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ABSTRACT

We introduce a decision support framework for the Research and Development (R&D) portfolio
selection problem faced by a major U.S. semiconductor manufacturer. R&D portiolio selection is of
critical importance to high-tech operations such as semiconductor and pharmaceutical, as it deter-
mines the blend of technological development the firm must invest in its R&D resources. This R&D
investment leads to differentiating technologies that drive the firm’s market position. We developed
a general, three-phase decision support structure for the R&D portfolio selection problem. First
is the scenario generation phase where we transform qualitative assessment and market foresight
from senior executives and market analysts into quantitative data. This is combined with the com-
pany’s financial data (e.g., revenue projections) to generate scenarios of potential project revenue
outcomes. This is followed by the optimization phase where a multistage stochastic program (SP)
is solved to maximize expected operating income (OI) subject to risk, product interdependency,
capacity, and resource allocation constraints. To measure portfolio risk, the SP model uses a mod-
iied mean-Gini risk coefficient that estimates product risk based on the variability of profits. The
optimization procedure generates an efficient frontier of portfolios at different OI (return) and risk
levels. The refinement phase offers managerial insights through a variety analysis tools that utilize
the optimization results. For example, the robustness of the optimal portfolio with respect to the
risk level, the variability of a portfolio’s OI, and the resource level usage as a. function of the optimal
portfolio can be analyzed and compared to any qualitatively suggested portfolio of projects. The
decision support structure is implemented, tested, and validated with various real world cases and
managerial recommendations. We discuss our implementation experience using a case example, and
explain how the system is incorporated into the corporate R&D investment decisions.



1 Introduction

Effective management of the Research and Development (R&D) portfolio is critical to effective
market positioning in high-tech industries such as computers, semiconductors, and pharmaceutical.
In these industries, a firm’s market position is tied directly to its portfolio of intellectual property
(IP), which must be developed, acquired, or licensed. Studies of these industries (c.f., [4], [2]) point
to the important conclusion that a firm’s ability to attain significant market share in any technology
area depends on its ownership of the essential 1P and its ability to leverage essential IP from other
firms.

In this paper, we describe specific issues of R&D portfolio selection and management from the
perspective of a specialty semiconductor firm. We developed a decision support structure based on
risk modeling and scenario analysis. The idea is to combine qualitative and quantitative insights
concerning market competition, customer performance, technology interdependence, and the status
of the firm’s IP development and R&D resources in a cohesive framework. This, in turn, allows
the management to systematically evaluate and refine their R&D portfolio, trading off potential
returns against risk exposure. Another important dimension of the decision support structure is
the integration of strategic and operational planning decisions. Key strategic decisions in this
context include customer, market, and product selections as well as timing of the product release.
Operational decisions support strategic decisions through resource adjustments such as capacity,
personnel, and budget allocations.

The most notable examples of using portfolio selection and management concepts in strategic
planning can be found in pharmaceutical companies. In this industry, the drug development portfo-
lio drives the R&D budget (which can constitute over 40% of the total operating cost), determines
the firm’s market positioning, and impacts the firm’s brand image. Major firms try to balance their
portfolio of drugs such that high-risk, high-margin specialty drug development projects are mixed
with low-risk, high-volume developments. When facing R&D portfolio decisions, firms are not only
subject to risks due to market uncertainties, but also other risks such as prolonged FDA approval
cycles and potential legal liabilities. Pharmaceutical product development is one example of an

emerging trend in the high-tech arena—many products have a relatively short life cycle, product-



development is extremely capital extensive, and the production can require a long lead-time. While
our focus in this paper is on the specialty semiconductor industry, the methodologies developed are
generalizable and transferable to other industries such as pharmaceutical.

Qur work is based on a two-year project with a major U.S. semiconductor manufacturer. The
company has an annual R&D budgeting process where senior executives go through an extensive
review to determine in which technology development projects to invest and the amount of resources
(e.g., capital, personnel, and prototyping capacity) to be allocated. Due to the large amount of
market information that must be digested and analyzed and the muitiple sources of uncertainty
constantly present in the process, it has long been recognized that a more methodical, data-driven
approach is needed to assist in this process. The decision results in the allocation of tens of millions
of dollars of capital expenditure.

Portfolio management for R&D projects involves a great deal of uncertainty. In order to assess
revenue impacts of a specific project, it is necessary to consider the full life cycle of the product, from
the initiation of the product development, to product launch, all the way to the end of the product
life cycle. In early stages of product development, the product specifications are not well defined,
thus the level of capital expenditures for the R&D project are not precisely known. It is typically
the manufacturer’s responsibility to make initial investments and build prototype models (e.g.,
microelectronic components of a more complex device) upon customers’ request. If the prototypes
are not adopted by the customer, then the project terminates and the costs must be absorbed by the
manufacturer. If the prototypes are adopted by the customer, market demand for the customer’s
product (which drives the manufacturer’s demand) remains unknown. Market demands may be
driven by a variety of factors such as product quality, timing of the product release, and intensity of
competition in the market. Adding to the market demand uncertainty, rapid changes in technology
decrease the duration of a product’s life cycle, eroding the revenue streams. A microelectronic
chip that faces high demand today might be obsolete in a few months, and its revenues might fall
well below expectation. It is due to the highly volatile nature of this industry that the portfolio
management issues become so critical. Moreover, as each portfolio selection decision could lead to
exceedingly different outcomes, the robustness of the portfolio decision is of significant importance,

i.e., it is more desirable to have portfolios that perform well over a wide variety of scenarios than
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ones that perform exceptionally, but only under restrictive conditions.

Although the technology market is both complex and volatile, there are some clear traces of
technological trend driving this market. Moreover, senior decision makers at the firm share a
wealth of insights on broader market trends, their technological ramifications, and potential impacts
to customer demands. We discovered early in our project that it is important for the portfolio
selection model to look beyond quantitative data and takes advantage of qualitative knowledge
that is distributed among top decision makers. We designed the first phase of our Decision Support
System (DSS) to collect relevant qualitative information, which is in turn converted into comparable
measures and used to provide valuation for the products under consideration. The valuation of a
particular product is constructed under a wide range of scenarios, which enables us to incorporate
uncertainty effects and the variability of revenue streams.

While it is important that the DSS includes all critical factors influencing a portfolio’s value, if
the system demands excessive detail or uses logic to which the decision makers cannot relate, then
management will not expend the necessary time to accurately fulfil the model requirements, and
the DSS will be of little practical value. On the other hand, management wants assurance that the
tools include all practically relevant details and produce rational results that they can decipher.
This is a legitimate demand as when a large amount of quantitative data is processed without
proper contextual information, misguided solutions often result {e.g., a particular project may not
look very attractive on its own merits, but it is essential in securing the market or the confidence
of an important customer). For these reasons, during the design of the DSS, we established close
interactions with the top management, evaluated their concerns, and set the data requirement such
that data is either easy to extract from human knowledge or exists in the company database. The
former, or the qualitative data requirement, is closely related to each project’s life cycle. In the
next section, we will first describe the business context of the specialty semiconductor industry and

a typical R&D project’s life cycle.



2 Semiconductor Product Development

Serniconductor manufacturers undertake the wafer fabrication, packaging, assembly, and test re-
sponsibilities of microelectronic chips. In the specialty semiconductor industry, a majority of the
chips are custom-designed to handle special functionality of an electronic device, be it a cell phone,
an iPod, or complex telecommunication equipment. The electronic device manufacturers are major-
brand carrying corporations who contract their chip production to the specialty semiconductor man-
ufacturer. Depending on the contract type, the brand-carrying customer and the semiconductor
manufacturer may share the responsibilities in new product development (NPD). The semiconduc-
tor manufacturer needs to choose the set of contract proposals from customers that best enhances
the company’s profitability. These contract proposals might be a renewals of existing projects or

the development of a new product. A typical NPD project includes the following steps:

1. Evaluation of project proposals from customers: At the beginning of this stage, the
customer and the semiconductor manufacturer aim to characterize the product. They discuss
and identify the type of technology to be used, technical specifications, expected resource re-
quirements, time to market, and the demand potential. If the project proposal is for a renewal
of a previous project, then most of this information already exists. However, if the project
proposal calls for NPD, typically very limited information is available. Typically for NPD, the
semiconductor manufacturer must develop the product before entering production. At this
stage, sources of uncertainty include resource requirements during product development, time
to market, and demand potential. After evaluating the project proposals, the manufacturer

must decide which proposals to accept.

9. Development Phase: If the semiconductor manufacturer commits to the project proposal,
then the development phase starts. Throughout this phase, the two parties’ design teams work
together to identify the functional needs of the chips. The duration of the development phase
depends on the complexity of the design, the skill level of the R&D staff, and the availability of
relevant prior technology. If prior technology needs to be extended, or new technology needs

to be invented, then investments must be made to develop the essential intellectnal property



(IP). In some cases, IP can be licensed or acquired from a third party. A completed design
leads to the development of prototypes. If the prototypes meet the specifications, then the
development phase continues as scheduled; otherwise the date of the product release must be
delayed, and more investment is needed to develop the IP. Once the product is successtully
prototyped and tested, the customer chooses to accept or reject the product design. In case
the customer rejects the design, the project is terminated, and majority of the development
costs are borne by the semiconductor company. This is known as a loss of design win and is

a major source of uncertainty for the semiconductor manufacturer.

. Production Ramp: When the customer accepts the product design, the production phase
starts and resources are allocated for the production. Now, market and capacity-related
risks dominate. Market risks are influenced by both external factors, such as the customer’s
marketing efforts and the nature of market competition, and internal factors, such as the
product quality. Capacity risks arise from the uncertain nature of available resources. These
factors collectively affect the expected revenue streams. If early sales or other market signals
suggest that the revenues of a certain product is unlikely to recuperate the production and
the development costs, the product might be pulled from the market so that resources can be

allocated to more profitable projects.

Figure 2 illustrates a typical product life cycle for a semiconductor manufacturer. Each product

to be considered for the R&D portfolio follows a similar life cycle. The duration of each phase in

the life cycle and the quantity produced during each phase depend on various {(unknown) event

realizations, but decisions on a particular project proposal must be made at the beginning of the

product life cycle, in anticipation of the uncertainties.

While uncertainties in the product life cycle represent a major challenge to the portfolio decisions,

product relationships and dependencies also have to be taken into account. The relationship between

products might be in different forms. For example, a new project proposal might make a set of

existing products obsolete, or competing customers might offer similar proposals. In either case,

these are indications that certain projects cannot co-exist in the same portfolio. Later, we refer to

these as mutually exclusive projects. Projects may also have prerequisite relations. For example,
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projects may create IP that is necessary for the development of another set of projects. There are
often other complex relationships between semiconductor R&D projects. For example, it is possible
to have a prerequisite project of a key project that happens to be mutually exclusive with another
key project in the portfolio. Portfolio decisions must be made considering all project dependencies,
leading to complex trade-offs. Moreover, uncertainties associated with a project are often amplified
when the project is considered together with its prerequisite projects. For example, the market
release time of a project depends on the successful completion of its prerequisite projects. Thus,
uncertainty in the completion time of prerequisite projects compounds the uncertainty associated
with the completion of a dependent project. As a result, the valuation of a dependent project
may be subject to a much higher level of variability when considered together with its prerequisite
projects. This leads to the conclusion that the value and variability of the project portfolio as
a whole must be considered by management. In the DSS designed for the company, the scenario
analysis tool takes into account all inter-project relationships.

The rest of the paper is organized as follows. We summarize relevant literature for project /product

portfolio management, followed by the problem statement and model formulation. We then intro-



duce the three-stage decision support structure for project portfolio management, and we describe
the implementation and use of this DSS at a particular semiconductor firm. We discuss the robust-
ness of the tool, the comparison against current methods, and key feedbacks from the management.

The paper finishes with conclusions and directions for further research.

3 Related Literature

The concept of Product Portfolio Management (PPM) emerged in late 1950’s. Through 1970’s, it
" became an established planning tool. In the 1980's and 1990’s, the use of portfolio management
was extended into the area of new product development(NPD) and R&D projects evaluation. The
tools and methods for PPM have evolved through time, but the key objectives remained the same,

as listed by [6]:
1. Maximize the value of the portfolio
2. Achieve the right balance of projects, and
3. Achieve a strategically aligned portfolio

Methods used for PPM range from qualitative such as unstructured peer review, to various
quantitative techniques. The latter includes approaches ranging from mathematical programming
and portfolio optimization, to economic models using (internal rate of return (IRR), net present
value (NPV), return on investment (ROI), decision analysis tools such as multi attribute utility
theory (MAUT), decision trees, risk analysis, analytical hierarchy process (AHP)), and interactive
methods such as emphDelphi, Q-sort, behavioral decision aids (BDA), decentralized hierarchical
models (DHM). Specific examples of these approaches are too numerous to name.

The success of each method depends on the business environment, the information requirements,
the users’ understanding of the techniques, and the buy-in from senior management. Each method
has its own pros and cons. For example, mathematical programming methods rely heavily on data,
and capturing that data might not be feasible in the business environment; scoring techniques might
not be sufficient to capturing the complexity of product dependencies. In the last decade, use of

Decision Support Systems (DSS) became popular in PPM. DSS are interactive and computer-based
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systems to help decision makers in their decision process, generally by combining multiple methods
into an integrated system. Hereafter, we focus on main components of project selection process and
different applications of these components in PPM literature.

In PPM, decision makers’ main task is to quantify the value of the projects, because the selection
of a project at the beginning, or deciding to keep the project in the portfolio in the middle of the
project’s life cycle is generally based on the project’s value and its rank. However, in most of the
business environments, the projects are not independent. For example, some projects may share
common resources, or there might be prerequisite relation between them. Thus, value of a project
depends on its relation with the other projects, and depending on company strategies and the
business environment, multiple criteria are considered to assess a project’s value. AHP is one of the
most frequently used techniques to represent these values. It is a systematic method for comparing
list of objectives or alternatives. {8] use AHP to incorporate qualitative criteria and use priority
rankings of AHP to represent a measure of value for each project. [18] use scoring techniques to rank
the projects and identify the projects that are worthy of further evaluation. [7} use a dependency
matrix to quantify the interdependencies between projects. Itach element in the dependency matrix,
di;, varies from zero to one indicating the level of dependence that project ¢ has on project j for
its financial success. They use dy;'s to find how much value of the project is attributable to itself
and how much is attributable to its interdependencies. After the seminal work of [11], versions
of Mean-Variance {M-V) models became popular in stock portfolio analysis. In M-V analysis, the
key component is covariance matrix of the stock returns. It measures the extent that a stock’s
return depends on the other stocks. Because of the difficulty in measuring these dependencies,
M-V Analysis has not been widely used in PPM. {5] develop a mean variance model to determine
the optimal toll in a built-operate-transfer roadway project under traffic demand uncertainty. [12]
discuss the application of Markowitz’s modern portfolio theory to upstream decision making in the
oil and gas industries. In our case, the value of each project is determined by the events related to the
project’s life cycle and the effect of these events on the project’s revenues and costs. By considering
the proiect’s life cycle, we include the relationship between the project and its dependencies. Each
event is associated with a probability and an effect on the project’s value. We calculate the value

of a project under different scenarios, which are constructed from the combination of the project’s
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life cycle events.

Incorporating risk in PPM decisions adds one more dimension to the characterization of the
project’s value. When risk is a part of the portfolio analysis, often the risk parameters are considered
to be given. However, taking risk as given would be far from being realistic. The complication of
including risk in decision process is that it is hard to obtain a reliable risk measure. {1] propose a
set of risk-measure axioms and declared the risk measures that satisfy these axioms as ”Coherent
Measures of Risk”. According to them, a coherent measure of risk should satisfy 1) Translation
invariance, 2) Subadditivity, 3) Positive homogeneity, and 4) Monotonicity. M-V models aim to
minimize the variance of the stock portfolio return while maintaining some target return level.
However, as mentioned above, use of covariance matrix in PPM is not as practical as in stock
portfolio analysis. Another point is that the indivisibility of the projects makes the M-V analysis in
PPM different than M-V analysis in stock portfolio. Although, variance is a widely known measure
of variability, it does not satisfy the subadditivity axiom of coherent risk measures, hence it is
not a coherent measure of risk. [15] present a Mean Gini approach for analyzing risky prospects
and construct optimum portfolios. They show that M-V analysis is a special case of mean Gini
approach. [16] use Mean Gini Risk to measure the extent that each prospect’s return moves with
a given portfolio’s return, and they identify dominant prospects based on Marginal Conditional
Stochastic Dominance. Mean Gini Risk measure satisfies the four axioms of coherency. [13] extend
the method of [16] to R&D portfolios. In our analysis, we use Mean Gini Risk measure as in [13]
to calculate the risk of each project among all the candidate projects. However, they analyze a
given portfolio in one period, while we consider multi period planning horizon. Thus, in our case,
the risk of a project is different from period to period. Moreover, we construct the portfolio with a
mathematical model while they use stochastic dominance criterion to determine dominant projects
given an existing portfolio.

The portfolio selection is made such that the portfolio increases total value of the company
most. Depending on the business structure, the priority on company objectives might be different.
Often there is more than one objective and the number of candidate projects might be too large.
In this situation, generally mathematical models are used in DSS to select the best portfolio. For

example, [8] use 0-1 integer model to construct the portfolio. They maximize the portfolio value
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with a budget constraint. The portfolio value is the sum of selected projects’ priority rankings
that are determined by AHP. They also extend their model with additional balancing constraints.
[7] solve a nonlinear integer model to maximize the Net Present Value (NPV) of the portfolio
with budget and strategic alignment constraints, and constraint that sets limit on the number of
selected projects. [18] solve multi-objective integer linear model to find pareto efficient portfolios.
Then decision makers select the best fit portfolio among the pareto efficient portfolios by setting
aspiration levels and upper or lower bounds for certain objectives. In our DSS we solve multistage
SP to maximize the expected value of the portfolio. The value of the portfolio is calculated by
taking the weighted sum of selected projects’ values. We also consider operational implication
of the portfolio by adjusting resource levels, and reflect the cost of these operational decisions in
the objective function. In addition to these, the selection of projects are limited by total refurn
variability, and there are strategic constraints that mandate some projects to be selected or not
selected depending on decision makers’ choice. SP allows us to consider uncertainty in decision
making. While the decisions are made in the presence of uncertainty, the decision makers are
able to adjust their decisions after the realization of uncertain events. In general, SI> models are
hard to solve because of their sizes. However, with the availability of inexpensive computer power
and sophisticated solvers, SP methods are increasingly popular. SP is used in the optimization
component of our DSS, and the decision makers do not need to solve the problem by themselves.
Our user friendly program produces the results in terms of charts, visual aids and tables, after
getting initial directions from the decision makers. Although, we designed our DSS to address the
needs of the semiconductor manufacturer, after some adjustments, our DSS can be used for any

kind of business environment that suffers from high level of uncertainty.

4 Model Formulation
4.1 Justification

Prior to our study, the management had employed two different techniques to aid their PPM
decisions. The first approach was to rank the projects based on NPV of the cash flows. A budget

constraint limited the total investment, and heuristic strategic alignment criteria were used to
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narrow the number of allowable proiects. This methodology was able to select projects with strategic
considerations in mind, but the assessment and incorporation of risk into the decision process was
qualitative and subjective.

In their second approach, the management worked on a M-V model. The interdependencies
between projects were quantified using several factors, and selection of these factors and subsequent
determination of the covariance matrix were the critical keystones of this approach. In practice,
direct application of this method was impeded by not having the depth of data available in a classic
stock portfolio problem. The required data for this approach was not captured in the routine
transaction data of normal business operations such as orders and invoice data, bill of materials,
and other supply chain transactions. Moreover, new projects had little or no historical data on
which to base and compare the risk statistics. A final critique of the M-V model was that it was
not dynamic enough to account for the fast rate of changes of the semiconductor industry.

Based on these previous attempts, we had the following design requirements for our PPM deci-

sion support tool:
1. use data available from routine business transactions,
2. dynamically account for changes in the business environment,
3. incorporate a risk measure for projects in the portfolio, and
4. include long term (strategic) and short term (operational) considerations.

In the light of these design criteria, we decided to use a SP approach to model the problem. First,
the SP model can easily be built from scenario data generated from routine business transactions.
Second, in SP models, decision makers are able to change their decisions as they learn new in-
formation in a dynamic environment. Third, a risk measure can easily be incorporated into the
model with he inclusion of explicit scenarios. Last, strategic and operational aspects would be easily

included by logical constraints into the mathematical model.
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4.2 Data and Uncertainty

As part of the renewed project management effort, the company keeps basic financial figures, cus-
tomer information, and technical product information in their database. At any point in time, the
company is considering a set of projects P that will consume resources from a set R. Each project
p € P is associated with a set of prerequisite projects @, C P and with a set of mutually exclusive
projects E, C P. Project p can be undertaken if and only if all projects in (), are undertaken and
none of the projects E, are done. Forecast cost and resource information is kept at a project level
for quarterly intervals. For each project p € P the following data is available for each period ¢ in a

specified time horizon 7 = {1,2,...,T}
o Forecast gross margins of the project p at period &: GMpy,
o Forecast fixed costs of the project p in period &1 FCp,
¢ Forecast usage of resource 7 in period ¢ by project p: Wop, and
¢ Periodic unit cost of each resource r: ¢,.

As new information is available forecast figures are updated. The management is aware of the
need for accurate information, and they believe the existence of good information is necessary for
making good portfolio choices in a systematic and sustained fashion.

Forecast figures reflect the current status of the business environment, but these figures change
as new information is available or as the uncertainties resolve. From the analysis of the project
life cycle and through discussions with management, we identified that a new business state can be
modeled by adjusting GMpe, FCpy and W,y based on random events that occur during the project’s
life cycle. That is, these quantities are functions of some random variables. To fix notation, let
Y, t € 7 be the set of all possible random events that occur during period £. The set of all sequences
of events is then & £ x Qo x ... x Qp. We use the common notation £y 4 to denote the set of
all sequences of events that can occur from stages 1 to £. The dependence of gross margin, fixed
cost, and resource usage on random variables is then denoted by referring to these quantities as

G My (wp ), FCo(wpg), and Wip{wyg), where wy g € (. We discuss in Section 5.3 the exact
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manner in which the quantities are derived, but for purpose of model discussion it suffice to know
that for each project and resource we have all the necessary information to assess project’s value

and determine resource requirements under different sequences of realizations of random events.

4.3 Decision Variables

In stochastic programming, decisions are made in stages, and in-between stages information about

the state of the business becomes available. In general the decision process has the form:

1t stage decisions = Information wy ~— 27 stage decisions -

. .~ Information wy =+ T stage decisions

To ease the exposition, we will assume that there is one stage in the stochastic programming
model for each period in the decision making process. In the actual decision support system de-
veloped for the company, several periods might be aggregated into one stage. As described in
Section 4.2, the data defining the decision model are functions of random variables. The decision
variables in the model are also functions of the random events that might occur. There are two
classes of decisions that the company must make: strategic and operational.

The strategic decisions are modeled with the variables zp(wyy), indicating whether or not
project p is to be included in the portfolio in time period t. An important characteristic of the
model is that x,(-) is solely a function of the random variables that occur from periods 1 to £. The
decision of whether or include p in the portfolio at ¢ is non-anticipative of random events that oceur
after period t. At this point, we model the nonanticipativity implicitly by simply stating z:(+) is a
function only of wy 4. Algorithmic mechanisms for enforcing nonanticipativity will be described in
Section 4.5. Associated with each project p € P is a begin time b, € {1,2,...,T}, which indicates
the beginning time of project’s life cycle). If a project is not selected at the beginning of its life
cycle, then it cannot be selected later. However, if a project is selected at the beginning of its life
cycle, it can be killed later.

Completion of a project requires resources to be allocated to the project. The main resources
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necessary in the model for the company are human resources. As such, there is a cost associated
with increasing the level of resources (hiring) and with decreasing the level of resources {firing) from
period to period. There are two types of human resources that affect project completion: design
team members and administrative staff. The initial available level of resource r is defined by I,..

There are three types of operational decisions, each dependent on the random events that occur

during the PPM process:

yﬁ(w[l?t}): Total available level of resource r at the end of stage f, under scenario wpy. It
is the sum of previous stage resource level and current period adjustments (increase or decrease in
the resource level). The periodic cost of keeping one unit of resource r is given by c,. Af the end
of first stage y,+(wp,g) becomes ¥, because of the perfect information at the first stage, and yy1 is
the results of first stage adjustments over I,.

hee{wng): Amount of increase in the resource level r during stage ¢, under scenario wyy 4. There
is a cost associated with the unit increase of resource level r described by 7. Level of increase in
the first stage is given by h.1.

frilwp ) Amount of decrease in the resource level r during stage ¢, under scenario wy; . There
is a cost associated with the unit decrease of resource level r described by (.. Level of decrease in

the first stage is given by f.

4.4 Project Risk Measure

The model also includes a mechanism for controlling the company’s risk in choosing collections
of projects to include in the portfolio. The mechanism is based on calculating “risk coefficients”
for each project in each stage. The risk coefficients are based on mean-Gini considerations, whose
exact calculation is detailed in Section 5.3.1. For purposes of the model discussion, it suffices to
know that for each project and time period a coefficient A\, is computed that quantifies the risk of
project p in time period ¢. The total risk of the portfolio is then taken to be a linear combination
of the individual risk coefficients chosen to be included in the portfolio. It should be noted that
this is not the true mean-Gini measure of risk of the chosen portfolio. In fact, the mean-Gini risk

is a nonlinear function of the chosen projects, and modeling this consideration exactly led to an
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intractable model. Justification of the linear combination of risk coefficients can be taken from the
fact that the company was happy to have an adjustable measure to control the risk they took on,

and the solutions obtained by the model fit the company’s notion of risk perfectly well.

4.5 Model Objective and Constraints

Given the definition of problem data and decision variables, we can write an optimization model for
the project portiolio problem as follows. Our objective is to maximize the total expected operating

Income:

max [, Z Z(GMpt(wgl,t;) — FCpy(wpg))xpe(wpg) — Z(Cryrt(w{l,t]) + Nrthes (W) + Gefes(wing))

teT peP reR
(L

The first summation of Equation 1 represents the total net profit associated with doing projects,
and the second summation accounts for the operating expenses of adjusting the resource levels.

Most constraints of the model contain random variables, and we enforce these constraints in a
probabilistic sense by saying that the constraints will hold with probability one, or almost surely,
represented by the notation a.s. in the constraints of the model.

The required level of each type of resource should be enough to continue selected projects at all

stages and can be described by the following constraint:

Z ert(wil,t])mpt(w[l,t]) < Yrelwpny) Vre RteT,as.. (2)
pEP

The headcount level for a type of resource at the end of a specific stage is the sum of headcount
level in the previous stage and number of people hired during the current stage minus the number
of people fired at the current stage. For the first stage, headcount level is adjusted over the initial

number of headcount level, I..

Y1 = IT -+ hri - frl VT & R (3)

Yrtlwpg) = Urp—r(wpg) + Peelwpg) — frelopy)  ¥r € R, t € T\ {oo}, a8, 4)
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For each project p € P, the requirements imposed by its prerequisite and mutually exclusive
project sets must be imposed: When a project p is selected at stage £, all the projects in (J, should
be also in the portfolio at stage ¢t. This is described by equation 5 below. When a project p is in the

portfolio, none of the products in set £, should be in portfolio as described by Equation 6 below:

mpt(w[l,t]) < mqi‘(w[l,t]) Vp € P, q& QP: te7 as. (5)
mpt(w[l,t]) - m;t(wil,t]) < 1 Vpe P, leE, teT as. (6)

We can only select a project p to perform when the stage of the decision coincides with the
beginning period of that project’s life cycle b,. When a product is not selected at the beginning
of its life cycle then it cannot be selected later. We ensure these restrictions by the following

constraints:

Tprlwpg) = 0 VpePvte{l,...b,—1}, as. (7)
!L'p’g_{,l(W{l,t -+ 1]) S :Ept(wil,t]) Vp e P, i & {1,2, ..,T s 1} (8)

As explained in Section 5.3.1, there is a risk coefficient A [GMpt(w[m;), F C’pt(wu,t])] for each
product p at each stage ¢, (t € 7 \ {oo}). The company is interested in limiting their total risk to

a level K in the following fashion:

> DM [CMu(wpy), FOu(wi )] oplwg) < K (9)

teT\{oo} PEP

Again, an important consideration in the model is that the strategic and operational decisions
made at a stage t are independent of the random events wy,; 7). These nonanticipativity con-
straints are given implicitly here by defining the z,(-) as functions of the proper arguments (wp,q).
Algorithmic methods for enforcing this nonanticipativity will be discussed in the next section.

To make the optimization model (1—9) tractable, there must be some reasonable approximation
of the uncertainty 2. We chose a sample-path, or sample-average approach, in which set Q is

replaced by a randomly sampled approximation consisting of a finite number of scenarios. This
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approximation, or scenario generation, forms the first phase of our three phase DSS that we describe
in the next section. The sample average approach has been used as of late on a variety of practical
planning problems, including: [14] [19]. Further, recent theoretical and empirical evidence suggests
that an accurate answer to the true problem can be obtained by approximating the uncertainty
set with a surprisingly few number of scenarios. ([10], [17]) The use of scenarios also enables us to
enforce the nonantcipativity of decisions by only creating decision variables that can depend on the

appropriate scenarios and previous decisions.

5 A Three-Phase Decision Support System

Rarely is a real-life problem situation simply “solved” by applying an optimization model. Rather,
the road from real-life problem to working solution Is an iterative process. The model we propose
in Section 4 is no exception; it is part of a larger decision support system (DSS) now in place at
the company. Figure 1 depicts the various components and stages of the DSS, as the user is guided
through the project portfolio planning process. Note that in order to instantiate an instance, user

input is required both before and after data is drawn from the company’s database.

5.1 Problem Specification

Initially, decision makers specify the planning horizon (in fiscal quarters), the set of projects to be
analyzed (P), the customer set {C), and the set of target markets (M) for these candidate projects.
One individual project may be split over multiple customers and market segments. The decision
maker defines the exposure of project p to its markets m as a fraction gy, and the exposure of each
project to its customers c as a fraction ..

Once the initial instance specification data is obtained from the users, the DSS queries the
company database to retrieve the resources (R) consumed by the projects in set P, the periodic
unit cost of each resource {c,), the set of technologies used in the product development phase
(E), and the forecast gross margins (GM,y), fixed costs (FCyp), and resource usage (W) for the
specified projects, resources and periods. Further, all important time-line information about the

project life cycle, such as design-win date, are obtained.
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Figure 1: Event Flow Diagram of the DSS

This information is used to help describe a scenario, an instance of all possible sequences of
random events relating to projects, resources, and technologies from the beginning until the end of
the planning horizon. The set of all possible scenarios is denoted as {7y, From analysis of the
project life cycle and feedback from project managers, we concluded that seven Risk Groups were

sufficient to accurately describe Q7. The risk groups relate to
1. Product Performance,
2. Resource Performance,
3. Technology Status,
4. Intellectual Property (IP) Development Status,
5. Design Win Status,

6. Market Performance, and
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7. Customer Performance.

The risk groups and possible outcomes of events in each risk group are the same regardless of
the instance being considered. What varies from instance to instance is the impact associated with
each outcome. Each outcome is associated with an impact parameter (p) that will be used to adjust
forecast data. The outcome of events in one risk group may be correlated through time or correlated
with outcomes of events from different risk group. These event relationships, the definitions of the

risk groups, and the impact factors for each group will be described in the next section.

5.2 User Input

A key characteristic of the DSS in place at the company is that the project managers and high-
level executives are responsible for quantifying the impact of various random events that may occur
during the planning horizon. This domain expertise is spread among various individuals in the
company. For example, an executive in charge of market segment m is best-positioned to make the
assessment that if market m performs “well”, then the company should expect to see 40% higher
return on projects associated with that market. Similarly, project managers who work closely with
specific large clients are able to assess that if that client ¢ does “poorly”, then the impact on return
for projects associated with client ¢ will be -20%. Further, the project manager may be able to
assess that the likelihood of client ¢ doing poorly is roughly 5%.

While the impact coefficients and associated probabilities certainly may seem arbitrary, it is
important to note that they are used in a systematic manner and obtained from people within
the company who are best-poised to provide such information. The DSS is a leap forward for
the decision makers in the company who routinely did “what-if” analysis of various scenarios, but
lacked the machinery necessary to properly capture the correlations between various events and
to act intelligently in the face of uncertainty. The new DSS overcomes both of these obstacles: a
simulation is used to ensure that all events are correlated through time, and an optimization model
is used to simultaneously consider many different uncertain scenarios to choose the best action.

Typically, to create an instance, strategy meetings among executives and individuals with do-

main knowledge are held, and impact factors and probabilities are assigned for each event in each
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Table 1: Risk Groups and Possible Outcomes

| RISK GROUPS OUTCOMES IMPACT
Product Superior Expected Poor Product ‘
Performance Performance | Nominal | Performance Failure pf;‘p o p;,ipf ¢
Resource Over Expected Under Loss of Key
Performance || Performance | Nominal | Performance | Resources o
Technology Development | Nominal Behind Failure
Status Goes Well Schedule oL
IP Development Successfully Could not Late Time to
Status completed be completed Market or continue
Design Win Got the Could not get Zero GMy,’s or
Status Design Win the Design Win continue
Market Market Expected Market, Market
Performance Expands Nominal | Contracts Collapses pM,
Customer Superior Expected Poor
Performance Performance | Nominal Performance o5

risk group. Another unexpected and pleasant benefit from the DSS in the company is that they

have found that it has focused the discussion among executives and project managers of the impact

of various events for various long-term plans. The risk groups and their probable outcomes are

summarized in Table 1.

o Product Performance: Events related to the quality of a product. For each product p € P and

for each stage t € 7, the product performance may take one of the four possible outcomes in
Table 1. The impact of the product performance on the fixed cost F'C, is denoted by p;;Pf “ and
its impact on gross margin G M, is denoted by p;’fgm. The outcomes of product performance

can affect the likelihocod of the “Design Win” event if the project is in the development phase.

¢ Resource Performance: Events related to the performance of R&D and administrative staff.

There is one outcome for each resource » € R and for each stage ¢ € 7. The outcome has
an impact pf on the forecast resource usage rate W If resources are lost in a stage, then

projects using that resource cannot be completed unless new resources are obtained.

e Technology Status: Events related to the timing of the technology and project schedule. Each

project is built using one type of technology, and there is an outcome for each technology e € E
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and for each stage t € 7. The technology impact pZ is used update the probabilities of IP

development status events.

e IP Development Status: A binary and one time event indicating successful IP development

for project p. Failure of the IP development delays the time to market of the project and
hence all other projects for which p is a prerequisite. The delay of the market release time is
handled by shifting the gross margins GM,, further out in the planning horizon. The number
of stages to shift the release and any increase in development cost F'Cp; is specified by the
users. The probability of completing the IP development at time #, 7;p,, depends on the

outcome of the previous period’s technology status.

¢ Design Win Status: A binary and one time event indicating if the customers for the project

are satisfled with the prototype design. If not, the project and all its dependent projects
are killed. Otherwise, the product is released to the market and production phase starts.
The probability of a design win at time £, mpw:; depends on the previous period’s product

performance outcome.

o Market Performance: Events related to market condition. There is one outcome for each

market m € M for each stage £ € 7. A product might serve more than one market. In this
case, the percentage exposure of product p to market m, opm, is used to obtain the overall
effect of the market related outcomes. The outcomes have an impact p, on the gross margins

My and are independent of outcomes of all other events.

o Customer Performance: Events related to customer performance. There is one of three po-

tential outcomes for each customer ¢ € C for each stage t € 7. A product might serve more
than one customer. In this case, the percentage exposure of product p to customer ¢, Y,
is used to obtain the overall effect of the customer related outcomes on instance parameters.
The customer performance outcomes have impact p& on the product gross margins G M, and

are independent of the outcomes of all other events.

After the probability and impact data is collected, the product-market (a,m) and product-

customer (y,.) exposures are provided by the decision makers. Last, project dependencies are
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specified in terms of prerequisite set @, and mutually exclusive set £, for each project p. These
sets are taken from the database, but at this point the user may over-ride the information from the
database.

Data collection for large-scale problems is always a burden. However, the user-friendly interface
of the DSS greatly eases this burden. The DSS is connected to the company database, so the
forecast data for the project, technology and resource sets over the planning horizon are obtained
instantly. The DSS generates tables to gather probability and impact data, and when the data is
collected, error-checking routines ensure that all the data are present and fall within reasonable
nominal ranges.

Even though the space of outcomes has been discretized, so that Q7 is a finite set, the
cardinality of this set is too large for us to consider all possible combinations of outcomes. To
create a tractable instance of our math programming model, we sample from the set ;7). To
create an instance of the mathematical model that can be solved, the user needs to specify the
number of stages of the stochastic programming model, the number of random event realizations
at each stage, and information on how the fiscal quarters (periods) are spanned by stages. DSS
gathers model data through a four-step wizard. (See Figure 1 Step 4). In the first step, users specify
the number of stages (T') of SP model. (Maximum 6 stage model is allowed). In the next step,
users determine how periods are spanned by stages, by specifying the beginning and end period for
each stage. Then system aggregates the periodic data into stage data, by summing GMp, F Chts
and W, over the periods in that stage. In the third step, users specify number of random event
realization at each stage My(t € 7'), for a [[,cs M; scenario model. At the last step, users specify
number of runs (number of scenario trees to be solved) and risk parameters. Each scenario tree is
solved for different risk levels (see Eq: 9). The starting, ending and the increments of risk level
is specified by the users. When above information is acquired, the DSS checks, through an error
check routine, whether all the data required for scenario generation is complete and logical. If the
information is error free, then DSS goes to Scenario Generation Phase, otherwise users need to fix

the error.
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5.3 Scenario Generation

Conditional sampling is used to create a manageable sample of the discretized scenario space 0 7.
The size of the scenario tree depends on the number of stages (T} and the number of random event
realizations at each stage #{M;). The conditional sampling procedure works by first selecting a
random sample of size My for the second stage. The probability of each realization in the second

stage is 1/M,. The second stage realizations are given by
C; = (GMp2(W§)}FCp2(wg)a WTPQ(“J%)) y t=1,.., M,

Formulae for dependence of gross margin, fixed cost, and resource consumption (GMu(-), FCpu{:),
and W, (-) on the outcome of the random event w* are given subsequently.

Next, for every i € {1,..., My} a random sample of size Mz is generated. Thus, there are
My M, realizations of events in the third stage, sach with probability 1/{MyM3). The third stage

realizations given the history of events up to this point wy 9 are given by
;j = (GMP3(LU§|W?1,2§)> FGP3(wglw{il,2])’ Wp3(w§lw§1,2])) i1 My, =1, Ms.

The procedure is called conditional sampling due to the dependence of ¢Z on (.

The procedure continues in this fashion until the T** stage realizations given a history of events
wp 1) are generated. At the T stage, we have My M - - - My realizations of events, each with equal
probability 1/(MyMsy - .- My). Each path from root node to leaf node in this tree is a scenario.

Conditional sampling is required to capture the correlations between random events. The events
may be correlated through time and within risk groups. The relation between the outcomes is shown
in Figure 2. For example, the figure depicts that the outcome of the product performance event
in period ¢ will affect the outcome of the design win status event in period ¢ + 1. The figure also
shows the dependence of the gross margins, fixed costs, and resource consumption on the outcome
of random events. For example, the outcome of the customer performance event in period £+ 1 will
affect the gross margins in that stage. The exact functional dependence is given in Equation (10).

GMplwilin) = o " M| 3 D (compia) PBwpesl)| Y€ PYEC (2,3, T)
meM cel

Vie {1,2,.., M}
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Figure 2: Outcome Relations

The impact factors for product performance ,ozftp , market performance pM,, and customer perfor-
mance p¢ all depend on the random events. If the project has more than one customer or market,
the effective performance is calculated using the market and customer exposures of the product.
Similar functional relationships for the impact of the random outcome on impact factors, and hence

on the scenario-dependent values for product fixed cost and resource usage are also used, and given
in Equations (11) and (12).

FCu(wilwpsy) = py FCuw  Vpe P, Vte{2,3,...,T}, Vie {1,2,., M}, (11)

Wopt(wlwp s-1) = PEW, Vpe P, ¥re RVt€{2,3,...T}, Vie {1,2,...,M}. {12)

The outcome of scenario generation is a scenario tree (Figure 3). Each node of the tree carries

information regarding to the system state at that stage. We will denote the set of nodes that belong

to stage ¢ as Sy. From this point forward, we will use node notation to describe gross margins, fixed
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Figure 3: Scenario Tree

costs and required headcount levels. That is at stage t, GM,,, FCp, and W, will be the updated

gross margins, fixed costs and required headcount levels at node n (¥ n € S,).
5.3.1 Risk Measure

Once the scenario tree is created, Gini coefficients Ay are caleulated for each product p (p € P) and
stage ¢ (¢ € 7). Similar to variance, the Gini coefficient is a measure of dispersion and is defined by
twice the covariance of a random variable and its cumulative distribution. [16] use Gini coeflicients
to decide on stock portfolios, and [13] using Gini coefficients in the context of deciding on R&D
projects. However, both [16] and [13] use the Gini coeflicients in a different manner than proposed
here. Previous work has based portfolio decisions on marginal conditional stochastic dominance—
for a given portfolio of stocks/projects, the decision to include a new stock/product opportunity
is made by comparing the mean-Gini adjusted returns of the stock/project pairs. In our case, we
will use weighted average Gini measure to limit the product risks to some user-defined level (via
Equation 9).

To compute the Gini coefficients A, first the return of each available product for each realization
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of the uncertainty in that stage (f,.) is a calculated
Opn & GM,p, ~ FCyp, ¥p € P,Vn € S,
and the total return of all products for that realization (6,) is computed
g, & > b Vpe RYRES,,
PEF:
where P, C P is the set of all products that can be selected in stage p (i.e. b, < t). Next, the

values f,, and @, are assembled into collections of length |S¢| and each sorted in ascended order

into vectors ¢, and ¢,. The Gini coefficient is then computed as

Apt = 2Cov(¢p, Fi(ge)) VL€ T \{oco}, ¥V €Py,

Vv

where Fy(¢,) is the camulative probability of the total return ¢;. Since our returns our generated via
a sampling procedure, and the probability of each realization is equal, Fi(¢y) is found by dividing
the rank of each element in ¢; by the cardinality of set S;. For further explanation of the meaning

and calculation of the Gini coeflicients, see [20].

5.4 Optimization

Once the sampling approximation of the random process has resulted in the scenario tree, we can
create a tractable approximate optimization model. The solution of the model produces a “best”
portfolio and required headcount levels for each resource. In the model the decision variables fall

into two categories:

e Strategic decisions (z,,): Binary decision variables indicating whether or not product p is
included in the portfolio at node n of the scenario tree. These are the decisions associated

with p¢(wp y) in the true model presented in Section 4.

e Resource Level Decisions (Yrn, frn, fra): The number of resources r required at node n in the
scenario tree, the increase in resources r at node n of the scenario tree, and the decrease in
resources © at node n of the scenario tree, respectively. These variables correspond to the

decisions yre(wp g), Pre(wpg), fre(wpg) in the true model.
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For any node n of the scenario tree, m, is the “path probability”, or probability that the sequence
of events leading to node n will occur. Due to our sampling methodology, if n € S, then 7, =

1/(M; - - M;). With these definitions, we can model the product portfolio management problem as

follows:
Maximize: Z Z Tn Z(GMW - chpn)mpn - E (nfrh'rn + Crfrn + C?"yrn) (13)
teT nESy pel réeR
subject to
Z WepnZon S Urn Vr e R, Vte T, Yne S (14)
pEP
Y1 = I 4+ het — fr1 VreR (16)
Yrn — Yrpln) = Pon = frn Vre R, Vit e T\ {1} Vn € 5 (16)
Tpn < Tgn Vpe P, Vge @y, YEeT, Y\ €8y, (17)
Tpn + Zun <1 Vpe P, YueE, YteT, Vne€ s, (18)
2 = 0 VpeP, Vte{l,2,..0,—1}, Vnes, (19)
Tpotn) = Tpn Vp e P, vVt e T\ {oo}, Y\ € &y, (20}
ST D Mz <K (21)
teT\{o0) pEP  nE€S:
Tpn = 1 Vpe F, WeT, V\ed,, (22)
Tpp = 0 Vpe Fy, VEe T, Y\ € S (23)

Fquation (13) is the equivalent to Equation (1) in section 4.5 with the scenario tree and sampling,
and maximizes the expected portfolio profit. Equation (14) (counterpart of Equation (2)) is the
resource level requirement for the portfolio at all stages. Equation (15) {equivalent of Equation (3))
is the initial adjustment of the resource levels, and Equation (16) (equivalent of Equation (4)) is the
adjustment of resources for the subsequent stages, where p(n) represents the parent node of node
n in the scenario tree. Equation (17) (Counterpart to Equation (5)) ensures that when a product
p is selected for the portfolio, all the prerequisite products of it are also selected. Equation (18)
(equivalent of Equation (6)) ensures that when p is selected for the portfolio, each of its mutually

exclusive products, E,, are not selected. Equation (19) (the analogue of Equation (7)) and Equation
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(20) (the analogue of Equation (8)) ensure that if a product is not selected at the beginning of its
life cycle it is not selected later. Equation (21) (the equivalent of Equation (9)) keeps the total
average Gini measure of the selected projects below a specified risk level, K. Additionally, we
include two constraints (Equations (22) and (23)) to include or exclude a specific project or set of
projects for the whole planning horizon. All the products in set F7 should be in the portfolio, and
all the products in set Fy should be omit from portfolio Vi € 7.

All of the steps in Figure 1 up to the solution of above model are handled via Excel VBA.
However, we solve each SP model using AMPL modeling language with CPLEX vx.x solver. When
a scenario tree is created, DSS also creates the required .mod, .dat and .run files for AMPL. Then,
DSS activates AMPL and solves models for a specified number of runs. (See Figure 1 Steps b and
6). When all the runs are complete, DSS proceeds with the Refinement Phase.

5.5 Refinement

A key component of the DSS is the feedback given to decision makers about sotutions obtained from
the optimization model (equations (13)-(23)). Once an instance is created and solved, the sampled
outcomes of uncertainty and the decision made for each outcome of the uncertainty are written
to a database. Next, charts and other visual aides are constructed from this database to help the
decision maker see the cause and effect relationships of model inputs. From our experience, the

management found four types of charts useful in their decision making process.

o Efficient Frontier: The problem (13)-(23) is solved for increasing risk levels (K), and the
optimal expected portfolio profit is plotted against K. Also, using the results from multiple
runs depending on the users’ choice various levels of Confidence Intervals (CI) on the expected

profit are constructed.

e Initial Portfolio: Since the multistage stochastic program is often solved at different risk
levels (K), there may be many different suggestions as to the optimal initial portfolio. We

graphically depict the optimal portfolio with respect to the risk level.

o Products in Time: Similar to the initial portfolio, we graphically depict the portfolio at each

stage of the planning horizon.
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e Robustness of Products: This chart summarizes the how often project included in a portfolio

were killed at later stages of development due to unfavorable scenarios.

The three-phase DSS has been tested and validated with real case studies. In the next section,
we describe one of these case studies, in which Semiconductor Manufacturer’s management is on the
verge of constructing project portfolio for their one of major business units, in which the decisions
span a four year planning horizon. Each of the different charts providing solution feedback will be

demonstrated via this case study example.

6 Case Study

The company was faced with a strategic portfolio decision charting the course of one of their major
divisions over a four year time period. The strategic decision involved creating a portfolio of projects
to undertake from a candidate set of size 21.

For this particular business decision, inferring reasonable expected project returns from forecast
values was turning out to be very difficult for management. The various “information points”, such
as IP development completion and the design win date, during a project’s life cycle had a significant
impact on the project return for this instance. Further, there was a significant amount of interde-
pendence (pre-requisite and exclusivity) information for the projects that could be undertaken. For
these reasons, this particular portfolio decision seemed like an ideal case study for the DSS in place
at the company.

In the model for this portfolio selection, to more accurately represent some of the business
decisions that could feasibly be taken in subsequent years, the management decided to put two
more projects as “business exit” projects indicating total or partial business exits.

The timeline, cash flows (GMp, FC,y), and total resource cost of the various candidate projects
is depicted in Table2. The numbers in parenthesis are negative values. A few points in the figure
are noteworthy. First, the business exit projects are represented by the first two lines. P1 indicates
total exit from the business. If P1 is selected, then the projects in the fifth column cannot be
selected. The project P2 is for a partial business exit. If P2 is selected, the subsequent projects (in

the mutually exclusive project column for P2) cannot be considered for the portfolio.
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Table 2: Data from Company Database

Foracast Pixed Gosts and ross Margins
Year 1 | Yoar < I Year 8 i Year 4

- 85 Preq. M, Ex, ot 2 Tot.

No. Prok porend.  brer  Proj FC oM FO oM FC oM PO am | g ol
1 Pl - . 2ATE 1 000 000 0.00 1597 000 0.00 0.00  0.00 | {35.39) (19.33)
2 P2 - - 315;';;1 0.00 0.00 0.00 2.45 0.00 .00 .00 0.00 | (14.70)  (12.25)
3 P3 ; . . ©.30) 000 ©.00 0,00 000 0.00 0.00 0.00 | (1470)  (25.00)
4 P4 ; 3 12,511 | (5.00) 350  (3.30)  4.80 0.00 0.00 0.00 900 | (1300 (1.39)
5 P& - 2.4 4 (5.00) 350  (3.30)  4.80 000 0.06 000 000 | (1.30)  (ra0)
6 P6 - 3 - {050y 000 {030}  T.00 006 0.00 2,00 0.00 | (1.10)  {5.10)
Pé Pass (2.80) (0.10)  (6.30) 1450  (6.50)  23.00  (0.90)  0.90 3.90

7 L PE Fail 3 L2 (5Re)  (os0)  (8.80) 1200  (6.50) 2300  (0.80) o0 | T8 g
8 P8 - . 1211 | (Lo0) o000 (6.80)  0.60  (11.30) 46.60  (9.30)  44.90 | (32.50)  31.20
g PO . 1211 | oed  0.00 0.00 8.00 .00 .00 0.00 0.00 0.00 8,00
P8 Pass 2,00 .00 {0.60) .00 {6.70} 5.20 (13.10) 60.40 22.00

10 P10 P8 Fall . L211 | gos goe  {0.66) 000  (12.10) 520 (24603 6040 | (2330 5o
11 P11 - 2 24T 1 oo 000 (110) 000 (300)  0.06  {190)  0.00 | (32.40) (26.40)
12 Pi2 . . - (1.16) 080  (0.20)  0.50 .00 0.00 2,00 0.00 | (1.90)  {1.80)
13 P13 - 12 - {1.20)  1.00  {0.80)  1.46  (0.40)  ©.20 0.00 000 | (uso)  {1.30)
14 P14 . 13 . 000 000  (120) 08¢ (0.80) 230 (130} 180 | (n40) 6.0
15 P1s - 2,12 . t0.60) 000  {0.19) 350 {230} 830  (0.80) 200 | {(8.20) 471
16 P16 - 15 - {0.30) 000  (1.60) 580  {1.80)  5.80  (0.60)  0.90 | (0.30) B.00
17 P17 . 11,15 - 000 000 {280 (0.10) (410}  18.60  {4.80)  24.00 | {380)  19-90
18 P18 ; 16 . 0.00 000  (0.10) 000 {140y 580 (3.30) 2450 | (3.00)  22.00)
19 P19 . 3 - (8.00) (0.50) {15.40)  7.80 (1810} 17.00 (21.60) 46.00 | .00 6.70
20 P20 . 8,19 - 0.00  0.00 2.00 0.00 0.00 0.00  (18.00) 25.00 | ©.00 12.00
21 P2l - 11 - 0.00 .00 .00 0.00  (27.90) 4800  (31.0¢) 60.30 [ 0.00 50.30
22 Pa2 - 11 - 0.00 0,00 0.00 0.00 0.00 000  (3.30) 1520 | oo 11,80
23 P23 . 13 ) 0.00 .00 0.00 0.00 0.00 0,00 (3.62) 1840 | 0.0 14.78

Second, to depict the dependency a project’s cash flows on another project’s IP development
status, an alternative cash flow line is given under the original one. For example, the projects P7’s
cash flow depends on P68’ IP development status. If P6 cannot complete IP development on time,
then second line of P7 gives the future cash flows for the project. A similar relationship holds for
projects P8 and P10. For this business decision, the IP development status does not affect the time
to market, because IP development can be completed for P6 and P8 at higher costs. However, if
this were not the case, the gross margin streams would be shifted to the right at the second line of
cash flow data.

Third, the project’s market release time b, is the period when nonzero gross margins are observed
and it is the same time period when the design win event should be considered for the project in
the simulation deseribed in Section 5.3. If a project passes the design win for all of its customers
then the forecast gross margins G M, would be used as a base to calculate the scenario dependent
GM,,. However, if the product fails from all of its customers then in all other scenarios GMpn
would be 0. In the medium case, the GM,, would be calculated using percentage product-customer
relations . as in Equation (10).

The total headcount cost for each project is calculated from Z(aeaf',vém Wpec, based on the
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Table 3: Resource Related Figures (in $ millions)
Overhead  Hiring Firing Initial
cost (c,) cost () cost ({,) level (I,)

R&D  §0.256 $0.200  $0.300 80

SGA  3$0.150 $0.100  $0.200 20

overhead cost, (c,), of R&D and SGA (administrative) employees. Table 3, provides cost and initial
count data related to both resources.

Management considers three projects vital for the company strategy. Independent of the port-
folio P8, P12 and P15 are “must do” projects. These projects are mainly technology development
projects, and have very little or zero gross margins expected throughout their life cycle. However,
there are multiple high return products depending on completion of these projects. (i.e. P16, P17,
P18, P20). Thus, F; in Equation (22) is the set of these three projects.

Before undertaking a careful, quantitative analysis using the DSS in place at the company, the
managers had thought that there were likely two different “business lines” that were attractive
options for this portfolio decision, but that capital and manpower resource limitations would limit
the ability to undertake them both. The general consensus was that the first business line (BL1)
was a more conservative option, that would yield reasonable returns at low risk levels, and that the
second business line (BL2) was a riskier, but potentially more profitable, undertaking. Management
was particularly interested in gaining insight from the DSS in support of one of these business lines,
or in learning if there were portfolio options from the set of candidate projects with more desirable
risk/return characteristics that either BL1 or BL2.

For the analysis, in addition to the project specific information from the company database
(Table 2), management defined the key markets (M), key customers (C), and probabilities and
impact data for each risk group outcomes defined in Table 1. For this instance, there are 4 markets,
5 customers, 3 technologies, 2 type of resources and 23 projects (including the 2 “business exit”
projects). With these data, the product-market (o) and product-customer exposures {Vpe) were
formed to indicate the percentage relationship, between products, markets and customers. Then
must do’ projects are indicated to form F1 set (Equation (22)). The data collection and scenario

generation process are handled with Excel’s VBA module. For this instance, it is quite reasonable
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to consider a four-stage stochastic program, {every stage being an end of each year), as the company
can decide to start or end projects roughly at the beginning of its I'iscal Year.

Even with the relatively coarse discretization of the uncertainty space described in Table 1, there
are still on the order of a quadrillion (10'®) outcomes for each stage. From these outcomes, the
optimization model was built to contain 10,000 scenarios: (with M, = 50, Ms = 20, My = 10 and
Ny = 50, N3 == 1000, N, = 10,000). Each of these 10,000 scenario sampled instances with Z == 25
replications. And for each sampled instance, a risk frontier was created by solving with 12 different
risk levels (starting from 10 with increments of 5).

Each of the optimization instances was solved by CPLEX (v9.0) directly through calls from the
AMPL modeling language. Solving these instances took roughly 6 1/2 hours, and there was not
significant variation in solution time from instance to instance. The value N = 10000 scenarios
was chosen for a sample size in part due to the fact that this was the largest instance that solved
in a reasonable amount of CPU time. While 10,000 scenarios is a very, very small fraction of the
total number of scenarios, we have seen even for this small fraction, both the optimal solution and
its value obtained from different sampled instances tends to be very “stable”, indicating that it is
likely to be the true optimal solution. Recent theoretical evidence showing that there is a good
probability of obtaining the true optimal solution from a small sample size is given by [17] and [9].

Figure 4 and Figure 5 shows the optimization phase results and graphs described in Refinement
Phase. In the large majority of the 25 samples instances, at lower risk levels (10-25) and high
risk levels (50-65), the optimal initial portfolio is shown on the initial portfolio chart of Figure
4. The optimal initial portfolio projects for these risk levels are very similar to projects in BL1.
At risk levels (30-45), the optimal initial portfolio is shown on the upper right chart of Figure 5,
and the optimal initial portfolio at these risk levels are very similar to BL2. The solution of the
optimization instances did not indicate that there were significantly better portfolios to consider
than those already under consideration at the company (BL1 and BL2). As seen from the efficient
frontier charts of Figure 4 and Figure 5, as the risk level increases more projects are added to the
portfolio. The whole portfolio for BL1 and BL2 can be seen from the project robustness charts
for each risk level. The lower left charts provide the summary statistics for both BL1 and BL2

portfolios, and show which projects are continuing for each planning year.
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Figure 4: Business Line 1

Figure 6 displays the average efficient frontier line for BL1 and BI2 together. The figure is the
average of 25 runs and statistics of this figure is given in Table 4. BL2 portfolio is not feasible for
the risk levels {10-20), then on the average for the risk levels 30 and 35, it becomes optimal. For
all the other risk levels BL1 portfolio is optimal.

Table 5-7 display the expected yearly required headcount levels from each type of resources when

BL1 or BL2 portfolio selected, for low medium and high risk levels, respectively. One important

Table 4: Comparison in Risk

Low Risk Medium Risk  High Risk

(10-25) (30-45) (50-65)

BL1 BL2 BL1 BL2 BL1 BL2
Return 5.38 2.63 2243 24.72 31.32 2945
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observation is that the required level of resources for BL2 dramatically reduces after the first year,
yielding a high turnover rate. Relatively required level of resources for the BL1 is more stable. The
last line depicts the yearly profit of the portfolios, which are shown in the lower left charts of Figure

4 and Figure 5. According to this both BL1 and BL2 do not earn profits for the first two years of

the planning horizon.

Onme of the key results of the solution is that even at the highest risk levels both BL1 and BL2
reveal lower expected returns than the forecasted figures in Table 2. This is because forecasted
figures do not adequately take into account the possibility of zero gross margins when the project
fails. Another driver of the difference in forecasted figures and the expected optimal figures is the

probability and impact data specified by the management. It seems that for this particular instance,

Figure 5: Business Line 2

the management consensus was to be slightly “pessimistic” about a few key impact events.
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Figure 6: Optimization Phase Results

Table 5: Headcount and Profit Comparison in Time: Low Risk levels (10-25)

Year 1 Year 2 Year 3 Year 4 Total
BL1 BL2 BL1 BL2 BL1 BL2 BL1 BL2 BL1 BL.2
R&D 80 142 35 54 27 36 27 36  Mean:42 Mean:67
SGA 18 31 9 14 7 9 7 9 Mean:10 Mean:16

Retwn  (28.17) (14.21) (10.18) (8.23) 526 599 37.92 1000  4.83 2.63

The choice of the portfolio depends on the degree of risk averseness. The optimization problem
suggests BL1 at all the risk levels except 30 and 35, and BL2 for the risk levels 30 and 35. With the
aid of efficient frontier chart, one can conclude project specific risk information from the risk levels
at which each product first appears in the portfolio. For example P6, P10, P16 and P18 are low
risk and P7, P8 P9 are moderate risk and P19, P20 are high risk projects for BL1, and almost every
BL2 projects are moderate risk projects and P19 is the high risk project. After viewing the results,
management did not need to make further analysis with input change and decided to invest in BL1
projects. Portfolio BL1 was more attractive from the following points: 1) On the average it yields
higher profit, 3) Portfolio and expected profit is more responsive to the degree of risk averseness,
which, by the management, is considered more realistic compared to real life situations 3) Required

level of resources for the portfolio is less fluctuating,
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Table 6: Headcount and Profit Comparison in Time: Medium Risk levels (30-45)

Year 1 Year 2 Year 3 Year 4 Total
BL1 BL2 BL1 BL2 BLi BL2 BL1 BL2 BL1 BL2
R&D 111 142 69 55 58 37 58 37 Mean:74 Mean:67
SGA 24 31 18 14 15 9 15 9 Mean:18 Mean:16

Return  (26.82) (49.32) (13.89) (27.21) 082 2398 4510 7455 14.21  22.00

Table 7: Headcount and Profit Comparison in Time: High Risk levels (50-65)

Year 1 Year 2 Year 3 Year 4 Total
BL1 BL2 BL1 BL2 BL1 BL2 BL1I BL2 BL1 BL2
R&D 114 137 72 52 61 36 61 38 Mean:77 Mean:6b
SGA 25 30 19 13 16 9 16 9 Mean:19 Mean:15

Return  (54.48) (55.87) (30.06) (31.08) 13.14 27.5 10321 87.58 31.81  28.12

A final analysis was done to attempt to quantify the value of using a stochastic programming
approach against a deterministic (or mean-value) model by computing the Value of the Stochastic
Solution (VSS). Expected or mean value problem is simply solved by fixing all the random quantities
to their mean values. Then the difference between the expected result of using stochastic solution
and mean value solution is the VSS. [3] In our instance, we found a portfolio of products by fixing
the impacts of outcomes to their expected values. Then, for each risk level, we computed the
VSS by comparing the performance of optimal portfolio and mean value portfolio under a sample
of scenario set. We measured VSS under 15 different scenario sets and took the average values,
which are shown in Table 8. For nearly all levels of risk, the VSS was significantly greater than
0, indicating that by explicitly considering the cost of reacting to uncertainty in the model, better

decisions are being made.

Table 8: Average Value of Stochastic Solution (VSS) under different risk levels
Risk Level
10 15 20 25 30 35 40 45 50 55 60 65
VSS ($ millions ) 1011 4.50 049 1.85 741 12.37 12.81 12.87 11.46 10.29 955 90.35
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7 Implementation Experience

The project portfolio selection DSS described here has been constructed, revised, and remodeled
over a two-year period via continuous interaction with the firm’s senior management. Through our
interactions with the decision makers expected to use the tools, we observed that they do not feel
comfortable tinkering with the DSS during the optimization phase, but it is intuitive for them to
comprehend the system’s recommendations through the tables and charts. Thus, we designed the
DSS such that after the initial data input, the process flows automatically, and the requisite charts
and the tables are displayed at the end. The management discusses the results using these charts
and tables. If more "what if’ analysis or in-depth statistics are needed, the DSS allow them to
delve directly into the solution through a spreadsheet interface. The system also provide utilities
for them to make additional analysis by changing part of the input and rerun the entire process.
During our implementation, the management decided to connect the DSS with the company
database so that information that is already available can flow in directly. A main concern of the
management is to make sure that the DSS generates the type of charts and tables that the whole
decision team can easily interpret and understand. They were heavily involved in the design of the
output format such that charts and tables generated were very similar, if not identical, to what they
have already being using in the process. Overall, the senior management has been very satisfied with
the way the DSS tool helped in their decision process. Since it is primarily data driven while taking
into consideration some human judgements, the tool creates a level of formality and credibility to
the process. Currently, the firm uses the DSS for the portfolio selection and management process,
and they are planning to use the tool for higher-level strategic decisions such as the alignment of

market potentials and business units within the company.

8 Conclusions

As is typical in the high-tech environments, the semiconductor industry faces a dynamic and volatile
market. The development of intellectual property (IP) via R&D projects is among the most im-
portant decisions high-tech companies make, and the selection of a well balanced Ré&D portfolio

require significant effort and data analysis. In this paper we introduce a three-phase decision sup-
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port structure for the project portiolio selection process at a major U.S. semiconductor company.

The key features of the decision support system we developed for the company are as follows:

e Flexible risk modeling via scenarios; this allows us to incorporate not only quantitative infor-
mation in the company database, but qualitative information distributed among the decision
makers: their assessment about different aspects of the business environment, likelihood of

successful technology development, exposure to customer and market segment success.

e A multi-stage stochastic program that provides an effective way to synthesize large volume
of information such as business constraints and project interdependence, while systematically

evaluating the various sources of uncertainties present in the business environment.

e An effective interface with decision makers that provide access to all components of the DSS
including detailed information gathering from company databases, and survey for key decision
makers, wizard-like user interface to assist in model building, error checking routines that
notify the users in case of missing or illogical data, interaction with sampling and optimization

tools (for advanced users), and automatically generated charts, tables, and figures.

¢ Sensitivity analysis tools that allow decision makers to resolve particular instances with dif-

ferent parameters and evaluate the robustness of the outcome.

We demonstrated, through numerical examples, a real-world R&D project portfolio selection
problem using our DSS. We show the fypical output generated by the tools and different ways
that the decision maker may use the tool to analyze the trade-off in different portfolio selection
alternatives, balancing risk with expected return. The optimal portfolio constructed by the model

has been implemented at a particular business unit at the company.
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