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Abstract

We consider the effectiveness of a lookahead branching method for the selec-
tion of branching variable in branch-and-bound method for mixed integer pro-
gramming. Specifically, we ask the following question: by taking into account the
impact of the current branching decision on the bounds of the child nodes fwe
levels deeper than the current node, can better branching decisions be made? We
describe methods for obtaining and combining bound information from two levels
deeper in the branch-and-bound tree, demonstrate how to exploit auxiliary im-
plication information obtain in the process, and provide extensive computational

experience showing the effectiveness of the new method.

1 Introduction
A mixed integer program (MIP) is the problem of finding
zure = max{cTz + by : Av + Gy < b,z € 7V y e R}, {(MIP)

where [ is the set of integer-valued decision variables, and C is the set of continuous de-
cision variables. The most common algorithm for solving MIP, dating back to Land and
Doig {20}, is a branch-and-bound method that uses the linear programming relaxation
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of MIP to provide an upper bound on the optimal solution value (zx7p). Based on the
solution of the relaxation, the feasible region is partitioned into two or more subprob-
lems. The partitioning processes is repeated, resulting in a tree of relaxations (typically
called a branch-and-bound tree) that must be evaluated in order to solve MIP. See [26]
or [31] for a more complete description of the branch-and-bound method for MIP.

A key decision impacting the effectiveness of the branch-and-bound method is how to
partition the feasible region. Typically, the region is divided by branching on a variable.
Branching on & variable is performed by identifying a decision variable z; whose solution
value in the relaxation (£;) is not integer-valued, The constraint x; < |Z;] is enforced in
one subproblem, and the constraint z; > [£;] is enforced in the other subproblem. In a
given solution (&, 9) to the LP relaxation of MIP, there may be many decision variables
for which 2; is fractional. A natural question to ask is on which of the fractional variables
should the branching dichotomy be based.

The effectiveness of the branch-and-bound method strongly depends on how quickly
the upper bound on 2z p, obtained from the solution to a relaxation, decreases. There-
fore, we would like to branch on a variable that will reduce this upper bound as quickly
as possible. In fact, a long line of integer programming research in the 1970’s was fo-
cused on developing branching methods that estimated which variables would be most
likely to lead to a large decrease in the upper bound of the relaxation after branching
i4, 18, 25, 6, 186, 17].

In the 1990’s, in connection with their work on solving large-scale traveling salesper-
son instances, Applegate et al. proposed the concept of strong branching [2]. In strong
branching, the selection of a branching variable is made by tentatively selecting each
variable from a potential set C of candidates to be the branching variable and observing
the change in relaxation value after performing a fixed, limited number of dual simplex
pivots. The intuition behind strong branching is that if the subproblem bounds change
significantly in a limited number of simplex pivots, then the bound will also change sig-
nificantly (relative to other choices) should the child node relaxations be fully resolved.
Strong branching has been shown to be an effective branching rule for many MIP in-
stances and has been incorporated into many commercial solvers, e.g. CPLEX [9] and
XPRESS [10]. In full strong branching, the set C is chosen to be the set of all fractional
variables in the solution of the relaxation, and there is no upper limit placed on the
number of dual simplex pivots performed. Full strong branching is a computationally
expensive method, so typically C is chosen to be a subset of the fractional variables in
the relaxation solution, and the number of simplex pivots performed is small.

When employed judiciously, strong branching has been shown to be a very effective



branching method. In fact, researchers outside the realm of mixed integer linear pro-
gramming, but still where branch-and-bound is employed, have also recently begun to
use the idea of strong branching to aid the branching decisions. Vandenbussche and
Nemhauser use strong branching to determine on which complementarity condition to
branch in an algorithm for solving nonconvex quadratic programs [30], and Fampa and
Anstreicher use strong branching to reduce the size of an enumeration tree of Steiner
topologies in their algorithm for solving the multidimensional Steiner Tree problem [15].

The fact that strong branching can be a powerful, but computational costly, tech-
nique has led some researchers to consider weaker forms of strong branching that only
perform the necessary computations at certain nodes. For example, Linderoth and
Savelsbergh [22] suggest to perform the strong branching computations for variables
~that have yet to be branched upon. The commercial package LINDO performs strong
branching at all nodes up to a specified depth d of the branch-and-bound tree [23].
This work was improved by Achterberg, Koch, and Martin, in a process called reliabil-
ity branching in which the choice of the set C and the number of pivots to perform is
dynamically altered during the course of the algorithm [1].

The fundamental motivation of this paper is to consider the exact opposite question
as that of previous authors. That is, instead of performing less work than full strong
branching, what if we performed more? Specifically, by taking into account the impact
of the current branching decision on the bounds of the child nodes two levels deeper
than the current node, can we make better branching decisions? The intuition behind
studying this question is to view strong branching as a greedy heuristic for selecting the
branching variable. By considering the impact of the branching decision not just on the
child subproblems, but on the grandchild subproblems as well, can we do better? And
if 50, at what computational cost?

Obviously, obtaining information about the bounds of potential child nodes two lev-
els deeper than the current node may be computationally expensive. In this work, we
will for the most part focus on the question of if attempting to obtain this informa-
tion is worthwhile, rather than on how to obtain the information in a computationally
efficient manner. However, even if obtaining this information is extremely costly, we
note two factors that may mitigate this expense. First, in codes for mixed integer pro-
gramming that are designed to exploit significant paralielism by evaluating nodes of the
branch-and-bound tree on distributed processors {14, 21, 28], in the initial stages of the
algorithm, there are not enough active nodes to occupy available processors. If obtain-
ing information about the impact of branching decisions at deeper levels of the tree is
useful, then these idle processors could be put to useful work by computing this infor-



mation. Second, as noted by numerous authors [16, 22, the branching decisions made at
the top of the tree are the most crucial. Perhaps the “expensive” lookahead branching
techniques need only be done at for the very few first nodes of the branch-and-bound
tree.

We are not aware of a work that considers the impact of the branching decision on
grandchild nodes. Anstreicher and Brixius considered a “weak” (but computationally
efficient) form of two-level branching as one of four branching methods described in [7].
In the method, &, “pivots” are made to consider one branching decision; then, using
dual information akin to the penalties of Driebeek [12], one more “pivot” on a second
branching entity is considered. This paper is an abbreviated version of the Master’s
Thesis of Glankwamdee [19], wherein more complete computational results can be found.

The paper has two remaining sections. In Section 2, we explain the method for
gathering branching information from child and grandchild nodes, and we give one way
in which this information can be used to determine a branching variable. We also show
that auxiliary information from the branching variable determination process can be
used to tighten the LP relaxation and reduce the size of the search tree. In Section 3, we
present methods to speed up the lookahead branching method. Extensive computational
experiments are performed to determine good parameter settings for practical strong
branching and lookahead methods. These branching methods are compared to that of
MINTO, a sophisticated solver for mixed integer programs.

2 Lookahead Branching

In this section, the question of whether or not significantly useful branching informa-
tion can be obtained from potential grandchild nodes in the branch-and-bound tree is
examined. We explain our method for gathering this information and describe a simple
lookahead branching rule that hopes to exploit the branching information obtained.
Figure 1 shows a potential two-level expansion of the search tree from an initial node.
The set F is the set of fractional variables in the solution to the initial LP relaxation
(2*). By definition, the solution value of an infeasible linear program is denoted as
z1p = —00, and the lower bound on the optimal solution value zy;p is denoted at 2.
If the constraint z; < |x}] is imposed on the left branch, and the relaxation is resolved,
a solution of value z; is obtained, and there is a set of variables 7 & I that takes
fractional values. We use the parameter & = 1 to indicate if the left branch would be
pruned (i.e. if 27 < z;,); otherwise & = 0. Similarly, if the bound constraint «; = [=}]
is imposed on the right branch, a solution of value z" is obtained, a set of variables

T
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Fi C I is fractional, and the parameter & indicates if the child node would be pruned.
Continuing to the second level in Figure 1, if the variable j € F; is chosen as the

2

_branching variable for the left child node, then the solution values for the two grandchild
nodes are denoted as 2z~ and z;j+, and the indicator parameters p;;” and ,o;;’i“ are set to
1 if the corresponding grandchild nodes would be pruned, otherwise the indicators are

set to 0. The notation for grandchild nodes on the right is similar.

Figure 1: Notations for Lookahead Search Tree

2.1 Branching Rules

Once the branching information from the grandchild nodes is collected, there is still the
question of to how to use this information to aid the current branching decision. Two
reasonable objectives in choosing a branching variable are to minimize the number of
grandchild nodes that are created, and to try to decrease the LP relaxation bounds at
the grandchild nodes as much as possible. Various combinations of these objectives were
explored in [19]. To keep the exposition short, we mention only one such method here.
To precisely define the rule, we will use the following definitions. Let

G £ {j € Flog~ =0,p5" =0} &

and
G ¥ (ke FHph =0,p%" =0} (2)



be the sets of indices of fractional variables in child nodes both of whose grandchild
nodes would not be pruned. To combine the progress on bound reduction of two child
nodes into one number, we use the weighting function

Wi(a,b) % {11 min(a, b) + pz max(a,b)}, (3)

as suggested by Bckstein{13]. In this paper, the parameters of the weighting function
are set to u; = 4 and pg = 1. Linderoth and Savelsbergh verified empirically that these
weights resulted in good behavior over a wide range of instances [22]. Let the reduction
in the LP relaxation value at the grandchild nodes be denoted by

def
Dyt = zpp — 2%, where 81,83 € —, +. (4)

Note that DZ}* > 0. The symbol 7; counts the total number of potential grandchild
nodes that would be fathomed if variable ¢ was chosen as the branching variable i.e.

m =Y (o5 +egt) + D ok + e (5)
jeF” ke

The two goals of branching, bound reduction and node elimination, are combined into
one measure through a weighted combination. The branching rule employed in the ex-
periments chooses to branch on the variable ¢* that maximizes this weighted combination

namely
i* = arg max {max{W(D;;', D5} + max{(W(DE™, D" )} + )\m} : (6)
‘ €F | jery keF;
where A = —— W(D;~, D%y + W(D;~, DT 7
ere |g ! @Zg__ ( ¥ ) ‘g+|;§ ( ik ik ) ( )

is the average (weighted) reduction in LP value of all potential grandchild nodes in the
sets G; and G;F. This value of A was chosen to give the terms in equation (6) the same
scale. Note that in equation (6), the variables j € F; and k € F; that maximize the

weighted degradation of the grandchild nodes LP relaxation value may be different. To
implement full strong branching, we let

D zpp — 25, where s € —, +, (8)

?

and we branch on the variable

i* = arg z%ajzi{W(Df, D). (9)



2.2 Implications and Bound Fixing

When computing the LP relaxation values for many potential child and grandchild nodes,
auxiliary information is obtained that can be useful for tightening the LP relaxation and
reducing the size of the search tree.

2.2.1 Bound Fixing

When tentatively branching on a variable z;, either in strong branching or in lookahead
branching, if one of the child nodes is fathomed, then the bounds on variable z; can
be improved. For example, if the child node with branching constraint z; > [z}] is
infeasible (& = 1), then we can improve the upper bound on variable ¢ to be z; < |z ].
Likewise, if there exists no feasible integer resolution for a variable j after branching on
a variable i, then the bound on variable ¢ can be set to its complementary value. The
exact conditions under which variables can be fixed are shown in Table 1.

Condition Implication
& =1 @ 2 faf]
& =1 z; < |2
py =land py"=1| = 2> [2]]
ph=1land pt =1 z; < |27]

Table 1: Bound Fixing Conditions

2.2.2 Implications

By examining consequences of fixing 0-1 variables to create potential grandchild nodes,
simple inequalities can be deduced by combining mutually exclusive variable bounds
into a single constraint. The inequality identifies two variables, either original or com-
plemented, that cannot simultaneously be 1 in an optimal solution. For example, if
variables z; and z; are binary decision variables, and the lookahead branching proce-
dure determines that branching “up” on both ; and =z (i.e. x; > 1,2, > 1) results in
a subproblem that may be pruned, then the inequality z; + 2 <1 can be safely added
to the LP relaxation at the current node. These inequalities are essentially additional
edges in a local conflict graph for the integer program [29, 3]. As a line of future research,
we intend to investigate the impact of adding these edges to the local conflict graph,
and performing additional preprocessing. Further grandchild inequalities can be added
if any of the grandchild nodes would be pruned as specified in Table 2.

7



Condition Inequality
p =0 ([ (l—z)+(1—z;) 1

Py =0 (1—2)+e; <1
Pj;;ﬂ{) $,+(1—$k)$1
paT =0 @t <1

Table 2: Grandchild Implications

2.3 Characteristics of Computational Experiments

The lookahead branching rule has been incorporated into the mixed integer optimizer
MINTO v3.1, using the appl_divide() user application function that allows the user
to specify the branching variable [27). In ail the experiments, the default MINTO
options, including preprocessing and probing, automatic cut generation, and reduced
cost fixing, were used. For these experiments, the lower bound value 2, was initialized
to be objective value of the (known) optimal solution. By setting 2y, to the value of the
optimal solution, we minimize factors other than branching that determine the size of the
branch-and-bound tree. ‘To solve the linear programs that arise, we use CPLEX(v8.1)
[9]. To speedup the testing of the algorithm, we run the experiments on a Beowulf cluster
at Lehigh University. The code was compiled with gee version 2.96 (Red Hat Linux 7.1),
and run on Intel(R) Pentium(R) III CPU, with clock speed 1133MHz. The CPU time
was limited to a maximum of 8 hours; and the memory was limited to a maximum of
1024MB. We have limited initial test to a suite of 16 instances from MIPLIB 3.0 [5} and
MIPLIB 2003 [24].

2.4 Computational Results

In our first experiment, we ran an implementation of full strong branching, with and
without bound fixing and implications, and lookahead branching, with and without
bound fixing and implications. The primary focus of the experiment is not on the speed
of the resulting methods at this pomnt, but instead on the following two questions:

e Does lookahead branching often make different branching decisions compared to
full strong branching? If so, what are the positive impact of these branching
decisions?

e Do bound fixing and grandchild inequalities coming from implications found in the
lookahead branching procedure have a positive impact on the size of the search
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trea?

Full details of the experimental runs can be found in Tables 4, 5 and 6 in the Appendix.
To summarize the results of the experiments, we use performance profiles plotted in
log scale, as introduced by Dolan and Moré [11]. A performance profile is a relative
measure of the effectiveness of a solver s when compared to a group of solvers & on a
set of problem instances P. To completely specify the performance profile, we need the
following definitions:

* 7, is a quality measure of solver s when solving problem p,
® Tpg = ’Yps/(mi-nsES 7?8)7 and
o p(T)=H{p € P |7 STH/IPL

Hence, ps(7) is the fraction of instances for which the performance of solver s was
within a factor of 7 of the best. A performance profile for solver s is the graph of
ps(T). In general, the higher the graph of a solver, the better the relative performance.
Fleven of the sixteen instances were solved to provable optimality by one of the four
methods, and for these instances, we use the number of nodes as the quality measure
s Under this measure, ps(1) is the fraction of instances for which solver s evaluated
the fewest number of nodes to verify optimality, and ps{co) is the fraction of instances
for which solver s verified the optimality of the solution of value z;. Figure 2 shows the
performance profile plot for these eleven instances. SB and LA denote strong branching
and lookahead branching respectively while Implication indicates that bound fixing and
implications are added to the algorithms. Two conclusions can evidently be drawn from
Figure 2.

1. Using bound fixing and grandchild inequalities can greatly reduce the number of
nodes in the branch-and-bound tree, and

9. Neither full strong branching nor lockahead branching seems to significantly out-
perform the other in these tests.

The fact that full strong branching and lookahead branching seem to be of compa-
rable quality is slightly surprising, more so when one considers the fact that lookahead
branching quite often chooses to branch on a different variable than full strong branching
does. In Table 3, the second columnn lists the percentage of nodes at which lookahead
branching and full strong branching would make different branching decisions. For ex-
ample, for the instance giu, the two methods choose a different branching variable 96%
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Figure 2: Performance Profile of Number of Evaluated Nodes in Solved Instances
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of the time. Also in Table 3, we list the number of times a variable’s bound was improved
per node, and the number of grandchild inequalities per node that was added.

Name | % Diff | # of Bound Pixing | # of Inequalities
(per node) (per node)
affow30a | 076 1.53 47.80
aflowdOb | 0.59 0.72 26.24
danoint | 0.86 0.85 3.48
1152lav 0.25 2.56 267.56
misc07 0.73 1.32 32.35
modglob | 0.50 1.00 17.13
opt1217 | 0.46 1.09 0
p0548 1.00 3.00 15.33
p2756 0 0.67 15.00
pkl 0.53 0.87 10.71
pp08a, 0.75 1.02 0.86
giu 1.00 3.60 120.60
rgn 0.71 0.64 2.75
steindd 0.60 1.19 72.08
swath (.84 0.73 1.51
vpm2 0.54 0.83 8.81

Table 3: Lookahead Branching Statistics

For five of the sixteen instances, none of the branching methods was able to prove
the optimality of the solution. For these instances, we use as our quality measure (),
the final integrality gap after eight hours of CPU time. Figure 3 shows the performance
profile of the four branching methods on the unsolved instances. Again, we see that the
bound fixing and grandchild (implications) inequalities can be very effective, and that
lookahead branching and full strong branching are of relatively similar quality for these
instances. .

The final performance profile (in Figure 4) uses the solution time as the quality
parameter for the eleven solved instances, and also includes a profile for the default
MINTO branching rule. The profile demonstrates that

o As expected, the running time of the strong branching and lookahead branching
are in general worse than the default MINTO.
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e However, the added implications and bound fixing help to solve the pkl instance
which is unsolved with the default MINTO.
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Figure 4: Performance Profile of Running Time in Solved Instances

3 Abbreviated Lookahead Branching

The initial experiment led us to believe that measuring the impact on grandchild nodes
when making a branching decision can reduce the number of nodes of the search tree, in
large part due to additional bound fixing and implications that can be derived. However,
the time required to perform such a method can be quite significant. Our goal in this
section is to develop a practical lookahead branching method. An obvious way in which
to speed the process up is to consider fixing bounds on only certain pairs of variables,
and then to limit the number of simplex iterations used to gauge the change in bound
at the resuiting grandchild nodes.
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3.1 Algorithm

To describe the method employed, we use similar notation as for the original method
described in Section 2. Figure 5 shows the notation we use for the values of the LP relax-
ations of the partially-expanded seaxch tree, and the indicator variables if a particular
grandchild node would be fathomed.

ZLP

P . » ..
. 24 7 P
Pij Pij Pij Pis

did; =23 < |at], e < |2f]  wdy =2 > [afl 2 < (2]
diuj =2 < otz 2 (2] wwy = 2> (2], 35 2 [2]]

Figure 5: Notations for Abbreviated Lookahead Search Tree

For a pair of variables (z;, 2;) whose values in the current LP relaxation are fractional,
we create the four subproblems denoted in Figure 5 and do a limited number of dual
simplex pivots in order to get an upper bound on the values z;7, 2z, 257, and F
The obvious questions we must answer are how to choose the pair of variables (z;,2;),
and how many simplex pivots should be performed.

3.2 Strong Branching Implementation

"The questions of how to choose cendidate variables and how many pivots to perform on
each candidate must also be answered when implementing a (one-level) strong branch-
ing method. Since our goal is to show possible benefits of the lookahead method, we
also implement a practical strong branching method with which to compare the abbre-
viated lookahead method. When implementing strong branching, there are two main
parameters of interest:

e The number of candidate variables to consider, (or the size of the set C}, and

e the number of simplex pivots (down and up) to perform on each candidate.
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Our choice to limit the size of the candidate set is based on how many fractional variables
there are to consider in a solution (Z,9) whose objective value is z;p. Specifically, we
let the size of this set be

|C] = max{ajFi, 10}, (10}

where JF is the set of fractional variables in 2, and 0 < a < 1 is a parameter whose
value we will determine through a set of experiments. When branching, the variables
are ranked from largest to smallest according to the fractionality of #;, i.e. the criteria
min(f;, 1 — f;), where f; = #; —|Z;] is the fractional part of 2;. The top |C| variables are
chosen as potential b'ranching candidates. For each candidate variable z;, § dual simplex
iterations are performed for each of the down and up branch, resulting in objective values
z7 and 2. The variable selected for branching is the one with

i* € argmax{W(arp — 2, 22p — )} (11)

More sophisticated methods exist for choosing the candidate set C. For example, the
variables could be ranked based on the bound change resulting from one dual simplex
pivot (akin to the penalty method of Driebeek [12]), or even a dynamic method, in
which the size of the set considered is a function of the bound changes seen on child
nodes to date, like the method of Achterberg, Koch, and Martin [1]. We denote by
SB(&, B) the strong branching method with parameters & and 3. In our experiments,
strong branching was implemented using the CPLEX routine CPXstrongbranch() [9].

3.3 Lookahead Branching Implementation

When implementing the abbreviated lookahead branching method, we must determine
e the number of candidate variable pairs to consider, and

e the number of simplex iterations to perform on each of the four grandchild nodes
for each candidate pair.

Our method for choosing the set of candidate pairs D works as follows. First, a
limited strong branching SB(&, £) is performed, as described in Section 3.2. Then,
the variables are ranked from largest to smallest using the same criteria as in strong
branching, namely W{(z.p — 27, 2.p — 2;7). From these, the best « candidates are
chosen, and for each pair of candidate variables coming from the best v, § dual simplex
iterations are performed on the four grandchild nodes, resulting in the values 2§}* and

S

3} of Figure 5. If & and 3 are the parameters for the limited strong branching, and 4, $
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are the parameters defining the size of the candidate set of variable pairs and number of
pivots on each grandchild node to perform, then we will refer to the branching method as
LA(&, 3,4, 6). Note that the set I consists of all pairs of the best v candidate variables
from the limited strong branching. It may not be necessary to consider each pair, and
we will consider other mechanisms for choosing the variable pairs as a line of future
research.

3.4 Computational Results

A first set of experiments was performed to determine good values for the branching
parameters a, 8,7, and 8. Subsequently, we compared the resulting strong branching
and abbreviated lookahead branching methods with the default branching scheme of
MINTO v3.1. MINTO v3.1 uses a combination of (once-initialized) pseudocosts and
the penalty method of Driebeek {12]. See Linderoth and Savelsbergh [22] for a complete
explanation of this method. For these experiments, we used a test suite of 88 instances
from MIPLIB 3.0 [5], MIPLIB 2003 [24], and instances available at CORQL [8]. Besides
the test suite of problems, all other characteristics of these experiments are the same as
those described in Section 2.3.

3.4.1 Strong Branching Parameters

Our first goal is to determine reasonable values for o and § to use in our strong branching
method SB(a, ). Doing a search of the full parameter space for o and § would have re-
quired prohibitive computational effort, so instead we employed the following mechanism
for determining reasonable default values for o and 8. The number of simplex iterations
was fixed to 8 = 5, and an experiment was run to determine a good value of o given
that 8 = 5. Figure 6 shows a performance profile of this experiment, wherein we have
implemented the branching rules 8B(w, 5) for o = 0.25,0.5,0.75,and 1.0. The result of
the experiment shows that o = 0.5 gives good relative results. Namely, considering a.
half of the fractional variables as branching candidates results in good computational
behavior.

Next, we ran an experiment comparing the branching rules SB(0.5,3) for § =
5,10,and 25. Figure 7 summarizes the results of this experiment in the performance
profile. There is no clear winner in this experiment, but the value 8 = 10 appears to
perform reasonably well,
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3.4.2 Lookahead Branching Parameters

This experiment is designed to determine appropriate values for the number of branching
candidates and the number of simplex pivots, i.e. parameters v and d respectively, in
the abbreviated lookahead branching method, LA(w, 8,7,d). In this experiment, we
have fixed the values for (a*,3*) = (0.5,10} as determined in Section 3.4.1. To find
appropriate values for -y and &, we follow the similar strategy to the one that was used
to determine o and 8*. First, we fix a value of § = 10, and compare the performance
of branching rules LA(0.5, 10, y, 10). The results of this experiment are summarized in
Figure 8. We conclude from the experiment that y =3 is a reasonable parameter value.

S i vy
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° ;"
¥ 04 «{.-" |
i
i
0.2 F -
0.50,10,3,10 —
0.50,10,5,10 =wwwwus
0.50,10,10,10 =vxerse-
4 ‘ |
10

not more than x times worse than best solver

Figure 8 Performance Profile of Running Time as v Varies

Given that v = 3, the next experiment compared branching metheds LA(0.5, 10, 3, 5)
for & € {5,10,15,20,25}. The results of this experiment are summarized in the perfor-
mance profile in Figure 9. There is also no clear winner in this experiment, but we prefer
the smaller number of simplex pivots. Therefore, we select the good parameter settings
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for the abbreviated lookahead branching method to be {&*, 8%, 4*,6*) = (0.5, 10,3, 10).

=
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Figure 9: Performance Profile of Running Time as § Varies

3.4.3 Full Strong Branching and Abbreviated Lookahead Branching Com-

parison

This experiment is aimed at determining if the limited grandchild information obtained
from the abbreviated lookahead branching method could reduce the number of nodes
in the search tree significantly. Namely, we compare the branching methods SB(e*, %)
and LA{a*, 5*,7*,8*). For sure, the abbreviated lookahead branching method will not
be at all effective if the number of nodes in LA(a*, 8%, ~*,8%) is not significantly less
than SB{a*, §%) since the amount of work done to determine a branching variable is
significantly larger in LA(o*, 8%, 4*,6%) than for SB(c”, 5%).

Figure 10 is the performance profile comparing the number of nodes evaluated in the
two methods. The number of nodes in the abbreviated lookahead method is substan-
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tially less than the strong branching. A somewhat more surprising result is depicted
in Figure 11, which shows that LA(a*, §%,7*, §*) also dominates SB(e”, 5%) in terms of
CPU time.
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Figure 10: Performance Profile of Number of Evaluated Nodes for 5B and LA

3.4.4 Final Comparison

The final experiment is the most practical one, aimed at determining for a fixed max-
imum number of simplex iterations, whether these iterations are most effectively used
evaluating potential child node bounds or grandchild node bounds. Namely, we would
like to compare & strategy SB(ay, 51) against a strategy LA(cg, £2,7, 0) for parameter
values such that

2116 = 2icalgy + 47 (12)

The LHS of equation (12) is the maximum number of pivots that the method
SB(oq, £1) will perform, where |Cy] is computed from equation (10). Similarly, the RHS
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is the maximum number of pivots that the method LA(wg, B2,7,§) can perform. For
this experiment, v and § were fixed at the settings determined in Section 3.4.2, namely
~* = 3 and § = 10. We used a value of a; = 1 and ay = 0.5 so that |Cy| = 0.5{C4|.
Finally, we set 81 = 25, and (3, is computed from equation (12).

.........................................................................
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Figure 12: Performance profile of Running Time with Fixed Number of Pivots

The experimental results are summarized in the performance profile of Figure 12.
For a fixed number of simplex iterations, abbreviated lookahead branching outperforms
strong branching. Further, while not quite as effective as the default MINTO branching
method, abbreviated lookahead branching appears to be areasonable practical branching
method if performed in a limited fashion.

4 Conclusion

We have asked and partially answered the question of whether or not consider branching
information from grandchild nodes can result in smaller search trees. We have proposed
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a method for gathering the information from grandchild nodes, We verified that this
information can often be quite useful in reducing the total number of nodes in the
search, can result in fixing bounds on variables, and can often give implications between
variables. Finally, we showed that by the limiting number of simplex iterations or the
number of fractional variables for which to generate the branching information, a similar
branching decision can still be made, but with less computational effort. The resulting
branching rule is of comparable quality to the advanced branching method available in
the MINTO software system. From our experience, it seems unlikely that lookahead
branching will be a good default branching scheme for general MIP, but for some classes
of hard problem instances, the additional computational effort may well pay off.
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Appendix

A Tables of Results

A value of -1 indicates that the instance was not solved within the time limit of 8 hours.

Number of Evaluated Nodes
Name SB | SB-Implication | 2-Level | 2-Level-Implication
1152lav 193 11 281 9
p0548 3 3 3 3
rgn 1011 127 1296 119
steindd | 16437 7491 20409 8755
vpm?2 4883 381 4291 527
miscO7 | 8173 163 5219 31
modgiob | 159 29 199 79
p2756 7 3 7 3
aflow3Ca | -1 15 -1 45
pkl -1 24001 -1 13731
giu <1 5 -1 5
Table 4: Solved MIPLIB Instances
Integrality Gap
Name SB | SB-Implication | 2-Level | 2-Level-Implication
optl1217  23.88 23.88 24.07 24.07
pp08a | 10.63 10.66 11.55 11.38
aflow40b | 13.25 6.91 13.09 5.90
danoint | 4.38 4.38 4.49 4.41
swath | 32.47 30.66 30.27 29.29

Table 5: Unsolved MIPLIB Instances

25




Total Running Time
Name | MINTO SB SB-Implication | 2-Level | 2-Level-Implication
[1521av 8.84 1808.68 1059.83 3678.86 606.83
p0548 0.21 0.27 0.31 0.29 0.26
rgn 2.91 32.13 24.18 31.13 23.66
steindb 206.94 | 19820.37 15107.89 23863.70 13323.79
vpIm2 23.71 522.02 144.39 483.05 107.62
misc07 790.96 | 13852.87 8000.36 11993.02 8201.39
modglob 2.95 115.14 41.55 148.21 44.25
P2756 2.92 18.52 14.70 18.10 15.34
aflow30a | 1842.31 -1 844.3 -1 1779.79
pkl -1 -1 4928.79 -1 4685.71
giu 5112.87 -1 454.33 -1 472.78
Table 6: Total Running Time of Solved MIPLIB Instances
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