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Abstract

We present a robust optimization approach to pricing multiple products over a finite time
horizon in the presence of constrained resources and uncertainty on the demand. We consider
a broad class of nominal demand functions and the cases of additive as well as multiplicative
uncertainty. The robust optimization approach does not require the knowledge of the underlying
probability distributions, which are often difficult to obtain in practice, and instead models the
random variables as uncertain parameters belonging to a polyhedral uncertainty set. A novelty
of the proposed model is that, instead of imposing an upper bound on the mumber of uncertain
parameters that can reach their worst-case value, which has been the polyhedral uncertainty set
of choice in the robust optimization literature and is known as budget-of-uncertainty constraints,
we are motivated by the specific problem structure at hand to introduce a budget on the amount
of the resource that can be used by the uncertain component of the aggregate demand rather
than its nominal value. This allows us to derive key insights on the structure of the optimal
solution. We establish the existence of a single reference price for each product over the time
horizon and show that this new parameter plays & crucial role in understanding the impact of
uncertainty on the optimal prices. In particular, it is not always optimal to decrease prices when
demand is uncertain. Whether it is optimal or not will instead depend on whether the product
price at that time period is above or below the reference price, and whether the maximal amount

of uncertainty at that time period exceeds a threshold.

1 Imtroduction

Uncertain demand in pricing problems has traditionally been addressed by specifying probability
distributions and maximizing the resulting expected revenue. Within that framework, researchers
in price-based revenue management have investigated a wide array of problems, from the classical
single-product problem without replenishment to more complex issues of product markdown and
auctions. The reader is referred to Talluri and van Ryzin {12] for a thorough review of these models.

However, probabilities are difficult to estimate in practice, which makes the approach vuinerable
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to estimation errors. Another drawback is the implicit assumption that the deciston-maker is risk-
neutral. While this second point can be addressed by introducing an expected utility function, such
a Talluri and van Ryzin present in [12] a comprehensive treatment of deterministic and stochastic
models for dynamic pricing. It has traditionally been modeled as a random variable with a specific
distribution; however, distributions are difficult to estimate accurately. Furthermore, the objective
of maximizing the expected revenue does not capture the manager’s risk preferences, and while this
can be addressed by maximizing expected utilities, few managers are able to articulate their own
utility function. In contrast, the robust optimization paradigm developed by addresses those issues
in a tractable manner by modeling random parameters as uncertain parameters in an uncertainty
set.

Specifically, we make the following contributions to the problem of multiperiod pricing under

uncertainty:

1. We provide a tractable, convex framework based on robust optimization to incorporate uncer-
tainty without incurring a substantial increase in the size of the problems considered. Specif-
ically, the robust problem can be formulated as a convex problem with no new constraints
and 2m additional decision variables if m is the number of resources and m > 2. In the

single-resource case, only one new decision variable is required.

9. We establish the existence of a reference price, independent of time, for each product considered.
The reference price plays a crucial role in understanding the impact of uncertainty on the
optimal solution and the marginal value of the resources, as explained below. For each product,

the reference price is equal to one of the optimal prices.

3. The optimal price of product j at time ¢ converges further towards the reference price of that
produet when uncertainty in demand (for § at t) increases. The marginal value of the resources
increases with the demand uncertainty for product j at time ¢ if and only if the optimal price

of j at t exceeds the reference price of that product.

4. In the single-product case, an increase in demand uncertainty at time ¢ increases the optimal
prices at all other time periods if and only if the optimal price at ¢ exceeds the reference price.
For multiple products, whether an increase in the uncertainty for product j at time ¢ increases
the price of other products at other time periods is determined by the position (above or below
the reference price) of the optimal price of j at ¢ and by the sign of & coefficient that depends

on the products considered but not on the time period.

The structure of the paper is as follows. In Section 2, we develop the robust pricing model
for one product in the presence of additive uncertainty. We analyze its counterpart in the case of

multiplicative uncertainty in Section 3, and extend our results, both for additive and multiplicative



uncertainty, to several products using multiple capacitated resources in Section 4. Section 77 provides

computational results. Finally, we conclude the paper in Section 5.

2 Single-Product Pricing With Additive Uncertainty

2.1 The Deterministic Model

We consider here the problem of pricing a single product over a finite horizon of length T, given
an imitial inventory of C' items, without replenishment. Throughout the paper, we assume that the
average demand d; at time ¢, £ = 0,...,T ~1, as a function of prices is fully known and only depends
on the prices at that time period. We further assume that the average demand, resp. the revenue,

at time £ is a convex, resp. concave, function of the prices. This is formulated as:

di(ps) = fe(pe), t=0,...,T =1, (1
where f; is convex, strictly decreasing, and g, defined by ge(ps) = pt fr(pe), is concave. A widely used
choice for f: in practical implementations is: fi(p) = ay — by pe, with ay, by > 0, which corresponds
to an average demand linear in the price at each time period. This framework also applies to more
complex demand functions such as fi(p:) = a¢ — by ps + ey /o, with ag, b, ¢ > 0.

We first review the properties of the nominal problem, which will be useful in the analysis of its
robust counterpart. When the demand is deterministic, the problem of finding the optimal prices to
meaximize the revenue is formulated as a convex problem.:

-1
max Y Py de(pe)
t=0

Tl _ (2)
s.t. Z dt(pt) § O,

£}

PPN < py < PPV,

where pPi® and p{*®® are lower and upper bounds on the prices. In particular, these bounds enforce

that pg, dg(ps} = 0 at each time period. The optimal solution can be characterized as follows.

Theorem 2.1 (Optimal Solution) Let N > 0 be the optimal Lagrange multiplier for the capacity
constraint and T ™0, 7y ™e* > 0 the optimal Lagrange multipliers for the bound constraints at fime
t,t=0,...,T — 1. Then the optimal price p; att satisfies:

- 8dy ()

QD) + (= N) =g B = T =0, (3)

In particular, if PPt < pf < pP®*, we have:
p ) t t ¢

0di(pt) _
Opt '

&) + i ~ X) 4)



Proof: Follows by applying the Karush-Kuhn-Tucker conditions to Problem (2) (see Bertsekas {4]
for an introduckion to nonlinear programming.) By complementarity slackness, FP™ == 0 if p; > pj*®

and EP** = 0 If py < PP 0

2.2 Description of the Uncertainty

In practice, the future demand is uncertain, and the manager has only limited knowledge on the struc-
ture of the randomness. Following the approach developed by Bertsimas and Sim [3] for uncertain
data coefficients and Bertsimas and Thiele [13] for random variables with unknown distributions, we
model the random demands d: as uncertain parameters of known mean and support. In this section,

we assume that the uncertainty is additive, i.e., the random demand d; is modeled as:
di = Et + &, (5)

where d, verifies Equation (1), and & is a zero-mean random variable independent of the prices.
For notational convenience, we present the approach when the support of 8§, is symmetric, ie.,
& < [—-5},3}] for some Sh although the results can be extended to the asymmetric case without any

difficulty. This yields a box-type description of the uncertainty:
dy(p) = di(pe) + bz, 2l <1, (6)

where d; verifies Equation (1). The scalar z is called the scoled deviation of the demand from its
nominal value at time t. To avoid overprotecting the system, we impose an additional constraint on

the scaled deviations, specifically: i

Z ;5; 2t
£=0
which limits the fotal consumption of the resource by the uncertainty. The parameter A is chosen

<A, (7)

in [O, me'ol 3}] using the historical data available to the decision-maker, and is called the maximum
allowable impact of the uncertainty on the resource, or budget of uncertainty impact. This represents
a departure from the polyhedzal uncertainty sets presented in the literature (Bertsimas and Sim
5, 6], Bertsimas and Thiele [13]}, which bound the number of uncertain parameters that can deviate
from their nominal values through constraints of the type: Eg;)l |z¢) < T for some I'. The choice of
Constraint {7) is motivated in multiperiod pricing by the specific impact of the uncertainty on the

formulation.

2.3 The Robust Optimization Approach

We start by defining the robust problem, and in a second step propose an equivalent convex for-
mulation, which can therefore be solved efficiently. The definition of the robust problem is not
straightforward; indeed, if we replace the deterministic demands in Problem (2) by the uncertain

parameters in Equation (6), we obtain:

1. an objective value of Ef:ol Pt (dy(pe) + 5 2:), which is negatively affected by the uncertainty



when there is less demand than expected,
2. a constraint on the available capacity of Zg:ol (di(ps) + & z) < C, which is negatively affected

by the uncertainty when there is more demand than expected.
Hence, an approach considering simultaneously these two worst cases, i.e., maximizing the smallest
revenue while guaranteeing feasibility for all possible realizations of the demands, will overprotect the
system, as no realization of the random demand yields the worst objective and resource utilization.
To address this issue and connect the robust optimization approach more tightly to the worst-case
value of the uncertainty, we consider instead the problem of maximizing the worst-case profit over
the set of scaled deviations that are feasible for the capacity constraint, 1.e.:

T—1 T-1
max > pede(ps) + min Y Py 2
t=() frm(

Te-1 . T—1 _
8.t Z 6tz,f, < C - Z dt(pﬁ):

b= =)

. ®
~A S Gz <A,

t=0
]Zt! < 1 V¢,

st pPP < py < PR VL

The following theorem provides a tractable equivalent formulation to the max-min problem given in
Equation (8).

Theorem 2.2 {Robust Formulation) The robust problem can be formulated as a convex program-

ming problem with only one new decision variable, called the reference price, and no new constraint:

T-1 T-1 _
max Zpt di{pt) — | Dz -+ Z Selpe — |
t=0 t=0
st Y dipe) SCH+A,
t=0
PP <y < P VR
Hence, it can be solved as efficiently as its delerministic counterpart.
Proof: The inner minimization problem in Problem (8) is feasible if and only if the constraint:
T-1_
> d(p) SC+A (10)
t=0

holds. Furthermore, the feasible set is obviously bounded and the worst-case scaled deviations
correspond to having 22;51 5; 2 as low as possible, so that none of the upper bound constraints on
z};;;} St z; will be tight at optimality. Hence, we can discard these constraints without affecting the

optimal solution. By strong duality, Problem (8) can then be reformulated as:

5



wl
max Zpﬁdt(pt)“‘" Aﬁ'?"z v +ur)

t=0
T 1,,.
s.t. Z di(pe) < C+ A, (11)
t==0
Sox— vy +ur = ped, Vi,
Pt < py < PP, g 4 > 0, Vt.

Problem (9) follows from interpreting y;" , Tesp. y; as the positive, resp. negative, component of

By (x — p¢), and therefore ¥ +y; as its absolute value. |

Analysis: The objective in the robust problem (9) has two components: (i} the nominal revenue,
and (ii) a penalty term, which penalizes the deviations (both upside and downside) of the decision
varinbles from a reference price z, common to all time periods. The unit penalty is equal to the
maximum amount & of demand uncertainty faced in the time period considered. The constraints
are the same as in the deterministic problem where the capacity of the resource has become C + A.

Section 2.4 provides further thecretical insights.

2.4 Theoretical Insights

Throughout this section, we will assume that no bound constraint is binding, i.e., pi® < pf < P
for all t, and that the capacity constraint is tight at optimality ST py) = C+ A

2.4.1 Optimal reference price
Let p’E‘t), t=0,...,7 — 1, be the optimal prices in Problem (9) ranked in increasing order (p’{*‘o) <
. < p’(“Tml)). The optimal reference price z* is characterized as follows.

Theorem 2.3 (Optimal reference price) At optimality, ¥ = pi., where s is the smallest integer
{s) g

such that:
> > (Z& ) (12)

Hpt <P{ )
Proof: Let p’("s) <z < p*("s +1) for some s. (10?_4) = —o¢ and p(T} = 00 by convention.) Then
the slope in 2 of the objective function in Problem (9) it —A+ Dy >p, +1) — Ltlpr< <, by, L€,
—A Ef_ 15— 2 Ztlp* <pl,y 5:, which decreases as z increases. Hence, the maximum over all real

numbers is reached at p(y), with s such that the slope is nonnegative on [p(s—1), P(s)] and negative on

[D(s)» Ps+1y)- Equation (12) follows immediately. "

Remarks:

1. If the decision-maker is very risk-averse and plans for the maximal amount of uncertainty

A = Eg;{f“ 5:, the optimal reference z* is equal to the smallest price p?ﬂ)‘



2. The optimal reference price never exceeds the 7-th smallest price (z* < p’(“,r) for any A), where

7 is the smallest integer s verifying Xy <ot & > iyt 8. (This is because A > 0.)

3. If 3, = & for all , the optimal reference price for the item is equal to p’E‘s) with s = t% ( e %—H .

2.4.2 Preliminary results

Let 7 be the set of time periods t for which pf = z* at optimality (from Theorem 2.3, we know
that 7 is nonempty), and let A* be the optimal Lagrange multiplier associated with the capacity
constraint in Problem (9). (A* = 0.) We only consider changes that do not affect the set 7. We firss

need the following lemma.

Lemma 2.4
(a) For ollt ¢ T, pf sotisfies:

(0 — ) i) + delp}) = & sgnlpi — =) (13)
Furthermore, x* satisfies:
(2= 3 Y &) + 3 dule) = B, (14)
teT el
as well as:
B < (@ - T+ dule®) < B, VEET, (15)

(b) All prices exceed the marginal value of the resource A* at optimality.
(0) Let de(pes ) = (s — N) Ay(pe) + Bolp) and () = (@ = X) Tyer &(@) + Toer (). Then:
(c-1) ¢:{-y ) and (-, \) decrease at A 2 0 given.

(c-i1) ¢e(pt, ), resp. ¥(x,-), increases at ps, resp. T, given.

Proof: (a) follows from applying the Karush-Kuhn-Tucker optimality conditions to Problem (9).
Equation {13) is obtained by maximizing in p; the unconstrained objective: (py — A*) delps) —
& sgn(py — x*) (py — =*). Equation (14) is obtained by maximizing in z the unconstrained ob-
sective: (z — A*) Dyer di(z) —~ Az, Equation (15) is obtained by writing the conditions for z*
to be the global maximum of the unconstrained function nondifferentiable at z*, with t € T
(p — X*) dy(ps) — 8elwe — ¥,

(b) Demand is always nonnegative (including in the worst case). Therefore, (A" — ) d,(of) (for
t g T) and (A* — o) dy(z*) {for t € T) are nonnegative. The fact that demand decreases in prices
allows us to conciude.

(c) At A given, ¢¢{-,A) is the derivative of {ps — ) ds{p:), which is a concave function (revenue is
concave, demand is convex and A is nonnegative.) This yields (i). Moreover, ¢:(pt, -} is linear in A,
with slope ~d,(ps), which is nonnegative since demand decreases in price. This yields (ii). The proof

for o is similar. 0



Remark: Once the set of 7 has been determined, the specific amount of uncertainty 5; in the time

periods in 7" does not affect ™.
We now characterize the optimal prices. These results will be particularly useful when we investigate

the dependence of the optimal solution on the uncertainty in Section 2.4.3.

Lemma 2.5
(a) The optimal reference and product prices are a function of the uncertainty as follows:
(i) For each t ¢ T, there exists a function Fi; such that:

oy = (8 sgn(p} — @) A")- (16)
Moreover, there exists a function Fy such that:
z* = Fy (AN, (17}
() There exists a function Fy such that:
= Fo((8; sgn(p — &"))s=0,..7-1, ). (18)
(iii) For each t, there extsts a Junction Fa such that:

pt = Fas((85 sgn(p} — #*))s=0,... 71, A). (19)

(b) The functions Fuy (for anyt ¢ T ) and Fy are monotonic in both arguments. Specifically,

OF

Ot us) = (2 o )] + (Fuon, ) — ), Pulon, ) 26T, (20)
U1

~1
§MF~—i(u1,u2) = (2 de [y (w1, ug)] -+ (Fi(un, ug) — uz) Zdt [F1 ’U'ls’”@)]) ’ (21)

Ouy el teT

which are both nonpositive, and:

28t gy m) = (2T FraCon,00)] + (Fian, ) — 00) & Pz, ) Bty £ 7 (22

-1
(ul:UQ) = (2 S G [Fy (wg, ug)] + (Fr{ug, ug) ~ ug) Zdt Al ul,uz)]) > EF (w1, us)],

teT €T teT
(23)

which are both nonnegative.

Proof: (a-i) and (a-ii) We know by concavity of the objective function that Equations (13) and (14)
have & unique solution, so that Fyy (for all ¢ ¢ 7) and F are well defined. A similar argument
applies to F using that E?: Ldpt) = C -+ A and the fact that the demand is a convex function.
(a-iii) combines Equations (16), (17) and (18).

(b) follows from differentiating Equations (13), resp. (14), with respect to uy = &3 sgn(pt — z*), resp.

8



uy = A, and ug = X*. The functions {p — A*) de(py), for t & T, and (& — X*) Lper di{z) are concave
at \* > 0 given (as sum of concave functions), and the demand is nonincreasing in the price, which

yields the sign of the partial derivatives. 0

When they can be expressed in closed form, the functions Fy, Fi, Fp and Fy provide valuable
insights into the impact of the problem parameters on the optimal solution. A key advantage of the
robust optimization approach is that this is much more frequently the case than in the traditional
stochastic framework, hence offering the decision-maker a deeper understanding of the problem at

hand. Section 2.5 illustrates this point when the nominal demand is linear in the prices.

2.4.3 Tmpact of uncertainty

In this section, we investigate the impact of the uncertainty (measured either in terms of total
deviation A or variability 5, at a specific time period t) on the optimal prices and the marginal value

of the resource. We will make the following mild assumptions to simplify the analysis:

Assumption 2.6 (Impact of the uncertainty) Increasing the uncertainly decreases the value of
the resource, in the following sense:

(i) The marginal value A* of the resource in the robust framework is always less than or equal to
the marginal value N of the resource in the nominal model.

(i) The marginal value X* of the resource in the robust framework 48 nonincreasing as the budget

A of resource consumption by the uncertainty increases.

Remark: We will show below that the condition %2\2; < 0 is eguivalent $o:

S A" + @ -3 T E () <0, (24)

te? teT

By concavity of the revenue function, we already know that:

S d ) + @ - 2 L) < - 3. (25)
teT teT teT
where the right-hand side is positive since demand decreases with price. This motivates the claim
that Assumpsions 2.6 impose oniy mild restrictions on tae demand function. In particular, Equation
(24) is trivially satisfied when the nomiral demand is Bnear in the prices, and it is easy to check
whether Assumptions 2.6 hold in any application by injecting the specific demand function into the
equations defining A*.
Furthermore, Assumption 2.6 (i) is the more critical assumption of the two, and is used through-

out our analysis. We only use Assumption 2.6 (ii) to study the impact of A on the prices.

This allows us to analyze the direction of change in the prices when uncertainty is incorporated into

the deterministic model.



Theorem 2.7 (Comparison with nominal prices)

(a) Optimal robust prices are always smaller than their nominal counterparts if they strictly exceed
the reference price.

(b) Optimal robust prices that fall strictly below the reference price are smaller than their nominal

counterparts if and only if the uncertainty remains below a threshold, specifically:
5 < —(8 = N di(o)- (26)

Proof: Using the notations of Lemma 2.4, the optimal price at time ¢, t ¢ 7, satisfles: f; (P, A) =
& sgn{p} — =*) with fi(pf, \*) = Filer, XY + (A — % dt(pt). Therefore, we have: fi(pf, A7) =
& sgn(p — z*) — (X - )\*)a; (pF). Since £(5r, X") = 0 and fi(-, A) decreases (from Lemma 2.4 {e)),
p} <7 if and only if:

e sgn(p; — 2*) ~ (A = X") delf) 2 0. (27)
(a) and (b) follow by distinguishing between pj < z* and pf > ¥, using that nominal demand

decreases in price and invoking Assumption 2.6 (i). 0

Remark: Low-priced items with high uncertaihty see a price increase from their nominal values.
Intuitively, the decision-maker reduces the sales at that time so that capacity can be reallocated to

more profitable time periods.

Theorem 2.8 analyzes the dependence of the optimal prices and the marginal value of the resouzrce
on the parameter A, as the 5: are kept constant. In this context, increasing A can be interpreted as
increasing the risk aversion of the decision-maker. The key insight of Theorem 2.8 is that, provided
that sgn(p} — z*) remains constant for all ¢, i.e., provided that we consider changes small encugh,
the optimal prices, the reference price and the marginal value of the resource all decrease as the

decision-maker’s degree of conservatism increases.

Theorem 2.8 (Impact of the budget of resource consumption by the uncertainty)

(a) The marginal value of the resource satisfies:

O P x) D) + 3 Gt Busonte ~x*),/\*)&;(pz‘)} (ifﬁm ) 3 e *J)

teT te’T teT
(28)

where %—El %Elﬁ and —(%é are defined in Equations (21)-(23). From Assumption 2.6, the marginal
value of the resource decreases in the budget of resource consumption by the uncertainty.
(b) The optimal price at time 1 (both for t € T and t & T ) satisfies:

p;
<o (29)
Specifically,
82'){; _ 6F}t * % 8)\*

10



o 0w _or oF o)
A 1 1 * i
A (A ) 3x A, (31)
hore O OF1 g OF fred i . . . .
ere ﬂ BTS’ and %% are defined in Equations (21)-(23) and M is defined in Eguation (28).

A higher degree of risk aversion will decrease all optimal prices.

(A ) +

Proof: We will prove (a) and (b) simultaneously. leferentlatmg Equations (13) and (14) wish
respect to A yields Equations (30) and (31). The sign of Bﬁ foliows from injecting M < 0 from
Assumption 2.6 and the sign of the partial derivatives from Lemma 2.5 into Equations (30) and (31).
Furthermore, differentiating Etwo di(p}) = C + A with respect to A ylelds:

9
Z Z =X (p}) = (32)
A e tg’f
We obtain Equation (28) by reinjecting Equations (30) and (31) into Equation (32). O

Remark: The robust problem with A = 0 is not equivalent to the nominal problem since the choice
of A = § does not set the 5. to 0. Moreover, the marginal value of the resource and the optimal
prices will exhibit discontinuities when the optimal prices move above or below the reference price,
i.e., when the set T changes. This explains why the optimal prices in the robust framework are not

always smaller than the optimal prices in the nominal model, as formalized in Theorem 2.7.

Finally, Theorem 2.9 establishes that increasing the uncertainty at time t does not necessarily de-
crease the optimal price pf. Instead, the optimal price converges further towards the reference price.
We keep A constant, which is justified for instance when this parameter is selected empirically using

historical data, and an increase in 5 is not immediately reflected in its value.

Theorem 2.9 {(Impact of the uncertainty at each time period)
(a) The marginael value of the resource increases, resp. decreases, when the demand uncertainty
increases at a time where the price is strictly above, resp. strictly below, the reference price.

(b) Fort ¢ T, the optimal price P} converges towards the reference price ¥ as 5 increases.

Proof: (a) Differentiating 3 g7 Qe[ F1s(Bs sgn(pt—2*), X))+ Dser ds[Fy (A, A)] = C+A with respect
to &, for some t ¢ 7 yields {after dropping the arguments of the partial derivatives for notational

convenience):
o OF 1 =, o OX OFs OF,
sgnl = 3°) RO+ G | 2B, A+ gy, 286 (33)
or eguivalently: OF:, =
aNF .. g‘“'d’t@?)
— ”"Sgn(Pt X ) aFls M’ {3'@)

* l
' 2 B Zd

s&T

11



Let a¢ be such that =% %’3 = —sgn(p* — &*) a; in Equation (34). From Lemma 2.5 (b) and the fact

that the demand decreases in the prices, we have: ax < 0. (a} follows immediately.

(b) Differentiating Equation (16) with respect to 5; and injecting Equation (34) yields:

BF ) *
OFu | Fﬂ'd,(pt

= = sgn(p; — ") 5—

6u1 6Fl.se "' 8Fl

t .

5 20 30 + it LA
s¢T 2 seT

(35)

£
From Lemma 2.5 (b), the coefficient b; defined such that %:SIL = sgn(p} — =*) by is nonpositive. U
¢

2.5 Example

In this section, we illustrate the results above on the example of additive nominal demand, ie.,

nominal demand that is linear in the prices:
di(pe) = ax — by, with ag, by >0, Vi (36)

Because the mathematical expressions follow directly from injecting Equation (36) into the framework
developed in Sections 2.3 and 2.4, we state them without proof. As before, all the results (with the
exception of the robust formulation)} are derived assuming that the capacity constraint is tight at
optimality and that the prices do not reach their bounds. This situation is commeonly encountered

in practice when demand is linear in the prices.

2.5.1 Robust formulation

The robust problem when the average demand s linear in the prices and uncertainty is additive can

be formulated as: 71 T1
mex  »_ pr{ag—bepy) —~ |Az+ S Silpe —
t=0 t=0
3
s.t. Zbﬁpt> }:at (C+ A), (37)
P < py S PP, VR
2.5.2 Optimal prices
Let T = {t|p} = z*}. The optimal price at time ¢ satisfies:
at——&sg;g(pf —Tl X, g,
;= t 38
Dy (38)
ez =8 X ifte7.

2 2 ter bt T

This defines the functions Fy; and Fy in Equations (16) and (17).

12



The impact of uncertainty on the optimal prices at each time period has two components:
e 2 term that is specific to that time period and depends on the maximal deviation allowed Bt

o o term that depends on the change in the marginal value of the capacity and is common to all

time periods.

While the fact that uncertainty exists always make the resource as a whole less valuable (A* < )
and drives prices down, the specific uncertainty at each time period might drive prices up or down.
In particular, pf < P} if and only if (i) pf > =™ or (i) pf < 2 and 5 < be(X" — A*). In other
words, it is optimal to increase prices when prices are low and uncertainty is high. This allows the

decision-maker to re-allocate some of the resource to a more profitable time period.

2.5.3 Optimal Lagrange multiplier

The marginal value of the resource as a function of the uncertainty is given by:

Sieolos + b sgnlps —2*)] - 2C +8)

A = (39)
Yo be
This defines the function Fy in Equation (18). In particular:
. T Zf_ 15, b: sgnip} — =) —
=X+ 717 (40)
1==0 Vi

From Theorem 2.3, we know that Zr{;bl 8; sgn(pt — z*) < A at optimality, so that A* < A7, which
satisfies Assumption 2.6 (i). We also note that:

AN 1
—_— = (41}
8~ SIth
which is negative and thus satisfies Assumption 2.6 (if), and:
oN* .
- sgnipt — =), (42)

8, Sdb,

5o that M indeed increases, resp. decreases, in the maximum uncertainty 5 at time ¢ when the

optimal price at time t strictly exceeds, resp. falls strictly below, the reference price z*.

2.5.4 Optimal prices as a function of uncertainty

The optimal prices are piecewise linear in the uncertainty, measured by &; for all t. Specifically:

as — ¢ sgnipt —a*) .
o = 15 5 e, + & sgn(pt —z9)}] - 2C + A) P ¢ , t¢T, 49)
=

2 Z'—G Et Tart_A N
T —2%;2_‘*57, ifteT.
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It follows that:

1 .

. - ——, ift ¢ T,
o _ ) IRt ”

oA w——T———ml ifteT .

Y1z be
and: 1 . :
" +—Tw——_ csgn(pf —2*), ift¢7T and s =1,
o _ [ b Yiob ] =) (45)
035 % . ET_}“}!)M - sgn{pt — z*), otherwise.
oy VT

The optimal price at time ¢ decreases when the decision-maker’s degree of conservatism increases, and
converges further towards the reference price 2* when the uncertainty at that time period increases.
Moreover, the optimal price at time ¢ increases, Tesp. decreases, when the uncertainty at a time
period s for which p} > «*, resp. p; < «*, increases. '

Therefore, the reference price plays a crucial role in understanding how unceriainty affects the

optimal prices in the single-product problem with additive uncertainty.

3 Single-Product Pricing with Multiplicative Uncertainty

3.1 Description of Uncertainty

We now present the robust optimization framework in the case of multiplicative uncertainty. As
before, we assume the average demand, resp. revenue, at time ¢ is convex, resp. concave in the

prices. The random demand is modeled by:
dy = dy - (1 +8¢), (46)

where & is again a random variable with zero mean and symmetric support [»—3}, 3}] independent.of
the price p; (8; < 1). The half-length of the uncertainty interval in the robust formulation will hence
be equal to d; - 5 for all t, vielding the following model for the demand:

ds ="~Et+gggt 2y lzti <1, (47)

where d; verifies Equation (1).
As in Section 2.2, we consider a box uncertainty set with a budget limiting the deviation in the

utilization of the resource. Here, the uncertainty set depends on the prices:

-

(Since P < py < pP= for all ¢, we choose A < Y5 o 8 ds (pP™).)

T3

Z dy dt(pt) 2t

teel)

<A, |al <1 w} (48)
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3.2 The Robust Optimization Approach

Motivated by the approach developed in Section 2.3, we seek to maximize the worst-case revenue,
where the worst case is taken over the set of allowable scaled deviations, and define the robust

problem in the presence of multiplicative uncertainty as:

T—1 T,
max e dt (p,f) -+ min Z Py (St dt (pf,) Z{l
=0 t=0

AT S T—1
a.t. AN Z étEi}(pg} z; < min (A: C - Z &t(pt)) s
te=( t=0

(49)
bzl < 1, W,

T-1
5.t Z dilpy) < C+ A,

t={)

PR < py < PP, VR
Theorem 3.1 provides a simpler nonlinear formulation of the robust problem and describes how it
can be solved efficiently.
Theorem 3.1 {(Robust Counterpart and Algorithm)
{a) The robust problem in the case of multiplicative uncertainty can be formulated as a nonlinear

problem: Tl -1
mex Y pede(pe) ~ |AT+ D 81 di(pe) ips — 2|
t=0 t=0

5.t Ti&(pt) <CH+A, (50)
t=0
PP < py < I, VI
(b) If the uncertainty ol each time period satisfies:
o
5, <1+ min ey pe) (51)
PPN <p <P 2y (pg)
Problem (50) for any given z is convez, and hence can be solved efficiently as o function of the
reference price.
(c) Let the function F be such that, for all @, F(z) is equal to the optimal objective of Problem (50)
solved at = given. There exists z* such that F is nondecreasing on (-o00,z*] and nonincreasing on
[x*,00). Hence, the optimal reference price in Problem (. 50) is equal to z* and can be found efficiently

using gradieni-ascent methods.

Proof: (a) is a direct extension of Theorem 9.9 to the case with multiplicative uncertainty.

(b) At z given, the part of the objective function that depends on p; is equal to p; dy(ps) — 3, dy () ipe—
x|, for each t. The second derivative of this function is equal to: (1—3;) (ps E: {pe)+2 Ejt (pe)) -+ E;’ (py)
when p; > &, which is smaller than or equal to p a;f (o) + 23;(39,5) ~28 3;(pt) (because p; > = and dy

is convex), and {1+ &) (ptag(pt) + 23;(19,5)) — By Ei: (p:) = when py < «, which is smaller than or equal
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il T wnd o~ e j—
to py dy (pr) + 2dy(pe) + 26 dy(ps) (because p < @ and d; is convex). Moreover, the average demand
decreases in the prices, and straightforward calculations show that the slope at the breakpoint z
decreases. Therefore, for the objective function at « given to be concave, it suffices that, for all ¢

and for all p; such that pP'® < py < PP, the condition:
—tt - —~
peds (pr) + 23y(pe) — 28 dy(pe) <O (52)

holds. This yields Condition (51) immediately.
(c) Let F be the objective function of Problem (50) and let F' be its maximum value, function of
the reference price, over the set of feasible prices. Let also and z’ be any two numbers such that

x < 2, and let the vectors p, resp. p’ be the optimal prices at x, resp. z' given, that is:

T—1 T—1
F(z) = F(p,z) = Y_ prd(pe) — {Aw + 3" 6y delpe) |pe — m%} , (53)
t=0 1=0
and B T-1 -1
F(z') =F(p',2) = 3 plde(p}) - [A o'+ Y 6 di(p}) b~ rc’!] ‘ (54)
a0 =)

It is straightforward to check that:

'~z e —-pil, ol <z,
pi—a| =4 o' —z—|p,~a|, fzlpi<a, (55)

lp} ~ x| +z — ', otherwise.

This yields:

F(a) = F(p/,z)+ (' —2) [“A+ 3 Gdph) - Y fiat{pi)} +2 S &dph)lpl—=| (56)

tpy >’ tpy e’ tle<p, s’

Since F(p’, ) < F(z) by definition of ' and 3 ye<p <o & d(0)|ph— =zl < (2"~ ) Ltle<, <o’ & ds(}),

we obtain after re-arranging the terms:

Fla') < F(z) + (&' — 2) [—m- I AREDY Es;"&t(pg)]. (57)

tpzw tpy <=
Similarly, we derive a lower bound on F'(z') by expressing lp; — 2’| as a function of |p; — x| and using
that F{z') > F(p,z') and Dtle<p<al 8 dy(pe)lpe — 2} = 0. Combining these results leads to:
m _ FE&)-Fe)
At > 8 du(pt) Z 8 de(pe) < + Z FEACAREDY 8 di(p}). (58)

tpe > tlpy Lo tlphza tlpl<a

From the right-hand side of Equation (58), we conclude that F (z') < F(z) for all z < ' such
that —A + Yy e &, ds(p}) — Yot <z 3, d:(p}) < 0. Since the vector p’ depends on z' but not on ,
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—A+Yipss A Ytpi< 6, dy(p}) is piecewise constant, nonincreasing in . Therefore, there
exists a threshold value which depends on 2’ and is noted z +(z") such that, for all ', F' decreases
on [z*(z), ). z¥ (') is defined as:

r*(e/) = min {yi _Av Y R - X HEGh < o} . (59)
tlphzy tpi<y
Tt follows that F' decreases on [miny 2 (2"), 00).

Similarly, F is nondecreasing on (~00, maXg z~ (z)], where z7 (z) is defined for all x as:

2 (z) = max {yl —aw X RAEG) - Y B 2 o} . (60)
tip>y tlp <y

Therefore, the giobal maximum of F, noted z”, belongs to [max, o~ (), ming 7 (2)]. Let p* be
such that F{z*) = EF(p*,z*), that is, p* = argmax F(.,z*). Because z* is the global maximum of
F', we also have: x* = argmax F(p*,). Hence, =* is the point where the slope of F(p*,-) changes
sign. It follows that z¥(z*) = 27 (z") = 27, and F is nondecreasing on (~o0,z*] and decreasing on
[z*, 00). O

Remark: As in the case with additive uncertainty, the objective in the robust problem (50) has two
components: (i) the nominal revenue, and (ii) & penalty term, which penalizes the deviations (both
upside and downside} of the decision variables from a reference price z for the item, common to
all time periods. The unit penalty is equal to the maximum amount of demand uncertainty faced in
that time period, measured by the half-length of the uncertainty interval &y dy (p¢). The constraints

are the same as in the deterministic problem where the quantity of resource available is €'+ A
3.3 Theoretical Insights

3.3.1 Optimal reference price

Let p’&), t=0,...,T — 1, be the optimal prices ranked in increasing order (p’é‘o) <...< p’E‘T_E)).

Theorem 3.2 (Optimal reference price) The optimal price satisfies: =% = p*("s), where & is the

smallest integer such that:

> S di(p}) > 5 {Z S dy(pf) — ] (61)

tip} <p(s)

Proof: When the prices p; are set to their optimal value pi, t = 0,...,7 — 1, the objective in
Problem (50) is piecewise linear in the reference price z, with slope 345 6t di(p}) sgn(pf —z*) — &
or equivalently: STt Sy de(pf) — A =2 pRr— 5y ds(p?) {for z* #p}, t=0,...,T —1.) The value of

the slope decreases as z* increases, and optimality is reached at z* for which the slope changes sign,
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which yields Equation (61). |

3.3.2 Preliminary results

As in Section 2.4.2, let 7 be the set of time periods for which pf = z* (from Theorem 3.2, the set
T is nonempty.) Let A* be the optimal Lagrange multiplier associated with the capacity constraint.
We only consider changes which do not affect the set 7 and assume pP < pf < p"™ for all t ab
optimality.

Lemma 3.3
(a) For t ¢ T, p} satisfies:

(01— AYA, (o) + Belo) = Besglp} — ) [(oF — =) Tlod) + o) (62)

or equivalently: Tl) AN —a 8. s gn(pt — z*)

: o+ o = 63
T T 1 Gsgnlri — o) (09
Purthermore, x* satisfies: . 3
ot N Sty + Y di(m") = A, (64)
(€T T
and for any t € T: L B _ .
~opdy(x) < (2 — W) dy(2") + di(z7) < &y def{z™). (65)

(b) At optimality, all prices exceed the marginal value of the resource ™.
(¢) Let dy(pes \) = (9 — X) dy(ps) + delpe) and $(z, ) = (@ — N) Tier @(@) + Tier dil@). Then:
(c-3) ds(-, Ay and (-, A} decrease ol A >0 given.

(c-ii) de(ps,-), resp. P(z,-), increases at p, TesP. T, given.

Proof: The proof of (a) and (c) is similar to Lemma 2.4 and we omit it here. For {b), we use Condition
(65) and note that worst-case demand is nonnegative, so that (z* — A*) (o) < —(1 - 5e) du(})
requires z* > A*. It follows that pj = A” for all p} greater than «*. For p} < z”, Condition (63)
yields: pi + di(p}) Jd,(p}) = (W + & 8:)/(1 + &) or equivalently:

e e @ =NE )

P - A - . 66
t 1+ 6 d, (p}) (66)

Since z* > A*, the right-hand side is nonnegative and p; > A*. Therefore, all prices are greater
¢han or equal to the marginal value of the resource. If at least one price was equal to A*, then in
particular pj = A* for the time period ¢ corresponding to the smallest product price. If pf < z* for
that ¢, then from Equasion {66) we have 2% = A* (and dy(py) = 0), and if z* is indeed the smaliest
price then the condition o* = X* is trivial. Reinjecting into Condition (85) yields di(z*) = 0 for all
t € 7T (since 8 < 1 for all t), which would violate Equation (64). Hence, pj > A* for all ¢. 0

We now provide a general characterization of the optimal prices.
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Lemma 3.4
(o) The optimal reference and product prices are a function of the uncertainty as follows:
(i} For each t ¢ 7', there exists a function Gz such that:

P = Glt(gt sgn(pf — "), A", z"). (67}
Moreover, there exists a function Gy such that:
¥ = G (A X). (68)
(i) There exists o function Gz such that:
N = Ga((8 sgn(py — 2*))s=0,..7-1, )- (69)
(i) For each t, there exists o function Gt such that:

it = Giag((35 sgnlpl — &) s=0,...7—1: A). (70)

(b} The function Gy is nonincreasing in its first argument and nondecreasing in its second. Specifi-

colly:
8G1 —cf i -1
S (w1 u2) = (2 ST 4Gy (w1, u)] + (Galur, ug) — us) >4 iGl(u;,uz)}) ; {71)
U1 teT teT
oG -
— ¥ s
> (uy, ug) = (? S GG (w1, ug)] + (Grua, ug) — u2) > d, {Gl(ui,uz)]) 3 dy[Gr{u1, up)]-
U2 teT teT teT
(72)
Proof: Is a straightforward extension of Lemma 2.5. o

While it is possible to obtain partial derivatives of pf, t € T, in this broad framework, we will focus
on a special case that allows for more powerful results. We make the following agsumption:

Assumption 3.5 The function py = pt -+ %%Q% increases in py, for all t.
t\Pt

This assumption enforces that the ratio of the marginal revenue over the absolute value of the
marginal demand decreases in the price (since 3; {ps) < 0). This is equivalent to limiting the curvature

of the nominal demand at each time period:

i P 2
dy(pe) €2 %, Vt, pt- (73)

Note that the curvature is already limited by the concavity of the revenue. Nominal demands that
are linear in the prices obviously satisfy Condition (73).
Lemma 3.6 Under Assumption 3.5, there exisis a nondecreasing Junction G, t & T, such that:

. = M — z* &, sgn(pt — *
ptmait( 0 sgn (7 . J) . (74)
1 — 8, sgn(pf — z*)
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Proof: Is a direct consequence of Equation (63) combined with Assumption 3.5. o

Remark: Since Gy, only depends on the average demand, the impact of the uncertainty on the
o ®

M — Gy sgn*(pt *:2: l This
N 1 -6y sgn(p} —=7))

depends on the time period only through 8 sgn{p; —z*). L pf < z*, this parameter is a convex

prices pf (with p} # z*) is captured in its entirety by the parameter

combination of A* and x*, with * receiving more weight if there is more uncertainty. If pf > o,
this parameter Temains strictly smaller than \*, since z* > \* from Theorem 3.3, and the coefficient
of 2* becomes more negative as the uncertainty increases.

Section 3.4 illustrates the insights that the decision-maker can derive from the robust optimization

approach in the case of average demand linear in the prices.

3.3.3 Impact of uncertainty

"The results in this section require that Assumptions 2.6 and 3.5 hold. We start by comparing the

optimal prices with those obtained in the deterministic model.

Theorem 3.7 {Comparison with the nominal model)

(o) If ¥ < X7, then all the optimal prices in the robust model have decreased from their nominal
nalues.

(b) If * > X, then the robust prices have always decreased from their nominal values when they
exceed the reference price in the robust model, and have decreased from their nominel values when
they fall below the reference price if and only if the uncertainty s below o threshold:

R
5f,-< =
2 — A

{75)

Proof: We prove (a) and (b) simultaneously. We know that py — pt + ds(pt) /d(p:) increases in p;
for all t. Hence, from Equation (63) with ¢ ¢ 7, pi < p; if and only if the condition:

N — z* 8 sgn(p} — z*)

- <X (76)
1 — & sgn{pf — z*)

holds. This is equivalent to:

& sgn(p} — z*) (=" =X} > A ~ A (77)

This condition is always satisfled if ¥ = T ot < ), Equation (77) becomes:
- N A
8y sgnfpi — ") < o

— (78)
-2

which is always satisfied because the right-hand side is greater than 1 {since A\* < z* < X)) and
5: < 1 for all ¢. If * > X, Equation (77) becomes:
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v ® * X* — A
8 sgn(pi — z*) > 5 . (79)

mx*

We conclude by distinguishing between p} < z* and p; > z*. o

Remark: In contrast with the case of additive uncertainty, the threshold in Condition (75) does

not depend on the time period considered.

The parameter A, which represents the maximum allowable use of the resource by the uncertainty
and can be interpreted as the decision-maker’s degree of risk aversion, affects the optimal solution

as follows.

Theorem 3.8 (Impact of the maximum use of the resource by the uncertainty)

(a) The optimal product prices below or equal to the reference price, the reference price and the
marginal value of the resource are all piecewise nonincreasing in the budget of uncertainty impact.
(b) Let t be a time period for which the optimal price exceeds the reference price. p; decreases with

A if and only if:

- oxt -
5“(‘35 (Zdt< )+ (27— AT Zdt(m ) (80)
te? teT
which s equivalent to the following two conditions holding simultaneously:
S @) + (@ -2 38 (21 <0, (81)
teT el
and
O o -
BA < 8 [Z d(z*) + (z* — X¥) Z d, (m*)] : (82)
T teT

Proof: (a) %’)g < 0 is a direct consequence of Assumption 2.6. Differentiating Equation (64) with
respect to A yields:

& p w1
%%ﬂ ( Zdt ) {2 PICACHECAEPY) Zﬁt(m*)} . (83)

t’:‘T ted ted

Since EK < 0, it follows that m < 0 by concavity of the revenue, convexity and monotonicity of
the demnand. Moreover, differentiating Equation (63) with respect to A yields, for t ¢ 7:

ap 1 CaEnd @] (ox_oa .
BN T 1— 5, sgn(pt — 7°) {2 @) ] (8A B 0 soniei m))' (84)

s
%‘% < 0 for pt < z* (ie., sgn(p} — z*) = —~1) follows immediately from Assumption 3.5.

o
For pf > z*, %% < 0 is equivalent to: o Op* -

BA ~ D

. (85)
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We obtain Condition (80) by injecting Equation (83) into Equation (85). £

Remark: High prices (those above the reference price) decrease as the decision-maker’s risk aversion
A increases if the uncertainty 5: is “small enough”, i.e., below a threshold. If the uncertainty is too
large, then it is optimal to increase those prices in order to decrease the nominal demand and allocate

the resource to more valuable time periods.

We now investigate the impact of the maximum uncertainty at each time period, 3}, on the optimal

prices, for t ¢ 7.

Theorem 3.9 (Impact of the uncertainty at each time period) The optimal prices converge
further towards the reference price as the uncertainty increases. Specifically:
op; _ (V- a")sgnlp} —=7)
88 Ghu(e) 11— 8 sgn(p} — =)

(86)

Proof: Follows by differentiating Equation (63) as a function of 8: and invoking Lemma 3.3 (b) and
Lemma 3.6. 0
3.4 Example

In this section, we apply the robust opfimization approach with multiplicative uncertainty to the

case where the average demand is linear in the prices, lLe.:

Et (pz) = qp — by Py, with o, by > 0, Vi (87)

Linear functions satisfy Assumption 3.5. The results follow immediately from injecting Equation

(87) into the approach developed in Sections 3.2 and 3.3. Therefore, we state them without proof.

3.4.1 Robust formulation

The robust problem when the average demand is linear in the prices and uncertainty is multiplicative

can be formulated as:

T-1 T-1
max ¥ pg(as —bipr) = |AZ -k > 8¢ (ag ~ bepy) Ipe —
=0 t=0
71 T--1
88
s.t. thptZZat—(C»kA), (88)
t==0 t=0

it < pp < X, VE

3.4.2 Optimal prices

As in Section 2.5.2, let z*, p* be the optimal decision variables of Problem {50), and A* the optimal
Lagrange multiplier for the capacity constraint Ef_;};l di(p;) < C+ A, Let also P*, 1" be the optimal
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prices and Lagrange multiplier in the nominal problem. We assume that the capacity constraint
is tight both in the nominal and the robust models, that pP* < pf < pi® for all ¢, and that
7 = {t|p} = 2*} does not change with infinitesimal changes in the parameters. As before, we denote
by 7 the set {¢|p} = z*}.

The optimal price at time ¢ satisfies:

ay N2 b; sgn(p} — o*) i dT
=] 2020 Bt =) ¢
Py = S s — )\ (89)
teT, , ifte7.
2 et by T
As expected, pi < Py if and only if (o — ) 8 sgnlp} — @) > A* — X", The robust prices p} with
t ¢ T differ at optimality from their nominal counterparts as follows:
NN —2¥) & sgnlpf — 2¥)
2 2(1 ~ & sgn(p} — ")

pi =P + (90)

Hence, the impact of uncertainty on the optimal prices at each time period has two components:

e 3 term that depends on the change in the marginal value of the resource M~ X" and is common

to all time periods,
o a2 term that depends on the time period through EN sgn(pf — z*) and is proportional to the
difference between the reference price x* and the marginal value of the resource A
3.4.3 Optimal Lagrange multiplier

The marginal value of the resource as a function of the uncertainty, obtained by injecting Equation
(89) into X ier o) 4 Sher di(z*) = C + A, is given by:

o i e+ (B/2) =20+ D)
Af2 '

(91)

where:

-1
A= by +
Z %1—&39%3} —:r;)
B (3:1 8s by sgn(pf — z*) ) _ (Ete’rat—ﬁk)_
=% 1 - 8 sgn(p; ~ =) Lter bt

Hence, the marginal value of the resource decreases as the decision-maker’s risk aversion, ie., the

(92)

maximum allowable use of the resource by the uncertainty, increases:
ON* 2

o8 =4 (93)
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The marginal value of the resource increases, resp. decreases, in the maximum uncertainty d; when the

optimal price at time ¢ strictly exceeds, resp. falls strictly below, the reference price z*. Specifically:

OX* 2b(z* — A) sgn(pf — z*)
35 A(L—B8sgnlp; —a")

(94)

3.4.4 Optimal prices as a function of uncertainty

The optimal prices are piecewise rationsl functions in the uncertainty (where the piecewise part

comes from the dependence in ):

Et%ﬂ'a’f —-A N
] - +’2’”; tET,

= O ?S;sgn(p?~a:*) _ (ES_E-E_\TGS——A) TS 1— 8 sgn(p} —2*)/2 1T,
2bt 4(1 ~ b6y sgnip} — ™)) seT bs 2 (1 — & sgn(p} — z*))’
(95)
where A\* is given by Equation (91). It follows that:
1 1
- E : + ’ te T)
A

1 1% Sk 1 1y 4
1 - 8y sgn(p; — =) {Eétsgn(pt m)(z Sse'rb;rz) K]’ te T

As expected, we find that p} at ¢ such that pf < z* and z* decrease with A, and that p} at t such that
pi > x* decreases with A if and only if the uncertainty at that time period falls below a threshold,

A -1
5 <2 |14 ——— | . 97
£ [ 2236‘1'53] ( )

Since 23 cer bs < A by definition of A, the right-hand side is less than 1. Prices increasing with A

here:

are therefore prices that are already high (above the reference level) and correspond to time periods
with high uncertainty. This allows the capacitated resource to be reallocated to more profitable time
periods.

We can also formulate the dependence of the prices on the uncertainty at each time period

explicitly:
(z* — M) sgn(pf —x~) {1 b (1 1 ﬂ '
- - + , ftgT and s =1,
2 (1 — 8¢ Sgn(pf — w*))z 71: 1— sgn(pz‘ . m*)
Op; 1-— gt sgn(p* — m*)/g b (3:* . )\*) s * o
— L = ¢ bs gn(pt — z*) £t & T and .
%5 1= b sqn(pt —a°)  A(L— 8 sgn(p} — %))’ if t ¢ 7 and s # 1,
b (z* — \*) sgn{ph — z*) .
: ’ 7.
L Al -6 sgni(ps — $*))2

(98)
As established for general demand functions, if ¢ & T and s = t, the price converges further the
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reference price, since by (1 + 1/(1 — &, sgn{ps — z*))) < A by definition of A.
Therefore, whether a price is above or below the reference level plays a key role in understanding

the impact of an increase in the uncertainty at that time period on all optimal prices.

4 Multi-Product, Multi-Resource Pricing

4.1 The Deterministic Problem

In this section, we extend the frameworks described in Sections 2 and 3 to the case of multiple
products and multiple resources. We first present the deterministic model. Let n be the number of

products. The (nominal) demand at time ¢, which is a vector of size n, is given by:
dy = ag — By Py (99)

where ay is a known vector of size n and By is a known positive definite matrix of size n X n, whose
diagonal, resp. off-diagonal, elements are positive, resp. nonpositive. This models the fact that an
increase in a product’s price decreases the nominal demand for that product, and increases or leaves
unchanged the nominal demand for other items through a substitution effect.

There are m resources, each available in quantity Cy, ¢ = 1,...,m, at the start of the horizon. The
resources are never repienished, and can for instance represent the total number of seats available
on an aircraft on a specific leg or rooms available in an hotel on a specific night. Let F be the
resource-product allocation matrix of size m X n, whose (i,7) element is equal to 1 if item j uses
resource i and 0 otherwise. Let also p™®, p®* be the lower and upper bhounds on the price vector
at time £. '

When the demand is deterministic, the problem of finding the optimal prices to maximize revenue
is formulated as: Ty
max z phds

t==0
T—1

d; = a; — By pe, Vi,
piin < py < pP, VI

The following theorem characterizes the deterministic problem and the optimal prices.

Theorem 4.1 (Deterministic Problem)

(a) Problem (100) is equivalent to the quadratic programming problem with linear constraints:
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7-1
max »_ pias — Bepe)

t==0
T-1 -1
1
st S FBupez Y Fay—C, (101)
=0 =0

pPP < py < PR, VL

(b} Let X" O be the optimal Lagrange multiplier for the capacity constraints. Then the optimal price

vector at time ¢ verifies:

e min : max 1 ~1 I

P = max { pg ,minqpg ’E[Bt at+¥‘)\] , (102)
where mazimum and minimum are taken componentwise.

Proof: Is an immediate extension of Theorem 2.1. O

4.2 The Case of Additive Uncertainty
4.2.1 Generalities

We now incorporate uncertainty to Problem (100). We first assume that uncertainty is additive, Le.,

the demand is modeled by: _ N
dy = d¢ -+ (diag d;) z¢, (108)

where z; is the vector of scaled deviations of the demand at time ¢. The uncertainty set is a box
uncertainty set (enforcing that scaled deviations cannot exceed 1 in absolute value) cut by budgets
of resource utilization by the uncertainty for each resource. Let A be the vector of size m of these

budgets. The uncertainty set is:

|

where the absolute value is taken componentwise and e is the vector of all one’s.

-1

Z F(diag 8¢z
t=()

< A, %Ztl < e,\ft} , (104)

Following the same reasoning as in Section 2, the counterpart of Problem (77) is formulated as:

-1 Tl
max Z p; (as — By pg) + min Z p} (diagdy) zt}
t=0 =0

T-1 T-1
8.t —~A g Z F(diag St) Z¢ < min (A, C— Z Flas - By pg)) ,
=0 t==0

izti <e Vt:

T—1 T—1
st. S FBips> Y Far~(C+A),
t==0 t=0
piit < py < pP* VE

(105)
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We will distinguish two cases in analyzing Problem (105): (i) multiple products and one resource,

(ii) multiple products and two or more resources.

4.2.2 Formulation with one resource

The case with only one resource (F = ') is an immediate extension of the framework described in
Section 2, as Lemma ?7 still applies. Hence, we state the results without proof.
Problem (105) is equivalent to a quadratic programming problem with linear constraints, which

involves 27 - 1 new variables and T’ new constraints (beside nonnegativity):

T—1 -1
max Yy pj(ac~ Bepi) — [Am"*“ S (yy +yi)
£==0) t=0
st. ¥y —yi = (diagc’ﬂ} (ze - ps), Vi,
1

T-1 (106)
z ¢ Bips > Z ea; — (C+A),
t==0 t=0

>0, yi,yi 20, pP™ < py < pP*, Vi

Tt can also be formulated as a convex programming problem with linear constraints, which involves

only one new variable and no new constraint (beside nonnegativity):

T-1 T-1
max »_ pylas—Bypg) — [Az+ > 8ilpt — zel
£=0 =0
T—1 T—1
10
8.%. Ze’Btpta Ze’atw(c-i—.é.), (107)
t=0 =0

z =0, Pén.m <P Spglaxa V.

Problem (107) can be interpreted as a deterministic problem with capacity C + A and a penalty
term in the objective, which penalizes deviations in the prices from a target level z. This target price

is common to all products and all time periods.

4.2.3 Formulations with two or more resources
We now consider the case with at least two resources. We will need the following lemma.

Lemma 4.2 (Bilinear robust formulation) Problem (105 ) is equivalent to the non-convex prob-

27



lem:

T Tl ! Tl
max Y pt(as~Bept) — IA'(?&' +x7)+ (C" > Flag— B Pt)) X+ eyl + y{"}}
t=0 £ tu=()
st (diagdy) F'(x~ —xt — %) —y& +y; = (diag 8:) b, Vi,
T-1 T3
STEBips >y Fa— (C+4),
t==() =0

pP™ < pe < PP W,
X7, X7 R, ¥y, ¥y 20, V.
(108)
Proof: Follows from rewriting the constraint STl P(diag 8¢) zy < min (A, C-Y ) Flay ~ By pt))

as:

-1 Tl Twt
S~ F(diag8y)z < A and ) | F(diagdy) z < O 3" Fla: — By pe), (109)
t=0 =0 t=0
and invoking strong duality for the inner minimization problem in Problem (105). il

The non-convexity of Problem (108) is due to the bilinear term (Cw STl F(ay — Bt pt))’i in
the objective function. In the discussion below, we motivate the choice of ® = 0, which leads to a
slight increase in conservatism but yields significant computational gains, as the objective becomes
quadratic and the problem convex.

"The main challenge in the case of two or more resources is that, contrary $o the single-resource
case where the smallest revenue is always reached when the resource utilization is lower than average,
no such simple relation exists when the demand for a specific product affects several raw materials.
Specifically, some resources might be utilized as much as possible to yield the worst-case revenue.

This is best explained on an exampie.

Example: Consider 2 products and 3 resources. Product 1 uses resources 1 and 2, while product 2
uses resources 1 and 3. The budget vector & of allowable deviations is equal to (0,1,1Y. Capacities
are infinite and & is the vector of all one’s for all £. Parameters are chogen so that the worst case is
to have demand for item 1 as low as possible (z; = —1). Then we need to select zg = 1 to satisfy
the constraint on the utilization level of resource 1 (21 + 22 = 0.) As a result, the utilization level of

resource 3 reaches its upside limit.

Hence, while we cannot guarantee that % (or x*, for that matter) will be zero at optimality, the
more important resources will be under-utilized, to reflect low demand. The resources ¢ for which
%; > 0, which create the nonconvexity of Problem (108), correspond to less critical resources. As a
result, the additional complexity due to the bilinear term in the objective function is not warranted

in the problem at hand, and we will force X =0 in the remainder of this section. This yields the
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following robust formulation as a quadratic programming probler with linear constraints:

T_1 71
max 3 ph(ag—Bepe) ~ [A(xT+x7)+ D & ly{ + i)
tzz() tuml)
s.t. (diag&) Fl(x™ —xt —yi +y; = (diag&) pe, Vi,
T-1 T-1 (110)
ZFBtPt a ZFat-—{C+A),
£=0 =0

PP < py < PP, Vi,
x7, xt, ¥y, v 20, v

Theorem 4.3 (Convex Robust Formulation) Problem (110} is equivalent to the convex pro-

gramming problem with linear constraints:

re-1 T—1
max »_ pi{a - Bips) - At xT) 4+ D 8 e~ F(xT - x)]
T—1 T—1
st. Y FBep > » Fag— (C+A), (111)
t=={) be=()
pPi" < py < PP,
x,xT >0.

Proof: We have yi —y; = (diag 5:) [F'(x~ — x%) — ps] and yi +y¢ is equal to its absolute value,
for all ¢. o
Remark: At x~, x* given, set to their optimal values, the objective in the robust problem is equal

to the objective in the nominal problem minus & penalty term. This new term penalizes deviations

of the price vector at time t, py, from a vector of reference prices for each of the items, F(x™ —xT).

4.2.4 Theoretical insights

We now characterize the optimal solutions of Problems (110) and {111).

Theorem 4.4 (Optimal prices as a function of the Lagrange multiplier)
(a) Let N* the optimal Lagrange vector corresponding to the capacity constraints i Problem (111)

and let X%, x be the optimal auziliary variables. The optimal price vector py satisfies:

p! = max (pgnin, min {p{nax,% {B;l a; — B! (diag &) sgn(p} — F/(x™* — x™)) + }3")\*] })
(112)
(b) Assume that (PP™); < (B7); < (PP™); and (pF=); < (BL); < (PF); for some product
i and time t, where Py is the optimal price vector at time t in the nominal problem. Then, if
the optimal robust price (pt); ezceeds the target level [F'(x™" — x T, it is strictly lower than its

nominal counterpart (By); o ond only if the amount of uncertainty for that product of that time
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period exceeds a threshold, specifically:

(82); > "—_11"*"’” {[F’(J\* — Xy = S (B )k (Be)k sgn{(ph)e — F(x7* = X”);J} . {(113)
(Bt )i kst

If the optimal robust price (p}); folls below the target level [F'{x™" — x4, @ is strictly greater

than its nominal counterpart (B}); if and only if the amount of uncertainty for that product at that

time period exceeds the opposite value of that threshold.

(c) A* < N and the optimal target price of each item j, [F/(x™ ~ x+*)); is equal to the optimal

price of that item J at some time period.

Proof: (a) Let x™*, x**, p{ be the optimal variables in Problem (111), and A* be the optimal

Lagrange vector associated with the capacity constraint. Problem (111) is then equivalent {o:

-1 T
max Y pilas — Beps) ~ p 61(pe — F/(x7" — x*Y ) sgn(p; — F/(x™* — xt))
t=e() t=0
T-1
* 114
SO S EBp Y
t=0

st pPit < py < pPE VL

This problem is separable in the py and Equation (112} follows by differentiating the objective
function in Problem (114) in p¢ and incorporating the bounds.

(b) If neither the nominal nor the robust price for item j at time t is equal to its (lower or upper)
bound, Equation (102), resp. Equation (112), becomes:

17 _ -
(Be); =3 {Bt Lag -+ F’A*]j, (115)

% 1 — - . s # — 3k * ES
(03 = 5 [Bt La; — By diag(3,) sen(p} — F/(x™* ~ x™)) + F'*] . (116)

i
Hence, (p}); — (P}); Is of the same sign as [F’ (A =% - Bt diag(8;) sgn(p} — F/(x* ~ x*‘*))]j.
The result follows immediately.
(c) A* < 2 is & consequence of the law of diminishing returns. Finally, the objective function of
Problem (111) when the prices are set to their optimal values is piecewise linear in x™*, x™, with
breakpoints such that F'(x™ — x*), becomes equal to (p});, for some ¢ and j, which concludes the

proof. 0

We also investigate the value of the optimal Lagrange multiplier, under the assumption that the
optimal price vector is strictly within its bounds, i.e., pli, < Pi < Pl (componentwise) for all ¢.
Let A, resp. F, C be the optimal Lagrange vector, resp. topology matrix, capacity vector, where

the rows corresponding to inactive capacity constraints have been erased.

Theorem 4.5 (Optimal Lagrange multiplier) X satisfies:
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=1 T—1

- [f‘ ( ZBt) ] {F (at + (diag Gt)sgn[ - F(x~ x**)]) - 2@}. (117)
=0 t=0

Moreover, the Lagrange multiplier corresponding to inactive constraints is equol to 0.

Hence, the marginal velue of the resources is piecewise linear in the (mazimum,) uncertainty.

Proof: The vector of resource utilization by the nominal demand vector is given by:

T-1 T—1
F(Zat) = F Z(at—Bth)
$=0 t=-0
T—1 N
= %F > [at + diag(8;) sgn(p} — F/(x™* ~x™)) - By F’)\*] :
e

(118)

We define X, resp. F, C as the optimal Lagrange vector, resp. topology matrix, capacity vector, where
the rows corresponding to inactive capacity constraints have been erased. Therefore, FA* = F/A%
Then F¥ T di(pe) = C creates a system of m' equations with m’ unknowns, where m' is the

number of tight constraints, which is solved in X to yield Equation (117). |

Corollary 4.6 (Sensitivity analysis) The effect on the Lagrange multiplier X of increasing the

mazimaum uncertainty 8y in the demand at time t is given by:

- -1 ~1
-awi\» = diag[sgn(p} — F/(x™* — x))| I {F ( ZBt) F’} . (119}
65-3 t==(}

In particular, it only depends on t through the sign of pf ~F/(x™% —x™), thot is, whether the prices

at time t are above or below the reference level for the corresponding products.

Proof: Follows from differentiating Equation (117). |

We can now characterize the structure of the optimal prices as a function of the cost and uncertainty
parameters, for a specific set of tight constraints and using our knowledge of which products are
priced above or below their reference level throughout the time horizon. We agsume that an increase
in the uncertainty for any product j at any time period ¢ has a greater impact (in absolute value) on
the optimal price for product j at that same time ¢ than on the opportunity cost F'X for that product.
This is & natura] assumption to make, as it models the fact that the direct impact of a change in the
uncertainty is greater than an indirect one. We also assume that pP® < pi < pP™* componentwise

for all ¢. To simplify notations, we denote by sgnj the vector sgn(pf — F'(x™ ~ xT).

Corollary 4.7 (Optimal prices) The optimal prices satisfy for all t:

oh =% {at - {diag ét)sgnt} +F 1R [ ( ZBt) ]“ {f‘zf (as + diag(gs) sgnz) - 2@}

3=}
(120)
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It follows that:
T-1 -1y
%diag(sgng} (f‘"‘“l F‘ ( ZBS) f"} f‘) , if 8 % ¢,
=0 o 4 ,
m—%diag(sgn;‘;) (B;;l ~F-1 [j;“« ( ZBS) if‘f] }?’) , ifs=1.
s=0}

Opy _

- 121
83, (121)

In particular, the price of product j at time t, for some j and t, converges further towards the
reference price of that product, B! (x™* — x**), when the uncertainty in the demand for product j at

that same time period tncreases.

Proof: Follows from Theorem 4.4 () and Corollary 4.5. Equation (121) is obtained by differentiating
Equation (120). To prove that the optimal price converges towards the reference price of that product
when the uncertainty increases, we use the assumption that the impact of a change in the uncertainty
in product j at time t yields a greater change (in absolute value) in the price of that product at that

time period than on the opportunity cost of the product. In mathematical terms:

P B B T A B B P T 2
o (2 [p(En)2] 8) 2| F(S0)7] F) | om

Ji
We use the fact that |a + b| < |a| + {b] and that (B;1);; > 0 to conclude that:

(Be ™5 = (17“"1 {F‘ ( ZBS> Jﬂ B f‘) > (ﬁ-l {ia‘ ( ZBS) ia"’} B ﬁ) (123)

3
It follows that dpj;/ 35@-, as given by Equation (121), is nonpositive, resp. nonnegative, if the optimal
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price is above, resp. below the reference price. ]

4.3 The Case of Multiplicative Uncertainty
4.3.1 Generalities

In the presence of multiplicative uncertainty, the demand vector at time ¢ is defined as:

dy = (Id + diag 8; - diag ;) dy, (124)

where Id is the identity matrix, the nominal demand d; is given by Equation (99) and z is the

vector of scaled deviations, or equivalently:

d = dy + (diag 8, - diag dy) =s. (125)

The uncertainty set is defined as:
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T—1
Z F diag(at R Bt pt) diagﬁt Zy
$=0

Z(p) = {

<A,z <e, Vt} . (126)

Since the resuits in this section are extensions of the methods presented in Sections 3 and 4.2 and
rely on the same insights, we state most of them without proof.
4.3.2 Robust Formulation

Theorem 4.8 (Robust model) The robust pricing problem in the presence of multiplicaiive un-

certainty is formulated as a conver problem:

71 -1

max Z pilas — Bips) — |[A(x +xT) + Z (ay — By pe) (diag d;) [ps — F'(x™ — x)]
=0 =0
T-1 T-1

ERA Z FBtpt = Z Fas — (C + A),

t=0 L)
pPi® < pe < PP, W,
x7,xt >0

(127)

Problem (127) is equivalent to the problem of finding the prices maximizing the worst-case revenue

when there is only one resource and is slightly more conservative otherwise.

4.3.3 Optimal prices as a function of the Lagrange multipliers

Let x~*, x**, p! be the optimal variables, and let B{ be the optimal solution to Problem (127)
without the box constraints on the prices. To simplify notations, we denote by sgn{ the vector
diag[sgn(p} — F/(x™* — x™*))] and Dy the diagonal matrix diag &; - diag sgn. We have:

B u% B a + [ld - Dy) ™ [FA - D F/(x —x*)] } (128)

This yields: p! = max (p{P'®, min {pP®, pf}) and, if neither nominal nor robust prices reach their
Pe t t %

bounds: 1 - ~ i

P{=Pi+3 [(Id ~De) {FA*-DF/(x™" - xt}~ ¥R, v, (129)
where A", resp. A*, is the Lagrange multiplier of the capacity constraints in the nominal, resp. robust,
model. From the law of diminishing returns, we have: A* < X",

Tn what follows, we assume that pP® < p} < pP"™ componentwise for all ¢.
4 % t

Theorem 4.9 (Optimal and nominal prices)

(a) If the reference price [F/(x™* —x**)|; of a product j is below the opportunity cost [FX"]; of
that product in the deterministic model, then introducing uncertainty decreases the optimal price for
product § at time t, i.e., (Pt); < {Pt)s, if and only if:

either the robust price of product j at time ¢ is below the reference price,
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or the robust price is above the reference price and the wncertainty is small enough, specifically:
B/ = A9

0e)s < FX —Fx ™ —x™);

(130)

(b} If the reference price [F'(x™ —x**); of a product j is above the opportunity cost {F’"X*}j of
that product in the deterministic model, then introducing uncertainty decreases the optimal price for
product j at time t, t.e., (pg); < (Bt);, of and only if:

either the robust price of product § at time t is above the reference price,

or the robust price ig below the reference price and the uncertainty is small enough, specifically:
B = A

8); < —— 131
(3e)s [F/{x* —xt*) = X7, (131)

Proof: From Equation (129), (p;); < (Pi); if and only if:
[(1d = D) {FA* - Dy F/(x™ - x+*)}}j < [F'X");. (132)

Since Id — Dy is a diagonal matrix, with the positive elements 1 (sgni); (gt)j on the diagonal,

Condition (132) is equivalent to:
[F'A"] — (sgnf); (80); [F/(x™ = x*)]; < {1~ (seni); (3)}[F' X7);. (133)

This yields: . . .
LeN A*)]j > (sgny); (32); [FA" — F/(x — x+*)L . (134)

Since A* < X", the left-hand side is always nonnegative. The results follows from exploiting she side

of the right-hand side and expressing Equation (134) &s a bound on (33);. O

Hence, understanding the change in the optimal price of a product at a given time period, as
uncertainty ig infroduced in the model, requires the knowledge of the following three quantities: the
reference price (in the robust framework} and the opportunity costs of that product, both in the
deterministic and robust models.

Note that low uncertainty guarantees that the price will decrease, but the case with high uncer-
tainty is more complex, as the time periods where the prices increase are time periods with high
amounts of uncertainty, although not all periods with high uncertainty will see a price increase.
High uncertainty is quantified as (3}) ; exceeding a threshold that, in contrast with the additive case,
depends neither on the uncertainty for other products at that time period, nor on the time period

considered.

4.3.4 Optimal Lagrange multipliers

Let A, resp. F, C be the optimal Lagrange vector, resp. topology matrix, capacity vector, where the

rows corresponding t0 inactive capacity constraints (and hence zero Lagrange multipliers) have been
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erased. As before, Dy is the diagonal matrix diag(sgn}) diag(dy).

Theorem 4.10 (Optimal Lagrange multiplier and sensitivity analysis)
(a) X satisfies:

~1

Tl T—1 T—1
A= {ﬁ (Z B (Id — ﬁt}—l) F’} {@ S a—2C+F (Z By (Id — Dy)™? ﬁt) Fl(x™* — x+*)} _

tee0 t=0 $==0

(135)

Hence, the marginal value of the resources is piecewise rational in the (mazimum) uncertainty.

(b) For all time periods t and products j, the vector -ﬁ;‘_) satisfies:

t)j
N . L /T R 1
ox (sgni), — (F(x~ - xt) - TN, {F (Z By (Id — Dt)“l) F’} (FBy).;,
0(0¢);  [1— (0¢); (sgni)y] P

(136)

where (A).; is the j-th column of matriz A.

Proof: The proof of (&) closely follows the proof of Theorem 4.5. We establish (b) by differentiating:

T—1 T-1 T—1
[ﬁ (}: B (Id — DQ“’*) :ﬁ"} A=F> a,—2C+F (Z B, (Id — Dy)™? I)t) F(x* - xt),
£} t={) {=0
(137)
obtained in (a), with respect to (gt)j. O
Remark: Whether the marginal value of each resource increases or decreases as demand uncertainty
for product j at time ¢ increases depends on (i) whether the price for product j at time ¢ is above
or below the reference price of that product, and (ii) whether the reference price is above or below

the opportunity cost of that product.

4.3.5 Optimal prices

The following theorem extends many of the resuits presented in the case with additive uncertainty;
hence, we state it without proof.

Theorem 4.11 {(Optimal prices and sensitivity analysis)
(a) The optimal auziliory variables x ™, x™ are such that, for each product j, there is a time period
s(j) which verifies: (pyy)); = [F'(x™" - x )5

(b) The impact of an increase in demand uncertainty on the optimal prices is such that:
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Id — Dy~ 22 A ) , ifs#t, ors=tandi# j,
( 3((53)3' i

o) _ (SB35 (s, [ — ),
2o [ (), B ) e )

+§ 1— (84); (sgni);] [F’ag;‘) - — (sgny); [F(x™* — x+*)]j] ,ifs=tandi=3j
t}y
(138)

Remark: By reinjecting Equation (136} into Equation (138), we note that whether prices increase
or decrease as uncertainty increases is determined (in part) by whether the prices are above or below

their reference price.

5 Conclusions

We have presented an approach to multiperiod pricing of multiple products in the presence of capaci-
tated resources and demand uncertainty that does not require the exact knowledge of the underlying
probability distributions, which are difficult to estimate in practice, but instead models the random
variables as uncertain parameters belonging to a polyhedral set. We established the existence of a
parameter called the reference price for each product and have derived key insights into the impact
of the uncertainty on the decision variables. In particular, under mild conditions, the optimal prices
converge further towards the reference price as the uncertainty increases. This approach allows the

decision-maker to gain a deeper understanding of the structure of the optimal solution.
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