qp + D)

9(Q) — 90(Q) (Qu+ BDYQu + D)
_ (8—B0)Di(DpQ — KD — hQ*/2) (14)
(Qu+ BDYQp + BoD) ‘
Since B — fo > 0,

9(Q) — 90(Q) > 0 <= 2DpQ — 2KD —hQ* > 0
= - % (hQ— Dp ~ +/(Dp)? — ZKDh) %
(hQ—Dp+ m) >0
= hQ — Dp— +/(Dp)? — 2KDh < 0 and

hQ — Dp + /(Dp)? — 2KDh > 0
— 2 - 2 _
— Dp \/{Djfol} 2K Dh <Q< Dp+ \/(D;;) 2K Dh
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{c) It suffices to show that Q* satisfies the condition in part {b). This condition is satisfied

if and only if

Dp ~ +/(Dpy? — 2KDh < Q*h = g(Q*) < Dp + +/(Dp)? — 2K Dh.

The equality follows from Theorem 9. The second inequality follows from Lemma 16.
To prove the first inequality, we note that for any a, b, ¢ such that o < b and ¢ < a2,
b—+/b2 — ¢ < a—+/a? — ¢ by the concavity of the square-root function. Since VZKDh <

Dp by assunipiion, we have

Dp ~ +/(Dp)? — 2KDh < V2K Dh — V2K Dh — 2K Dh = V2K Dh < g(Q%)

by Lemma 16, confirming the first inequality. ]

Proof of Theorem 4.

(a)
(B~ Bo)Di(DpQ — KD — h@*/2)
9@ = 90(Q) = 0 T B0 (@ + D)

(see (14)). Therefore

9(Q) - 0(Q) (68— Go)Du(DpQ — KD — h)*/2)
90(@)  (Qu+BD)(huQ?/2+ KDy + D?pfh)
_ (B~ Bo)Du(DpQ — KD ~ hQ?/2) KDp + huQ?/2
~ (Qu+BDYEDp+ huQ?/2) KDy hpQ?/2+ D2pfy
_ (8- 60)(Dp—~ KD/Q — hQ/2) KD/Q+hQ/2
(Qu/D + B)ED/Q+ hQ/2) KD/Q+ hQ/2+ D?pfs/uQ
_ (B~ Po)(Dp—gu(Q)) ge(Q)
(Qu/D+ Bge(@) gr(Q)+ D?pfo/uQ
_ B — o { Dp 1;1
(Qu/D + B)(1+ DB/ uQee(@)) Los(@)
BB Dp
ke ey Y P 1] (besouee Dp/35(@) > 1)
_B=Foge(@) { Dp 1]
Bo Dp (9r(@)
_B8-6 {1 3 QE(Q)}
Bo Dp
B8 - o e (AtQ/D
Bo | 1—e-(Fm@/D

=1

<
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(b) The first term in the minimization follows from {a). To prove the second:

* * * hM(Q*)2/2+K”DH’+D2pﬁQ
9(@Q") ~ 9o(Q") = hQ AN

_ B(Q"? + foDRQ* — KD — D*ply

N Q u+ FoD

_ D(Ku+ Dpfl ~ BhQ*) + foDhQ* — K Dy — D?pBy

- Q-+ GoD

_ (B—Bo)(Dp—h@"D

G+ oD

(by Theorem 9)

{by Lemma 15)

Then

9(Q") — 90(Q") _ (B~ Po}(Dp—hQ")D Q*u + foD
90{@*) Q* -+ (oD hu(Q*)2/2 + KDp + D?pg
_ (8 — Bo}(Dp — hQ")D
KDy + D(Kp -+ DpB ~ BhQ*) + D*pfo
_ {8~ Bo)(Dp~ hQ*)D
2KDu+ BoD%p + BD(Dp — h@*)
___B-P
bl 4 g
8~ Bo
B

since Dp — hQ* > 0 by Lemma 16. O

< <1

Proof of Proposition 5. The first derivative of gy is given by!

dgo 1 (huz . \ ,
aQ 2% 4 BDRUQ - KDp? ~ D
dQ "~ [Qu+ BD (1 - e~OHwQ/D)2 \ 2 H pOu

+ [~224Q? - pDhu - KD+ D+ pDMQ| O49P) (a5

The first-order condition is satisfied if the numerator is 0. The numerstor can be rewritien ag

h 2
~-@? + BDhuQ ~ KDy ~ D’piy (16a)
h 2
+|-L5Q? - pDMQ + KDY + D (16b)
3
+ T = NQ = KDu(u+ ) + pDAuQ| e~ O+3/P (16c)

INote: The first-order condition given in Proposition 2(c) of Berk and Arreola~-Risa contains an error: the first
2 2
term on the second line should read <229~ instead of —43%-. Translated into our notation, the corrected

expression is the numerator of {15) above.
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Now suppose that Q = Q*; we will show that (16) is positive. The expression in (162) is the
first-order condition for g (see (12)) and that in (16b) is its negative, so when @ = Q% both
(16a) and (16b) equal 0. Using Lemma. 15, {16c) can be rewritten as

M43 (K Do - BRQ') = N) ~ KDi(u-+ X) + pDAQ | b1/

= [BD{p — N} (Dp ~ RQ") + Ap(Q* Dp — 2K D)) o= (AH)Q" /D

The first term inside the brackets is positive since i~ A > 0 by assumption and Dp— hQ* > 0

by Theorem 9 and Lemma 16. The second term is positive since
Q*h > V2KDh = (Q*)%h > 2KD
and
Dp>Q@Q'h = Q'Dp>{Q")%h>2KD.

Therefore {16), and hence dgo/dQ, is positive when @ = @Q*. Since go is unimodal {Proposition
2(b) in Berk and Arreola-Risa (1994)), it must attain its minimum to the left of @*. Therefore
Qo < Q*, as desired. ]
Proof of Theorem 6.

(a) Since g;g-s‘l < 0, gf is concave on (@, @*]. Therefore

96(@*) ~ 96(Qa)
Q* -G

by the concavity of g (see, e.g., Bazaraa, Sherali and Shetty 1993). But g5(Qo) = 0 since

> g0(Q")

(Jo minimizes gg, s0 we have
QIO(Q*) oy
oo 29 (@)
Since gg(@*) > 0,
Q" — Qo __dh(@)
QT Q@)

as desired.
{b) By part (a), Qo 2 Q" — ﬁff%%—); Therefore,

Q- QO < g{]{@*} _ g{](Q*) |
@ “(o-49g@)  TE@) - %@
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Proof of Theorem 7.
First note that

B=BQ ~0) _ —taw@-oyp o B H@) B Bo(—8)
B B g

BO

Bo(@)fo(=0)

Bo(@" — 0) = Bo(Q") + Bo{—8) — 7 (x7)
Now,
_ hpQ3/2 + KD+ D*pBo(Qu)
90(Qo) = Qo -+ Fo(Qo) D
S i@ — 0)°/2+ KD + D?pf5y(Q* ~ 6) (18)
” Qe+ Fo(Q*)D

The inequality follows from Theorem 6(a) and the fact that p{Q) is increasing in Q). Then

90(@") —90(Qu) _ _ hp(@%/2+ KDp+ D*pBy(Q*)
90{Qo) = h(@Q* — 0)2/2+ KDp + D2pfo(Q* - 6)
hut(2Q" — 6)/2 - Dpfo(=0) [1 - BiZ]
T Thal(@* - 622 + KD+ D2pfio(QF — )
using (17) and (18). [

Proof of Proposition 8.

1

(a) By Lemma 15,

wo  2KD | 2D .
(Q )2—T+H(DPMhQ)-

By Lemma 16, Dp — hQ* > 0, so (@*)2 > 2K D/h, ie., Q* > /2K D/h.
{b) As p — oo, @* — oo but Qg stays constani,
(¢),{d) Follow from Theorem 9. M
Proof of Proposition 10 The second derivative of g*{D) with respect to D is negative:
d2g* ~h? B K?

_ 5 <0.
dD? " (BDR)? + 2hu(K Dy + D?pB)]2
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Proof of Theorem 11. By Theorem 8,

9(@) _ hpQ?/2+ KDp+ DB 1
a@%) Qu -+ pD hQ*
_ KDp+D%pB  pQ?
hQ*(Qu+ 8Dy 2Q*(Qu -+ BD)
_ (KD,U + D?pf | pQ? ) Qu
hQ*Qu 2Q*Qu/ Qu+ 8D

E(Q)?+ DAY Q Qe .
( hQQ* + -2—67) On+ 6D {using Lemma 15)
Q. Qu
( Q Qu 2@*) Qu+ 8D
e ) e o
2\NQ Q@ Qw&«ﬁD Qu+pD
e eh QL@ pD
2(@ Q) [ (Q+Q*)]Qu+ﬁD
_1 (Q Q ) Q-Q)* 8D
2 * 2QQ°  Qu+ 6D
as desired. J

Proof of Lemma 13. We first prove the equality, then the inequality.

N2 2
f(3T> f(a'f‘> }—”;—D (%T) + Kup+ Dpf Q%Q(%T) + Kp+ Dpf

2 i 37+ STu+ g
_ 3Tu[9huDT? + 18hBDT — 16(K u + Dpp)] (19)
8(3T 1 +26)(3T 1 + 45)

Since

2060+ Shue (5 + p8) — 200 (912 + e (5% + )
(hae)?
2125w ]

the numerator of {19) equals

7% =

- 2 18/ Kp N N _
37w {Qh,uD T {g (-5~ + ,8) ,GhT] + 18hADT — 16{K 1 + Dpﬁ)} =
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This proves that f (%T) = f (% ) We next prove that f (%T) < 3—‘? f(T™). By Theorem 11,

T
) o) 1o
)

i6
Wz(z Vitia—1 3 \/1"*"”@“&“1)

Fr (@

~i(2\/1+2a—2+\/9+16am3)=¢(a)
T o\VO+16a—3 2/1+2a-2) 7 '

where o = b—%%?—@ > 0. We will show that ¢(a) is increasing in «, thus it attains its
meaximum value in the limit as a — oo.

g [1-3VIFT6a +8yTF2a) [4(vVIF2a ~1)" - (VG F 6 - 3)°]

do 4T+ 203 F T6a (VIF e - 1)° (VO F T6a — 3)° '

The denominator is clearly positive, and both terms in the numerator are negative:

1—-3vV9+16a+8/14+2a<0

dmmy 14+ 1684/1 - 200 4 64+ 1280 < 81 + 144
<= 1+ 20 <1+ q,
which holds since 1+ a = V1 - 2a + o?. Similarly,

4(vTF2a-1)" - (VFTT6a-3)" <0
= V4-+8a+1<VI+ 16

o 4+ 8+ 2vV4+8a+ 1 <9+ 16
Loty IS4 - Bx < 4+ Bay,

which holds since 2 < /4 + 8a. Thus, % > 0, so

maxy(a) = fim $(a)

m}_(z.\mﬁ —)
213 /15 2 p)
e
w3—4\/—§%1.06,

proving the lemma.
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