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Abstract

We propose an approach to linear opiimization with recourse that does not involve a
probabilistic description of the uncertainty, and aliows the decision-maker to adjust the
degree of robustaess of the model while preserving its linear properties. We model random
variables as uncertain parameters belonging to a polyhedral uncertainty set and minimize
the sum of the Arst-stage costs and the worst-case second-stage costs over that set. The
decision-maker’s conservatism is taken into account through a budget of uncertainty, which
determines the size of the uncertainty set around the mean of the random variables. We
establish that the robust problem is a linear programming problem with 2 potentially very
iarge number of constraints, and describe how the classical Benders decomposition algorithm
can be adapted to the robust approach. Furthermore, in the case of simple recourse, we show
that the robust problem can be formulated as a series of m linear programming problems of
size similar to the original deterministic problem, where m is the number of random variables.

Numerical results are encouraging.

1 Introduction

Linear optimization with recourse was first introduced by Dantzig in [14] as a mathematical
framework for sequential decision-making under uncertainty. In that setting, we must make
some decisions before discovering the actual value taken by the random variables but have
the opportunity to take further action once uncertainty has been revealed, with the objective of
minimizing total expected cost. This framework later became known as stochastic programming
and is described in detail in the monographs by Birge and Louveaux [11] and Kall and Wallace
122]. However, as early as the mid-1960s, researchers such as Zackovs [30] recognized the practical
limitations of the expected-value paradigm, which requires the exact knowledge of the underlying
probability distributions. The fact that such probabilities are very hard to estimate in practice
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motivated the development of a minimax approach, where the decision-maker minimizes the
maximal expected cost over a family of probability distributions. It has received significant
sttention in the stochastic programming literature, for instance from Dupacova (15, 16, 17],
whose work along with Zackové’s findings [30] laid the foundation for subsequent research efforts.
Other early references inciude Jagannathan [21], who studied stochastic linear programming
with simple recourse when the first two moments of the distributions are known, and Birge and
‘Wets [12], who focused on bounding and approximating stochastic problems. More recently,
Shapiro and Ahmed [25] and Shapiro and Kleywegt [26] have investigated further the theoretical
properties of minimax stochastic optimization, while Takriti and Ahmed describe in [29] an
application to electricity contracts. The main drawback of the stochastic minimax approach is
that the solution methods proposed in the literature (a stochastic gradient technique in Ermoliev
et. al. [20}, 2 bundle method in Breton and El Hachem [13], a cutting plane algorithm in Riis and
Andersen (23}, to name a few), all require finding explicitly the worst-case probability for the
current candidate solution at each step of the algorithm, and hence suffer from dimensionality
problems. These are particularly acute here as stochastic programming often yields large-scale
formulations. Although Shapirc and Ahmed [25] and Shapiro and Kleywegt [26] have studied
specific classes of problems for which the minimax framework leads to traditional stochastic
formulations, no such approach has been developed to date for the general case. Furthermore,
while the field of stochastic programming has seen in recent years a number of algorithmic
advances, e.g., sampling methods {Shapiro [24]), the problem with recourse remains significantly
more difficult to solve than its deterministic linear counterpart, and does not aliow for easy
insights into the impact of randomness on the optimal decision variables.

Therefore, the need arises to develop an approach to linear optimization with recourse that
does not involve a probabilistic description of the uncertainty, remains tractable in a wide
range of settings, and yields theoretical insights into the way randomness affects the optimal
solution. The purpose of this paper is to present such an approach, based on robust optimization.
While robust optimization has been previously used in stochastic programming as a method to
incorporate cost variability in the objective function (Takriti and Abhmed [28]), we consider here a
different methodology, which was developed independently under the same name. What we refer
to as robust optimization addresses data uncertainty in mathematical programming problems by
finding the optimal solution for the worst-case instances of unknown but bounded parameters.
This approach was pioneered in 1973 by Soyster [27}, who proposed a model that guarantees
feasibility for all instances of the parameters within a convex set. However, the resulting solution
is very conservative, in the sense that it is too far from optimality in the nominal model to be

of practical interest for real-life implementation. This issue of overconservatism hindered the



adoption of robust techniques in optimization problems until the mid-1990s, when Ben-Tal and
Nemirovski [3, 4, 5], El Ghaoui and Lebret [18] and El Ghaoui et. al. [19] started investigating
models where feasibility of a linear programming problem is guaranteed with high probability.
They focus on ellipsoidal uncertainty sets, which allow for important insights into the robust
framework but increase the complexity of the problem considered, e.g., yield second-order cone
problems as the robust counterpart of linear models. In contrast, Bertsimas and Sim (8] study
polyhedral uncertainty sets, which do not change the class of the problem at hand, and explicitly
quantify the trade-off between performance and conservatism in terms of probabilistic bounds of
constraint violation. An advansage of their approach is that it can be easily extended to integer
and mixed-integer programming problems (Bertsimas and Sim [9]). While robust optimization
has been applied in the references above as a way to address parameter uncertainty, Bertsimas
and Thiele [10] use this framework to model random variables and address uncertainty on the
underlying distributions in a multi-period inventory problem. Their approach highlights the
potential of robust optimization for dynamic decision-making in presence of randomness. A
first step towards implementing robust techniques in stochastic programming with recourse
was taken by Ben-Tal et. al. [6], who coined the term “adjustable decision variables” as a
synonym for second-stage solutions. Unfortunately, the robust counterpart in their approach
is computationally intractable, which leads them to restrict the second-stage variables to affine
functions of the uncertain data. Atamtirk and Zhang propose in [1] a model for two-stage
optimization that does not involve affinely adjustable decision variables, in the context of network
design under uncertain demand. Similarly, we do not impose any limitations on the structure
of the recourse. The mode] presented here is very broad in scope, in the sense that we develop
a robust approach for generic two-stage stochastic problems with uncertainty on the right-hand
side. We believe that the framework proposed in this paper offers a new perspective on linear
programming with recourse that combines the decision-maker’s degree of conservatism and the
uncertainty on the probability distributions in a tractable manner.

Specifically, we make the foliowing contributions:

1. We address right-hand-side uncertainty in linear programming problems with recourse by
modelling random variables as uncertain parameters in a polyhedral uncertainty set. The
level of conservatism of the optimal solution is flexibly adjusted by setting a parameter

called she “budget of uncertainty” to an appropriate value.

2. We propose a solution technique based on Benders’ decomposition that is computationally
less demanding than its stochastic counterpart, and yields the worst-case realization of the
uncertain parameters within the uncertainty set. In other words, the robust approach is

equivalent to the deterministic problem solved for a specific value of the parameters.
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3. We formulate the robust problem with simple recourse as a series of mn linear programming
problems similar in size to the model without uncertainty, where m is the number of

uncertain random variables.

The structure of the paper is as follows. In Section 2, we define the model of uncertainty
and present the main ideas underlying the robust approach. We focus on the case of simple
recourse in Section 3 and extend our results to the general case in Section 4, with an emphasis
on tractability, the relationship to the deterministic models and insights into the optimal policy.
We present computational results in Section 5. Finally, Section 6 contains some concluding

remarks.

2 Problem Overview

2.1 Optimization With Recourse

The focus of this paper is on two-stage linear optimization with right-hand side uncertainty,

which was first described by Dantzig in [14]. The deterministic problem can be formulated as:

min ¢x+dy
st. Ax+By=b, {1
xy 20,

with the following notations:

the first-stage decigion variables,
the second-stage decision variables,
the first-stage costs,

the second-stage cosis,

the first-stage coefficient matrix,

WP o« K

the second-stage coefficient matrix,

b: the requirement vector.
For clarity in the exposition, we do not include constraints that are only on the first-stage
variables. They can however be incorporated to the model without changing any of the structural
resulis presented in Sections 8 and 4.

In many applications, the requirement vector is random and the decision-maker implements
the first-stage variables without knowing the actual requirements (“here-and-now”), but chooses
the second-stage variables only after the uncertainty has been revealed {“wait-and-see”). This
has traditionally been modelled using stochastic programming techniques, i.e., by assuming that

the requirements obey a known probability distribution and minimizing the expected cost of the
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problem. In mathematical terms, if we define the recourse function, once the first-stage decisions

have been implemented and the realization of the uncertainty has become known, as:

Q(x,b) = min dy
st. By=b-Ax, (2)
yz0,

the stochastic counterpart of Problem (1) can be formulated as a nonlinear problem:

min  ¢'x + Ep|Q{x, b)]
st x=0.

(3)

If the uncertainty is discrete, consisting of Q possible requirement vectors each occcurring with

probability 7, w = 1,...,$, Problem (3) becomes a linear programming problem:
0
min ¢'x -+ Z 7w - &'y
o @
st. Ax+By,=b, WV,
X, Y 2 0, V.

However, a realistic description of the uncertainty generally requires a high number of scenar-
ios. Therefore, the deterministic equivalent (4) is often a large-scale problem, which necessitates
the use of special-structure algorithms such as decomposition methods or Monte-Carlo simu-
lations (see Birge and Louveaux [11] and Kall and Wallace [22] for an introduction to these
techniques). Problem (4) can thus be considerably harder to solve than Problem (1}, although
both are linear. The difficulty in estimating probability distributions accurately also hinders the

practical implementation of these techniques.

2.2 The Robust Approach

In contrast with the stochastic programming framework, robust optimization models random
variables using uncertainty sets rather than probability distributions. The objective is then
to mrinimize the worst-case cost in that set. Specifically, let B be the uncertainty set of the
requirement, vector, of known mean b. The robust problem with recourse is formulated as:
min <%+ max Q(x,b
n ¢x-+max Q(x,b) o
5t x>0
If B = {b}, Problem (5) is the nominal problem. As B expands around b, the decision-maker

protects the system against more realizations of the random variables and the solution becomes



more robust, but also more conservative. If the decision-maker does not take uncersainty into
account, ke might incur very large costs once the uncertainty has been revealed. On the other
hand, if he includes every possible outcome in his model, he will protect the system against
realizations that would indeed be detrimental to his profit, but are also very uniikely to happen.
The question of choosing uncertainty sets that yield a good trade-off between performance and
conservatisim is central to robust optimization.

Following the approach developed by Bertsimas and Sim [8, 9] and Bertsimas and Thiele
[10], we focus on polyhedral uncertainty sets and model the random variable b;, 1= 1,...,m, as

a parameter of known mean b; and belonging to the interval [B; — By, bi + bi). Equivalently:
b = b; +3¢ Z, |m) <1, Vi {6)

To avoid overprotecting the system, we impose the constraint:
m
d==1

which bounds the total scaled deviation of the parameters from their mean. Such a consgtraint
was first proposed by Bertsimas and Sim [8] in the context of linear programming with uncertain
coefficients. The parameter I', which we assume to be integer, is called the budget of uncertainty.
I' = 0 yields the nominal problem and hence does not incorporate uncertainty at all, while
I' = m corresponds to interval-based uncertainty sets and leads to the most conservative case.

In summary, we will consider the following uncertainty set:

Bw{b@:gi—l-az?;, Vi, ZGZ}, (8)

with: m
= {Z ] <0, gl £ 1,Vi} . (9)

fenl

In the remainder of the paper, we investigate how Problem {5} can be solved efficiently for the
polyhedral set defined in Equation (8), with an emphasis on the link with deterministic linear
models, and how the robust approach can help us gain insights into the impact of the uncertainty

on the optimal solution.

3 The Case of Simple Recourse

3.1 The Setup

In problems with simple recourse, the decision-maker is able to address excess or shortage for

each of the requirements independently. For instance, he might pay a unit penalty d;, resp.



d;, for falling short of, resp. exceeding, the (random) target b; for each i. We describe an
application of this setting to multi-item newsvendor problems in Section 5.1.
The deterministic model can be formulated as:
min x4 (d™Yy~ +(dtYy”T
st. Ax+y —yT=Db, (10)
Xy ,y =0

The recourse function defined in Equation (2) becomes:

Q(x,b) = min (d7)y~+(d*)y*
st. y" -y =b—Ax, (11)
vy, vyt >0,

It is straightforward to see that Q(x,b) is available in closed form:

Q(x,b) = i [d,;-" -max{0,b; — (Ax);} + df - max{0, (Ax); - bz}] . (12)

fe=l
However, we will focus on Problem {11) to build a linear, tractable robust model. As Problem
(11) is always feasible and its optimal value is finite, we obtain an equivalent characterization

of the recourse function by invoking strong duality:

Q(x,b) = max (b-— Ax)p

(13)
st —dt<p<d .
Therefore, the robust approach is concerned with developing efficient ways to solve:
i / b - Ax) l
z}?ég [c X+ beB, _rglgﬁpg dw( ypi, (14

where B has been defined in Equation (8).

3.2 The Robust Problem as a Large-Scale Linear Problem

In this section, we show that the robust problem (14) can be formulated as a large-scale linear

programming problem and discuss solution techniques. We will need the following lemmas:

Lemma 3.1 The function:

R(x,p) = max (b~ Ax)'p (15)

i8 convex in p.
Proof: For any X, p1, P2, for any o € [0,1], we have:

-~ 4 — < - _ / — . — !
max (b Ax)(apr+(1-a)pz) < a-max (b Ax)'p1+ (1 — &) - xpax (b — Ax)'p2, (16)
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ie., R(x, apy + (1 — @) p2) < aR(x,p1) + (1 — &) R(x, pa)- o

Lemma 3.2 Let x, p be given. Then:

_ m
max (b—-Ax)p= (b—-Ax)p+ min )\I‘—E—Zm

i=1

ot Atp2Bilpd, Vi, o
A g =20, Vi,
Proof: We have: m
max b-Ax)p= (b~ Ax)p +r;1€a§c;p¢ b; 24, (18)
where £ has been defined in Equation {9}, or equivalently: )
kil —~
max b~Ax)p= (b-Ax)p + mex ; ;] b; 2, (19)

b1
with Z' = Zzg <, 0<% <1, Vz’}. Since £’ is nonempty and bounded, strong duality
=1
holds, which yields Problem (17). 0
Let px, k=1, ...,2™ be the extreme points of [=d*,d"].

Theorem 3.3 (The Robust Problem) The robust problem (14) is equivalent to the linear

programming problem:

min ¢x+Z

m
st Z> (b—Ax)px+ T+ > pin, VE,

A+ i = bi Dkl i, k,
A, x 2 00

Problem (20) has ezponentially many constrainis.

Proof: From Lemma 3.1, R(x,p) = maxpep(b — Ax)'p is convex in p, and therefore reaches
its maximum over p € [—d¥,d”] at an extreme point py of the polyhedron. Ii follows that the

robust problem (14) is equivalent to:

min ¢x+ 2
.t > — !
8 zZ > rt?gz}ac (b — Ax)px, Yk, (21)
x > 0.



We then apply Lemma 3.2 to maxpes (b — A x)'pk and conclude by noting that, for any set S
and function f, Z > mingeg f(s) if and only if Z 2 f (s) for some s € S. O

Large-scale linear programming problems such as Problem (20) can be solved by applying tech-
niques based on delayed constraint generation, also known as cutting plane methods. Bertsimas
and Tsitsiklis provide an introduction to these teéhniques in [7]. {The reader is also referred to
Birge and Louveaux [11} and Kall and Wallace [22) for an extensive treatment of these methods
in the context of stochastic optimization.) We focus here on Benders decomposition, which was
developed by Benders in [2], and show below how it can be adapted to the robust methodology.

To highlight the advantages of implementing the method in the robust framework, as opposed
$0 the stochastic model, we first provide a brief summary of Benders decomposition in stochastic

programming. It is well known that the master problem can be formulated as:

]
min ¢'x 4+ Z Moy By
wm=l (22)
st. Z, 2 pi(b, —Ax) Vkw,

x =z 0,

where the pyx are the extreme points of [--a*,d”]. Enumerating all these extreme points obvi-
ously leads to a very large number of constraints {bere, 2-2™, excluding nonnegativity), and the
main idea underlying Benders decomposition is to generate constraints only when they prove o
be necessary to the formulation, i.e., when they are violated by the current solution in the mas-
ter problem. At each iteration, the decision-maker solves a relaxed master problem, which has
only a few of the original constraints, and obtains ar optimal solution % and the corresponding
value of the recourse function 7., when scenario w = 1,...,{ is realized. Then he must check if
that solusion is optimal for the original probiem. Therefore, he solves the recourse problem in
each scenario with the first-stage decision variables set to X. If Z., < Q(%,by,) for each w, the
problem has been solved. Otherwise, the decision-maker adds the cut: Z, = pg((w} (b, — Ax)
for each w such that Z, > Q(%, by), where py(,) is the optimal solution of Problem (13) when b
is set to by, and reiterates. Although some variants of Benders decomposition apply cuss to the
whole recourse function 52, 7, Q(x, by), these methods always require solving to optimality
the recourse problems for each scenario. While these problems are similar to each other and can
each be solved efficiently by applying for instance the dual simplex method, the large number of
subproblems is a drawback in implementing the approach in many real-iife settings. In contrast,
Theorem 3.4 shows that Benders decomposition applied to robust problems with simple recourse
involves only one subproblem, which can be solved in closed form. This plays a key role in the

tractability of the robust approach.



Theorem 3.4 (Benders decomposition for robust problems)} Problem {(20) can be solved

as follows. At iteration S, § > 1, we consider the relazed master problem:
min ¢x+Z

m
st Z > (D—AX) D AT+ D pus, ¥s=1,...,8-1,
i=1
)\s+mszb§}p¢k{s)1, Vi=1,...,m,Vs=1,...,85~1,
Asy Hs = 0, ¥s=1,...,8 -1,

x 20,

(23)

with the convention that Z > L in tteration 1 where L is a lower bound for the second-stoge
cost. Let (&, A, i, Z) be the optimal solution of Problem (23}, and let 1 be the set of indices
corresponding to the T greatest N, with A given by:

A= ma,x{(a 4B - (AR d, ((AR) — by + by) d?}—max{(?;g - (AR)) d], ((AR): — bs) dj} :

(24)
The recourse function Q(X) = max Q(Z,b) verifies:
Q(%) = 3 max { (B -+ b; — (AR):) dy, (AR): = b +B) d}
i€z
+ 3 max { (b — (AR);) df , (A%); ~ b )di ). (@5)
€T

If Z > Q(%), Problem (20} has been solved.
If Z < Q(R), the solution X of the relaxed problem is not optimal for Problem (20). Let piys)

- g7 -
be equal to di if by = (Ax); + H bi - Lyzery ond —~dj otherwise. We add the constraints:
(] 1 s

Z > (b— Ax)'pg) + As T+ >_ s,
g=1

- , 26

Ag + pis 2 b [pirsyls Vi (26)

Ag, us = 0.
to the relawed problem (23) and reiterate.
Proof: This is a straightforward application of the Benders decomposition technique to Problem

(20). The only point specific to the robust framework is the computation of the recourse function

Q(%). We note that, for any first-stage decision vector x:

o) = max  max  (b-AX)P, (27)
~ Y mex { (5 - (Ax)) dp, (AN =B} (28)
f==1
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= ;ma,x{(gz‘ — (Ax);) d;, ((Ax); — b) dj"} + glgg;&z 2, (29)

e

where Z’ = {Zzﬁ <T,0<2<1 Vi}.
i==1

Whether the worst case is reached when b; deviates up or down (to its lowest or highest

m
value) is captured by the value of A;. It is then obvious that max Z A 7 is equal to Z A We
zl ) ?1_1

= iel
compute pi(s) by studying where (in the left- or right-hand side) each of the inner maximizations

in Equation (25) reaches its optimum. o
Remark: Instead of considering the set of equations (26), it is possible to add one single cut
at each step of the algorithm, specifically:

Z > (b - Ax)'pi(s) + Yk(s): (30)

where vyg) is the optimal objective value of:

wm
min Ag@ + Z pig
dmel
~ . 31
s Ag+ s 2 bilpwesyl Vi (31)

Asg, pis = 0, V.

However, for tractability purposes, Formulation {26) has the advantage of not requiring any

auxiliary optimization.

Corollary 3.5 (Worst-case uncertainty) Upon completion of the olgorithm, o worst-case
m

vector b s obtained by selecting a cut Z = (b— Ax)px + AT + me which is tight at
i=]1

optimality, and solving max (b — Ax)'px for that vector py. Specifically, b verifies for all i:

bi = by + by - sign(px) - Lsesy, (3)

where sign(z) = 1 if > 0 and —1 otherwise, S is the set of the T' greatest B lpa] with |S] =T

(ties can be broken arbitrarily ) and Lgesy =1 41 € & and 0 otherwise.
Proof: Follows immediately from Theorem 3.3 and using the fact that max (b — Ax)px =
m
, -
= i Dik % 0
maxb'pi z;leag; bi pi. %

Benders decomposition is hence faster in the robust framework than in its stochastic counterpart,

in the sense that each iteration after solving the relaxed master problem only involves computing
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a quantity available in closed form, as opposed to solving © optimization problems. In particular,
since we have m random variables, which will at least take 2 values each (but often more to
yield a finer description of uncertainty), we have replaced the optimization of at least 2™ linear
problems by the evaluation of a mathematical expression that can be computed without using
any optimization software.

As constraints in cutting plane methods are only generated when needed, the optimal solution
will in general be reached after enumerating only a few of the extreme points of the dual feasible
set [~d*,d"]. However, there is no guarantee that this will always happen, which raises the
following question: can we use the special structure of the robust optimization problem (14) to

devise a more efficient algorithm? This will be the purpose of Section 3.3.

3.3 The Robust Problem as a Series of Linear Problems

In what follows, we show that the robust problem with simple Tecourse can be sclved as a series

of linear problems of moderate size and identify the worst-case vector b € B in this framework.

Theorem 3.6 (The Robust Problem) The optimal solution X to the robust problem (14)
can be found by solving the following m linear problems and keeping the solution corresponding
to the problem with the smallest optimal value:

Problem j, j=1,...,m

min  <x+7Z (33)
st Z=y (34)
i
Z > |{(Ax); -5 + T dF + 3w, (35)
i
Z > [Ej + Ty~ (Ax);] & + D w, (36)
Ax—(1/d*}-u<b-b, ? (37)
Ax+(1/d7)-u>b+b, (38)
Ax - (1/dT).v Sﬁ—@”, (39)
Ax+(1/d7)-v=b+E, (40)
Ax—(1/d")-w<b-&, (41)
Ax+(1/d7)-w2b+E, (42)
x>0, (43)

12



with the following notations for all i:

~ df- ~ ~
fz.”;.xmax O,bi——&::(:bj), ijmmax((),bi_
- d; ~ -
g3 = max G,bi—a%;bj), g;;ﬂma.x(ﬂ,b¢~
i

(1/d*) =1/df, (1/d7)=1/d; .

Sy
=9

- 5)’
K3

d ~
),

()

Each problem has n+3m-+1 decision variables and 6 m+3 constraints, excluding nonnegativity.

Therefore, the robust problem can be solved efficiently by standard linear optimization packages.

Proof: Using the definition of B in Equation (8) and Z in Equation (9), we have:

m
[ T 7 T ..
b, ﬁ%’gp@-(b Ax)p = L {(b Ax)'p +max ; pib; Zz} . (44)
LG )
From Lemma 3.2, xznea‘%:g:; p; b; z; is equivalent to:

m
min AT +>

f==l

- ‘ 45
st A4 g > bilpl, Vi 45)
It is straightforward to see that the optimal solution of Problem (45) verifies:
i = max{0, blpi| — A), Vi. (46)
As a result, max (b — Ax)'p can be rewritten as:
beB, —~d+<p<d—
n —~~
% ! 4 . P .
Ll {(b Ax)p+ min AT+ ; max{0, b; || )\)] } ) (47)
For a given p, the function:
Lik4 ~~
F(A) = AT+ max(0, b [pi] ~ ) (48)
i=1

is piecewise linear, convex in A, with breakpoints at bilpsl, i =1
reached at the ['-th greatest B; |ps|. Consequently, solving Problem

min |¢'x+ max
*Z0 ~d <p<d- pa

13

,oooam, and its optimum is

(14) amounts to solving:

(b—Ax)p+Al+ imax((},a lpsl — )\)H , (49}



for A = 75- pil, i = 1,...,m, and keeg)lng the problem that yields the smallest objective at
optimality. {This is because mln [)\I" + Zmax (0,B; Ipsl ~ )] < AT +Zmax (0,%5; [ps) = A) for

fuml

all A > 0, so that the optimal solut;on to Problem {47) will be less than or equal to the optimal
solution to Problem (49) for the m possible values of A considered, and the inequality will be
tight for the optimal A.)
We now focus on rewriting Problem (49} for A = Ej |p;| as a linear programming problem.
Qur goal is thus $o solve:
m
in?]:{)l [cfx + T {("5 — Ax)'p+bylps| T+ gmax (0,@- ps| — b ipji) H {50)
For a given p;, the functions (b — (Ax)i)pi + max(0, b; |ps| —b; |pyl} with 1 5 j are convex in p;
and therefore reach their maximum over [—dj,d;] at an extremity of the feasible set. Hence,
the inner maximization problem in Problem (50} can be rewritten as:
- [(B — (A x);)p; +bsips( T

+Zmax{ (s — (Ax)) dF + max(0, 5 & ~ By lps), (s ~ (A%):) & + max(0,b; df - B gpj;)}] :
iskj
(51)
The function to be maximized in Problem (51) is convex in p; over [—dj,0] and [0,d;], and
therefore reaches its maximum over {-—dj', d;] at either mdj", 0 or d . As aresult, Problem (50)
is equivalent to:

m;ncx—i—ma,x{z ma.x{ (Ax); —B; + b df, [B: + B ~ (Ax)i] d;"},

5]
(Ax); — B +B; 01 df + > max {[(Ax): — b+ S5, s + fij — (Ax)ild y (52)
i#f
b -E—B;- I - (Ax);] a; + Z max{ (Ax); — b; -+ gzj} df, b+ 95— {Ax),] }}
i

o df - ~  di s ~ di <
with fif = max(O,bim&%_bj), 7 = max (a,bi—-j_-bj), g = max((),h«—a%:bj) and
1 T (3

d;

)

proof. ]

- dT
gi; = max (0, By — ~d- bj) for all 4. Linearizing the convex piecewise linear terms concludes the

We now compute the worst-case value of the uncertainty. For this we need the optimal dual

vector p*.

Lemma 3.7 (Optimal dual variables) Let Problem j defined by Equations (33)-(43) for some

4 wield the smallest objective among the m problems considered in Theorem 3.6. An optimal dual

14



vector p* 48 obtained as follows.

(1) If Constraint (34) is tight ot optimality, then p} = 0 and for alli# j, pf = —d} if rowi of
Constraint (37) is tight at optimality end pf = di if it is not.

(ii) If Constraint (85) is tight at optimality, then vi = mdj' and for all i # j, pi = —df if row
i of Constraint (39) 4s tight at optimality and p} = d; if it is not.

(ii1) If Constraint (36) is tight at optimality, then py = d; and for all i §, pf = —d if row i
of Constraint ({1) is tight at optimality and pf = di if it is not.

If several of the constraints (84)-(36) are tight at the optimal solution, any of the corresponding

cases (4)-(iii) can be chosen to define p*.

Proof: Follows directly from the proof of Theorem 3.6. It is obvious from the definition of
Problem j that at least one constraint among Equations (34)-{36) is tight at optimality, which
vields cases (i) to (ili). Furthermore, the tight constraints among Equations (34)-{42) enable us
to identify where the convex piecewise linear functions in Problem (52) reach their maximum.
O

Finally, we derive the worst-case value of the uncertain vector b in Corcllary 3.8.

Corollary 3.8 (Worst-case uncertainty) Let p” be the optimal dual vector obtained in Lemma
3.7 and let S be o set of the I' greatest Bilpt| with |S| = T. (Ties can be broken arbitrarily. )

Then a worst-case vector b in the recourse problem (14) is given for all 4 =1,...,m by
b =b; +’Z;2- - sign(pl) - Liiests (53)

where sign(z) =1 if x > 0 and —1 otherwise, and lesy =1 ifi € & and 0 otherwise.

m
: i - 'p* i bypt 2 O
Proof: Follows from solving I}:E)lé‘ai}g((b Ax)'p®, that is, %&%2 b pf %

Remark: As a consequence of Corollary 3.8, the worst case is to have a higher requirement
than average for item i (b; = b; + b;) if the total shortage cost d; B; is above the threshold A*,
less than average (b; = b; w@) if the total surplus cost dj',l;@ is above the same threshold X, and
equal to its average (b; = b;) otherwise. There might be more than one worst-case vector b. A*

is set so that at most T" requirements differ from their nominal value.
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4 The Case of General Recourse

4.1 The Setup

We now extend the framework developed in Section 3 for simple recourse to the generai case.

From Equation (5), the robust problem can be formulated as:

i % b
min ¢ +ztr,1§gc Q(x,b)

(54)
st. x>0,
where the recourse function Q(x,b) has been defined in Equation (2):
Q(x,b})= min dy
st. By=b-—Ax, (55)

y=z0,

We assume that relative complete recourse holds, so that Problem (55) always has a finite

optimal value. Therefore, by strong duality, Problem (55) is equivalent to:

Q(x,b) = max (b-AX)'p

(56)
st. B'p<d
Hence, the focus of this section will be to solve:
min c¢x+ max (b—Ax)p
beB, B'psd (57)
st x>0
4.2 TLarge-Scale Formulation
In this section, we present a large-scale linear formulation of Problem (57). Let pi, k= 1,..., K,

be the extreme points of {B'p < d}.

Theorem 4.1 (The Robust Problem) The robust problem (57) is equivalent to the linear
programiming problem:
min ¢x+Z

m
st 72 (- Ax)px+ T+ pak, VE,
i=1

% , 58
M+ ik = b lpiels Vi, k, (58)
Ay it 2 0, Vi, k,
x> 0.
Proof: See the proof of Theorem 3.3. o

Problem (58) has potentially a very large number of constraints, which motivates the use of an
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algorithm based on delayed constraint generation as in Section 3.2. In order to decide which
constraints to incorporate in the relaxed master problem, we need to evaluate the recourse
function at the candidate solution. This is the purpose of Lemma 4.2. While the methods we
provide are widely applicable, the most efficient algorithms will take advantage of the structure
of the set {B'p < d}. For instance, in the case of simple recourse described in Section 3.2, we

have used that this set was separable in the p;, i =1,...,™m.

Lemma 4.2 {Computing the recourse function) Letx be a first-stage decision vector. The
value Q{x) of the recourse function ot X, which is the optimal solution of:
’
K max (b — Ax)'p, (59)
can be computed using either one of the following two methods.
{a) Let p1,....PK be the extreme points of {B'p < d}. Then Problem (59) is equivalent to the

linear programining problem:

max @

m
st. Q2 (b Ax)pr+ T+ D pans
w1
Mg+ pn = i lpril,s Vi, k,
Ak ik = 0, i, k.

(60)

(b) Problem (59) is also equivalent to the mived-integer programming problem:

max (b— Ax)(p* - p7) +b(at +a7)
st B{pt~-p7) <4,

e{rt+r7) <7,
gt < Mrt,
g <Mr, {61)
0< gt <pt,
0<q”=p,
oy e {0,1}™,
pT,p” 20,

where e 15 the vector of all ones and M is o large positive number,

Proof: (a) We know from Lemma 3.1 that Rix,p) = zggg(b — Ax)'p is convex in p, and hence
reaches its maximum over {B'p < d} at an extreme point of the set. it follows that Problem

(59) is equivalent to:
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max
st Q > max(b — Ax)px, Vk (62)

o = bel ko T
where the px, k = 1,..., K, are the extreme points of {B'p < d}. Applying Lemma 3.2 to each
constraint in Problem (62) yields Problem (60).
(b) Using the notation p = pt — p~ with p*, p~ = 0, Problem (59} can be rewritten as:

m
max (b — Ax)(pt —-p7)+ l;ﬁea%izbz (o —p7) 2

o=l

st Bpt—-p7) <4, (63)
p,p” 20,
m ~~
where Z was defined in Equation (9). We note that max b; (pf — p77) % is equivalent to:
A2 =1
m -~
max 3 b {pf —pi) (&~ %)
i=1
m
st S (zF+27) <T, (64)
i=1

0<a 27 <1, Vi,

where z = 27" — z; and |%| = z + 77 for all i. Without loss of generality, we can assume that
pi o = py zj" = 0 for all 4, as it is suboptimal to select z; < 0 when p; > 0, and z > 0 when

p; < 0. Therefore, Problem {63) becomes:

m
max (b—Ax){pt —p)+ > b (5 +o7 %)

=1
st. B(pT—-p7)<4d,
ezt +27) <,
0<z .zt <e,

pt,p” 20,

(65)

where e is the vector of all ones. Formulation (61) follows by itroducing new nonnegative
variables g™, ¢~ and binary variables r*, r™ to obtain a linear objective function and enforce,
through additional constraints, that gi" = pf 2" and g = p; ;" for all ¢ at optimality. 0

Theorem 4.3, which adapts the Benders decomposition algorithm to the robust framework,

is the main result of this section.

Theorem 4.3 (Benders decomposition for robust problems: the general case) Problem

(58) can be solved as follows. At iteration S, § 21, we consider the relaxed master problem:
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min ¢x+ 2
st Z2>(b-Ax)(px) +Vh, Ye=1,...,5-1, (66)
x>0,

with the convention that Z > L on iteration 1 where L is o lower bound for the second-stage
cost. Let (X, Z) be the optimal solution of Problem (66), and let Q(X) be the value of the recourse
function at X obtained in Lemma 4.2.

If Z > Q(%), Problem (58) has been solved and % is the optimal solution.

If Z < Q(%), the solution X is not optimal for Problem (58). Let pig and vig be such that
Q%) = (b — AR) (Diy) + Vks- We add the cul:

Z > (E — Ax)’p;{s + Vi) (87)
to the relazed problem (66) and reiterate.

Proof: See the proof of Theorem 3.4. o

4.3 A Suboptimal Solution

We have presented in Section 4.2 an exact algorithm to find the optimal solution to the robust
problem. However, since this method requires an auxiliary optimization procedure at each
step of the algorithm to compute the recourse function, we are interested in speeding it up
by initializing the first-stage variables appropriately. We do so by solving a relaxation of the
two-stage problem, which allows us to use the techniques developed in Section 3. This method
also provides us with an upper bound to the optimal cost in the robust framework.

Let di = — min{p;|B'p < d} and df = max{p:|B'p < dlforalli=1,...,m.

Theorem 4.4 (Relaxed Problem) An upper bound to the optimal cost of Problem (57) and
o candidate first-stage solution are obtained by solving the following two-stage linear problem

with simple recourse:
min ¢x+dy+ max Q(x,v,b)

(68)
st x,y =0,
where the recourse function Q(x,y,b) is defined by:
Q(x,y,b)= min (d7)y~ +(d")y"
st. vy~ —yt =b~(Ax+ By), (69)
y,y' =20
Proof: For any p such that B'p < d and for any y = 0, we have:
(d-B'p)y = 0. (70)
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Let R(x,p) = max (b — Ax)'p. It follows from Equation (70) that:

< - B'pY
gax R(xp) < jmox [R(x,p) + (d - B'p)y], (71)

for any ¥ 2 0, where we have used that the set {B'p < d} is included in {~d¥<p<d}. In
particular, Equation (71) holds for the value of y that yields the lowest right-hand side. This
yields:

. ] < 3 ! ! . I
min {c X+ gax, R{x, p)} e Juin, {c x+dy+ L [R(x,p) — (By)'p] } . (72

or equivalentiy:
min {c’x 4+ _ max (b- Ax)’p} < min {c’x +d'y +
x20 xyz20

— fom . !
om (b= Ax)'p - (BY)'Pl |

B'p<d,beB
(73)
The left-hand side is the robust problem (57) and the right-hand side can be rewritten as Problem
(68) by invoking strong duality for the inner maximization over p. o

Remark: In many practical cases, y = 0 at optimality, for instance if B = A and d > ¢, where
the second stage consists in ordering raw materials at a higher unit cost for the same production
process as in the first stage. This amounts to optimizing R{x,p) over a box uncertainty set
that contains {B'p < d} but is more convenient to manipulate. However, if the decision-maker
uses, say, a different production process iz the second stage, the additional ordering cost might

be offset by the increase in productivity, yielding & nonzero y.

5 Computational Results

In this section, we present two numerical experiments to illustrate the robust methodology. The
first example is a multi-item newsvendor problem with penalties on surplus and shortage, which
falls within the framework developed in Section 3. The second example is a production planning
problem, where the recourse is to buy additional raw material at a higher cost. This Is a case

of general recourse, for which we apply the approach described in Section 4.

5.1 Newsvendor Problem

We first implernent the robust methodology in a multi-item newsvendor problem. The decision-
maker orders perishable items subject fo uncertain demand, given a budget constraint, and
incurs surplus and shortage costs for each item at the end of the time period. His goal is to

minimize total cost. We use the following notations:
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n: the number of items,

¢; ¢ the unit ordering cost of item ¢,
dF :  the unit holding cost of item %,
d7 : the unit shortage cost of item ¢,
by : the demand for item 4,

A the budget available.

The deterministic problem can be formulated as:

1
min ¢'x -+ Zmax{d; (bg ~ x3), df (s~ bi)}
t=1

gt. c'x < A, (74)

= 0V,
or equivalently, as:
min ¢x 4+ (d7 Yy~ +(@")y"
st. X+y —yT=bh,
Y (75)
cx < A,

x = 0.

Problem (75) is an example of linear programming problem with simple recourse and there-
fore can be analyzed using the technigues described in Section 3. We consider a case with 50
items and capacity 5,000 units, with ordering cost ¢; = 1, nominal demand &; = 8 + 24, maxi-
mum deviation of the demand from its nominal value b; = 0.5 - by, surplus penalty df = ¢, and
shortage penalty d; = 24 for each i = 1,...,50. We apply the modified Benders decomposition
algorithm presented in Section 3.2 using AMPL/CPLEX v.8.1 on a Pentium IV.

Figure 1 illustrates the effect of the budget of uncertainty I" on the expected newsvendor cost.
Sample averages have been computed on a sample of 500 realizations of the demands, which
we generated using independent normal random variables with mean b; and standard deviation
0.2-b; for all 4. We observe that the average cost first decreases with I", as incorporating a small
amount of uncertainty in the model yields to more robust solutions, then reaches its minimum
and starts increasing with I', as the solution becomes overly conservative. The optimal trade-off
is reached for T = 5, which is consistent with the guidelines provided by Bertsimas and Sim in
8], namely, that the budget of uncertainty should be of the order of 1/n (here, v/50 s 7.1). The
worst case when I' = 5 corresponds to the case where the demand for the last 5 items (items 46
to 50) is equal to its highest value, and demand for the other items is equal to its mean.

Figure 2 shows the number of iterations needed to reach optimality in the delayed consiraint

generation algorithm, as a function of the budget of uncertainty. While the feasible set [~at,d7]
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Figure 1: Impact of the budget of uncertainty on the expected cost.

has 25¢ extreme points, i.e., Benders decomposition could in theory generate 950 o~ 1.1 108
constraints, the algorithm converges in at most 334 iterations. We note that the number of
iterations increases with the protection level I', so that if we take I = 5 as suggested by Figure

1, we only need 196 iterations to reach optimality.
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Figure 2: Number of iterations as a function of the budget of uncertainty.

Hence, in this example with simple recourse, the robust optimization approach incorporates

uncertainty in a tractable manner while preserving performance.

5.2 Production Planning

Here, we consider a production planning example where the demand is uncertain but must be
met. Once demand has been revealed, the decision-maker has the option to buy additional raw
material at a more expensive cost and re-run the production process, so that demand for all
products is satisfied. His goal is to minimize the ordering cost of raw materials in both stages.

We define the following notations:
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the number of raw materials,

the number of fnished products,

the first-stage unit ordering cost of the raw materials,
she second-stage unit ordering cost of the raw materials,
the raw materials ordered in the frst stage,

the raw materials ordered in the second stage,

the products manufactured in the first stage,

the products manufactured in the second stage,

the first-stage productivity matrix,

the second-stage productivity matrix,

oM P <« g < % oo 3 3

the demand for the finished products.
We assume that all coefficients of the matrices A and B are nonnegative. The deterministic

problem can be formulated as:

min ¢x+dy

st. Au+Bv<x+y,
Au<x, (76)
u+vz>b,
%y, uvz=0

The recourse function once the demand is known is solution of the following linear programming

problem:
Q(x,u,b) =min d'y

st. Bv—-y<x-—Au

7T
vzb-u, (77)
y.u,vz=0.
Once we have identified the worst-case demand b, we solve the dual of Problem (77):
max (b —u)p-+(Au—x)q
st 0<p< By {78}
0<qs<d,
obtaining the optimal dual variables p*, g*, and add a cut of the type:
Z 2 (A'q" ~p*)u~ (") x+bp, (79)

£o the Benders decomposition algorithm described in Section 4.2.
We now focus on finding the worst-case demand b. We obtain easily the optimal solution to

Problem (77) in closed form:
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m n Tt
Q(x,u,b) = Zdz- max (O,ZA@' u; + Z B;; max(0, b; ~ u;} — m%) ) (80)

i=1 F=1 3=l
Since this function is convex in b, its maximum over B will be reached at an extreme point of

the feasible set. Therefore, with the notations:

k(3 Tt
Alx,u) =Y Aguj+ > Biy max(0,b; — uy) —xi, Vi, (81)
F=l g=1

and: L ~

Aj(w) = max(b; + by, u;) — max(bj, us), VJ, (82)
the robust second-stage problem becomes:
m n

I;;’lea%( ; d; max (O, Ai(x, u} + ; Bz'jﬂj (U.) Zj) . (83)

The key is to find which raw materials might be in shortage after the first stage, ie., verify

ki3
A(x,u)+ > BijA;(a) z; = 0 at optimality. For any z in Z, we have:
=l

T k)
0< Y Bydj(u)z <maxd Bylg(u) 2. (84)

Therefore, if A;(x,u) > 0, we know that ¢ € Z, where 7 is the set of raw materials in shortage.
ke
Similarly, if 4;(x,u) + max ZBijAj(u) z; < 0, then ¢ ¢ T, in which case the index ¢ does not
BES Gt

affect Problem {83) (for the current first-stage solution}. The remaining raw materials will be
classified either by enumeration with the help of upper and lower bounds on Problem (83) to

decide which cases are not worth exploring:

m MmN W 7
Z; d; max{0, 4; (u)}+1:51€a‘%c 21 Z; diBydj(u)zy £ Qx,u) < E; d; (max{{), A} max Z BijAj(u)Zj) .
i =1 j= k) _7—-(;;5)
Alternatively, the lower bound can be used as an approximation to the recourse function in
the master problem. It can speed up this part of the algorithm as we know that a cut will be
required if Z is less than the lower bound. As a trade-off, this implies generating suboptimal
euts in the master problem.

In the numerical implementation, we consider 2 raw materials and 30 products. Demands
for the products are i.i.d., with mean b = 10 and maximem deviation is b = 5. All raw materials
have a first-stage, resp. second-stage, ordering cost of 10, resp. 20 per unit. The productivity
coefficients in matrix A are generated using uniform distributions in {5,15). The productivity

coefficients in matrix B are equal to: By; = 24, which models the fact that producing in
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the second stage uses more resources than in the first one. We apply the modified Benders
decomposition algorithm presented in Section 4.2 using AMPL/CPLEX v.8.1 on a Pentium IV.
Figure 3 illustrates the effect of the budget of uncertainty I' on the expected production
cost. Sample averages have been computed on a sample of 500 realizations of the demands,
which we generated using independent normal random variables with mean b = 10 and standard
deviation ¢ = 2. Again, we observe a trade-off between performance and conservatism, as the
expected cost first decreases when the decision-maker plans for a limited amount of uncertainty,
but ultimately starts increasing as the system becomes overprotected. The optimal choice of the
budget of uncertainty is I' = 4, which matches the guidelines provided by Bertsimas and Sim in
[8], as they suggest to take I’ & /i with n the number of random variables (here, /30 ~ 5.5.)

4
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Figure 3: Impact of the budget of uncertainty on the expected cost.

Figure 4 shows the number of iterations as the budget of uncertainty increases. This number
increases steadily up to 2,472 iterations, while the robust problem solved with I = 4 requires
947 iterations to reach optimality. A reason for the added computational burden in this problem
with general recourse is that the dual feasible set of the recourse function has a large number of
exireme points, which are relatively close from each other, and therefore slow the convergence

of the algorithm when each cut only results in a smali change in the cost.

5.3 Summary of Resulis

The numerical results in this section suggest that robust optimization is a promising methodology
to address sequential decision-making with simple recourse, illustrated in Section 5.1. The
method also performs well in the case of general recourse, presented in Section 5.2. In particular,
we have observed in both experiments that protecting the system against a small amount of
uncertainty will yield a smaller expected cost than not protecting the system at all, i.e., solving

the deterministic problem, or protecting the system against any possible outcome, i.e., solving
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Figure 4: Number of iterations as a function of the budget of uncerfainty.

the worsi-case problem. This matches the intuition. The robust approach also has advantages
over traditional stochastic optimization, as it does not require to solve the recourse problem for

every possible scenario.

6 Conclusions

We have proposed an approach to linear optimization with recourse that is robust with respect
to the underlying probabilities and can be solved efficiently using standard linear optimization
software. Specifically, instead of relying on the actual distribution, which would be difficul$ to
estimate accurately, or a family of distributions, which would significantly increase the com-
plexity of the problem at hand, we have modelled random variables as uncertain parameters in
a polyhedral uncertainty set and analyzed the problem for the worst-case instance within that
set. We have shown that this robust formulation can be solved efficiently (a) by adapting Ben-
ders’ decomposition, with computational adventages over the traditional stochastic framework,
and (b) in the case of simple recourse, by considering a series of linear programming problems
of size similar to the original deterministic problem. We have implemented this methodology
to the rmlti-item newsvendor problem and a production planning exarnple, with encouraging

computational results.

References

(1] Atamtiirk, A., M. Zhang: Two-stage robust network flow and design under demand un-
certainty. Working paper, Department of Industrial Engineering and Operzations Research,
Univessity of California st Berkeley, Berkeley, CA (2004)

26



[2] Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems.
Numertsche Mathematik 4 238-252 (1962)

[3] Ben-Tal, A., A. Nemirovski: Robust convex optimization. Mathematics of Operations Re-
search 23 769-805 {1998)

[4] Ben-Tal, A., A. Nemirovski: Robust solutions to uncertain programs. Operotions Research
Letters 25 1-13 {1999)

(5] Ben-Tal, A., A. Nemirovski: Robust solutions of linear programming problems contami-
nated with uncertain data. Mathematical Programming 88 411-424 (2000)

[6] Ben-Tal, A., A. Goryashko, E. Gulitzer, A. Nemirovski: Adjustable robust solutions of
uncertain linear programs. Mathematical Programming 99 351-376 (2004)

[7] Bertsimas, D., J. Tsitsiklis: Introduction to Linear Optimization, Athena Scientific (1997)
[8] Bertsimas, D., M. Sim: The price of robustness. Operations Research 52 35-53 (2004)

[9] Bertsimas, D., M. Sim: Robust discrete optimization and network flows. Mathematical
Programming 98 43-T1 {2004)

(10] Bertsimas, D., A. Thiele: A robust optimization approach to inventory theory. Operations

Research, to appear (2005)

[11] Birge, J., F. Louveaux: Introduction to Stochastic Programming, Springer Series in Opera-
tions Research {1997)

[12] Birge, J., R. Wets: Computing bounds for stochastic programming problems by means of
a generalized moment problem. Muthematics of Operations Research 12 149-162 (1987)

[13] Breton, M., S. El Hachem: Algorithms for the solution of stochastic dynamic minimax

problems. Computational Optimization and Applications 4 317-345 (1995)

[14] Dantzig, G.B.: Linear programming under uncertainty. Maenagement Science 1 197-206
{1955)

[15] Dupacova, J.: On minimax decision rule in stochastic linear programming, in: A. Prekopa,
ed., Studies in Mathematical Programming, pp.47-60, Akademiai Kiado, Budapest (1980)

[16] Dupacova, J.: The minimax approack o stochastic programming and an illustrative appli-
cation. Stochastics 20 73-88 (1987)

27



[17] Dupacova, J.: Stochastic programming: minimax approach, Eneyelopedia of Optimization,
Ch.A.Floudas and P.M. Pardalos, eds., Vol.V, pp. 327-330, Kluwer (2001)

[18] Bl Ghaoui, L., H. Lebret: Robust solutions to least-square problems with uncertain data
matrices. SIAM Journal on Matriz Anclysis and Applications 18 1035-1064 (1997)

[19] El Ghaoui, L., F. Oustry, H. Lebret: Robust solutions to uncertain semidefinite programs.
SIAM Journal on Optimization 9 33-52 (1998)

[20] Ermoliev, Y., A. Galvoronsky, C. Nedeva: Stochastic optimization problem with partially
known distribution functions. SIAM Journal on Control and Optimization 28 697-716
{1985}

[21] Jagannathan, R.. Minimax procedure for a class of linear programs under uncertainty.
Operations Research 25 173-177 (1977)

[22] Kall, P., S. Wallace: Stochastic Programming, Wiley (1994}

(23} Riis, M., K. A. Andersen: Applying the minimax criterion in stochastic recourse programs,
Technical Report, University of Aarhus, Department of Operations Research, Aarhus, Den-
mark (2002)

[24] Shapirc A.: Monte-Carlo Sampling Methods, in Stochastic Programrming, A. Ruszczynski,
A., A. Shapiro (eds), volume 10 in Handbooks in Operations Research and Management
Science, Elsevier (2003)

[25] Shapiro, A., S. Ahmed: On a class of minimax stochastic programs. SIAM Journal on
Optimization 14 1237-1249 (2004)

[26] Shapiro, A., A. Kleywegt: Minimax analysis of stochastic programs. Optimization Methods
and Software 17 523-542 (2002)

[27] Soyster, A.: Convex programming with set-inclusive constraints and applications to inexact

linear programming. Operations Research 21 1154-1157 {1973)

[28] Takriti, 8., 8. Ahmed: On robust optimization of two-stage systems. Mathematical Pro-
gramming 99 109-126 (2004)

[29] Takriti, S., S. Ahmed: Managing short-term electricity contracts under uncertainty: a min-
imax approach. Technical Report, School of Industrial and Systems Engineering, Georgia
Institute of Technology, Atlanta, GA (2002)

28



[30] Zéckova, J.: On minimax solution of stochastic linear programming problems. Cas. Pest.
Mat. 91 423-430 (1966)

29



