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1 Introduction

The purpose of this research is to address strategic as well as operational issues faced by contract
manufacturers, who are capable of developing their own market presence. A contract manufacturer
(CM) often faces the strategic options of devoting its manufacturing capacity entirely to a brand-
carrying customer (BC), or leveraging a portion of its manufacturing capabilities to develop its own
market presence. In our research, we aim to analyze these conflicting incentives of a CM, specifically
focusing on the following issues; Already serving a BC, whether the CM should develop her market
presence and when. If the CM builds a market presence in a local market, how she should allocate
the fixed capacity between the BC and the local market demands.

The research is expected to have long-term impact to industries, where contract manufacturing
is prevalent, including electronics and computers, semiconductors, communications, automotive,
and medical products. These industries and their subsidiaries in the Asia-Pacific region are going
through a profound and rapid transformation. Major global corporations are moving aggressively
away from vertical integration; instead of owning and operating the entire process of product re-
alization, they are focusing on those aspects with the strongest value proposition, e.g., product
development, marketing and sales, and supply chain management, while functions such as manu-
facturing and assembly are outsourced to regions with skilled and lower cost labors. By consolidat-
ing demands from different brand carrying customers and developing highly flexible processes, the
contract manufacturers are able to realize a much higher utilization on their equipment, thereby
reducing unit costs. Thus, the contract manufacturers can offer their customers a greater variety
of products at a significantly lower cost.

Contract manufacturing has grown from a few billion dollar industry in the early 1990’s to over
$180 billion in 2001. In the U.S., this rate is expected to accelerate rapidly in the next few years
with the share of manufacturing done on a contract basis is expected to be well over 50% (Gartner,
2003 [14]). Contract manufacturers, also known as the Original Equipment Manufacturers (OEMs)
in some industries, have significant presence in the Asia-Pacific region. They represent a dominating
force and a significant economic driver for regions such as Mainland China, Taiwan, Korea, and
Malaysia. As a major source of investment capital the Hong Kong economy is strongly influenced

by the issues related to contract manufacturing.



Despite its enormous development potentials and promises, contract manufacturing and the
issues facing the contract manufacturers are not well studied. There is a significant gap in the
literature between the theory and the practice. The goal of this research is to close this gap; not
only by answering intellectually challenging research questions but also by producing insights to

the Hong Kong industry.

1.1 Problem Setting

~ We focus on contract manufacturers, who have reached technological and business maturity, and
who have the potential to develop their own markets. In a discrete-time finite horizon, suppose a
contract manufacturer (CM) produces products for a brand-carrying customer (BC). Meanwhile,
she may enter the local market with her own brand, where the products for both the BC and the
local market share the same technology and facility.

We assume that the demand from the BC follows a life-cycle growth model with an 1.i.d. forecast
errors for each period. If the CM decides to enter her own market, the demand from the local market
will follow the BC demand with a known integer lag parameter and a scale parameter between (0,1).
The pricing of the products depends on the quantity demanded from both the local market and
the BC. Hence, if the CM decides to enter her own market, there will be no priority schemes to
deliver the order between the local market or the BC demand. As it will be cleared out in Model
Development section, we assume linear unit price for the local market, and decreasing marginal unit
price for the BC. As a result, the priority of the orders will be determined by the quantity of the
units demanded from both the local market and the BC.

The CM has fixed known production capacity for each review period of the planning horizon.
The unfilled demand from both the local market and the BC demand will be lost incurring a penalty
cost per unit per time. Additionally we have periodic unit holding cost and unit production cost.

‘The CM needs to decide: (1) whether the CM should develop her own brand and when, and (2)
how much to produce, and how to allocate the available inventory between the BC demand and the
CM’s own market had she entered the market.

In the next chapter, we will explore the existing literature related to our problem, then we will
formalize the notation and formulate the problem. Afterwards, discussion of the preliminary results

and special cases of the problem will be made. We conclude our report with future research agenda.
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2 Literature Review

Our model reflects various aspects of the high-tech business and manufacturing environment, as
a result, the proposed model addresses multiple fields in the literature. First, we will explore the
literature on life-cycle growth models, then we will investigate production and inventory manage-
ment literature for the capacitated systems, and last we will browse the literature for outsourcing
incentives.

The high-tech industry is characterized by its short life-cycled products. Also in our model, the
products have short life-cycles, and the demand of a product follows a life-cycle growth model, which
exhibits a demand life-cycle of growth, maturity, and decline. Thus, both the market entry and
the supply decisions are made under life-cycle growth model. There is a rich literature on modeling
and describing demand for high-tech products. Meade and Islam (1998) [23] document 29 different
growth curves found in the literature. One of the earliest model of the growth models is the famous
Bass model. Bass (1969) 2] describes the demand for a new product by the theory of adoption and
diffusion. According to him, demand for an innovative product is driven by two sources: Impact of
mass-media influences and word of mouth effect of previous buyers. The first effect is modeled as the
coefficient of innovation, and the latter as the coefficient of imitation. There are three parameters
to be estimated in the model: Coefficient of innovation {p), coefficient of imitation (¢}, and market
potential {m). The parameter estimation is made with regression analysis using past sales data. The
model is powerful in estimating the magnitude and timing of the peak sales when the parameters
are appropriately estimated. One major complication of the method is when estimation to be made
for a new technology or a product, there is no available sales history data. One effective method
to estimate the parameters of a new product or technology is to use the sales history of similar or
analogous products. Thomas (1985) [31] proposes an evaluation procedure for identifying similar
products, and using sales history of these products for the demand estimation of the new product.
According to him, four data sources are used to make such an estimation; test markets, market
studies, expert judgement, and products with similar characteristics.

After the introduction of Bass model, a large body of literature revisiting the structural and
conceptual assumptions together with the research on estimation issues has been formed. Mahajan

et al.(1990) {22] provide an excellent survey, and categorize these developments over the years



1969-1990 into five subareas; basic diffusion models, parameter estimation considerations, flexible
diffusion models, refinement and extensions, and use of diffusion models. After its introduction, Bass
model has been traditionally used for sales forecasting, however one of the other useful applications
of the Bass model is to select optimal marketing mix strategies to maximize profitability over
planning horizon considering the life-cycle dynamics. Mahajan et al. (1990) [22] summarize the use
of the Bass model at the end of their paper. More recently, Kumar and Swaminathan (2003) [21]
consider the production and sales decisions of & single item in a capacitated system under life-cycle
dynamics. They assume that the demand of the item follows a Bass type model however with one
difference; the word of mouth effect is proportional to cumulative sales, not cumulative demand.
Hence, the demand at an instantaneous time depends on the cumulative sales up to that time.
They conclude that, myopic sales plan is not necessarily optimal, and inventory build up heuristic
is a robust approximation of the optimal sales plan. They compare the performance measures of
myopic and build up policies over a wide range of parameters. In a special setting, they prove the
optimality of build up policy when there is no initial inventory in the system. In a similar setting,
Ho et al. (2002) [18] analyze capacity, time to market and demand fulfillment decisions jointly,
and they provide closed form solutions for the optimal decisions. Their demand model is same as
Kumar and Swaminathan (2003) {21]. They show that delaying the product launch can act as a
substitute for capacity. One interesting result of their study is that for fixed values of capacity and
product launch time, when faced between the choice of selling an available unit immediately versus
delaying the sale in order to reduce future shortages, the firm should favor the first choice. This is
due to time benefit of the immediate cash flow outweighs the negative effect of customer loss due to
demand acceleration. Our problem setting is similar to Kumar and Swaminathan (2003) [21] and,
Ho et al. (2002) [18]. However we significantly depart from their work by considering the strategic
decision of entering a new market and allocation of fixed capacity between two demands. If it is
optimal for the CM to enter the local market, the CM needs to decide the timing of the entry and
the allocation of fixed capacity over the planning horizon, which is not considered in the previous
two works. After solving our problem with the Bass model, we plan to gain insights for the CM’s
decisions under different types of demand models, utilizing from Meade and Islam (1998) [23]. In
the future, we also plan to extend our problem by allowing multiple generations of the current

technology. When the next generation products make the current ones obsolete, this new demand
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pattern might suggest different strategic decisions for the CM. Norton and Bass (1987) [26] and
Bass and Bass (2001} [3] extend the classical Bass demand model to describe the demand process
of multiple generations of a technology. We will use the similar demand model to theirs when we
incorporate the future generations of a technology into our model.

As described above, if the CM decides to enter its own market, she has to decide how to allocate
the limited capacity to the demands from the BC and the local market. If the CM produces different
products to BC and the local market, then the problem can be classified as a capacitated production-
inventory problem, where the objective is to minimize the total discounted or average costs over
a finite or infinite horizon under limited capacify. The earliest formulation and the analysis of
this problem seems to be by Evans (1967) [9]. He formulates the problem as a dynamic program
under stationary demand assumption. In cases where the capacity is not binding, he was able to
characterize the optimal policy in which, each item attains a maximal stock level. However, when
the capacity is binding he was unable to characterize the optimal policy. Federgruen and Zipkin
(1986a, 1986b) [10] [11] consider capacitated single item, periodic review inventory model under
stochastic demand. They prove the optimality of modified base-stock policy for both discrete and
continuous demand distribution assuming stationary data and convex one period cost function.
The modified base-stock policy is described as; follow a base-stock policy whenever possible, and
produce to capacity when the prescribed production would exceed the capacity. Glasserman (1996)
[13] addresses the capacitated, multi-item production-inventory system with continuous review.
Under a subclass of allocation policies in which, some fraction of the total capacity is permanently
dedicated to each of the items throughout the planning horizon, production of an item follows a
base-stock policy. He also presents procedures for choosing asymptotically optimal base-stock levels
and capacity allocations. DeCroix and Arreola-Risa (1998) [7] generalize Glasserman (1996) {13]
for periodic review systems and show the optimality of modified base-stock policy for capacitated,
multi-item production-inventory system. When the products are homogenous (i.e identical demand
distributions and cost parameters), they show that symmetric resource allocation policy is optimal
for both finite-horizon and infinite-horizon problem. Kapuscitiski and Tayur {1998) [20] study
the similar system as Federgruen and Zipkin (1986a, 1986b) [10] [11] studied, with an exception.
They consider, stochastic and cyclic demand. They provide the optimal policy for finite-horizon,

discounted infinite-horizon, and infinite-horizon average costs. The optimal policy is the modified
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base-stock policy as described by Federgruen and Zipkin (1986a, 1986b) [10] [11], but with different
base-stock levels for each period. For the similar system as Kapuéciniski and Tayur (1998) [20],
with a different method, Aviv and Federgruen (1997) [1] independently proved the optimality of
modified base-stock level for the infinite-horizon case.

Above we investigated the literature for the case, in which the supplied products to the BC and
the local market are different. If the CM supplies the same product to the BC and the local market,
then our problem can also be classified as rationing problem. In this problem, the decision maker
first decides the production or order quantity of product, later when the demands are realized,
the decision maker allocates the products to the different classes of customers according to the
rationing Tule, which is to be determined. One of the earliest formulations of this problem for
an uncapacitated discrete time system is made by Veinott (1965) {33]. His focus is to find how
much and when to replenish the orders. In a nonstationary environment he proves the optimality
of a base-stock policy, but he does not consider any rationing levels. Later, Topkis (1968) [32]
extends the results of Veinott (1965) {33] by considering how inventory should be allocated in a
single period of a periodic review model. He does the analysis by breaking down the single period
into finite number of subperiods, and as the demands are realized, he decides between satisfying
the demand now, or reserving the inventory to fill higher-class demands in the subsequent periods.
He proves that, for each review subperiod, there exist optimal nonnegative rationing levels for each
demand class such that one satisfies demand of a given class only if there is no unsatisfied demand
of higher class, and inventory level is above the rationing level for that class. However, he does not
allow replenishment of inventory within the subperiods. Most of the rationing problem literature
deals with the continuous time environment such as Nahmias and Demmy (1981) [25], Desphande et
al. (2003} [8], or the queueing control environment such as Ha (1997a, 1997b, 2000) [15], [16], [17).
Rationing problem is also similar to assortment problem and substitution problem. In the assortment
problem, a firm has the ability to produce n different items, where each item has its own demand,
but the firm must satisfy all the demand while producing m (m < n) items. In this problem demand
for any inferior item can be substituted by a superior or more costly item, and the objective is to
minimize all the costs. Pentico (1974) [28] analyzes the problem with stochastic demands and in
multi-period environment. By making some assumptions on the pattern of demand, he was able

to simplify the problem. In generalized version of the single period newsvendor problem, Parlar
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and Goyal (1984} [27] investigated two-way substitution problem. Gerchak et al. (1996) [12] study
single period production systems with random yield and downward substitutable demand. They
prove that expected profit functions are concave and derive the optimality conditions. Basscok et al.
(1999) [4] analyze single period, multi-product substitution problem with downward substitution.
They prove that greedy allocation policy is optimal.

In our research, the CM supplies the BC and her own market with the same or similar products,
which use the same technology and facility. Unlike the classical capacitated production-inventory
problem or the classical rationing problem CM needs to consider the strategic decision of supplying
to her own market or not, and if she selects to supply she needs to decide the timing of the product
release. Furthermore, our demand pattern follows the life-cycle growth model. We also consider to
extend our work by allowing the demand from the local market or demand from the BC be affected
by the allocation rule of the CM. It differs us from most of the previous literatures which consider
the stationary demand in each period.

The incentives for a firm to outsource s portion of their production or service has been studied
by many researchers. Quinn and Hilmer (1994} [29] discuss ways to determine a company’s core
competencies and which activities are better performed externally. Benson and leronimo (1996)
[5] discuss the impacts of outsourcing maintenance work on firm performance by comparing Aus-
tralian firms with Japanese firms operating in Australia. Kamien and Li (1990) [19] formulate a
production planning model that explicitly considers subcontracting as a planning tool. They also
discuss different subcontracting mechanisms and their costs, concluding a class of subcontracting
mechanisms Pareto-dominate other subcontracting mechanisms. Van Mieghem (1999) [24] analyze
a competitive two stage stochastic investment game between a manufacturer and a supplier. They
discuss the outsourcing conditions for three different contract types. For more recent discussion and
survey on subcontracting and outsourcing see Simchi-Levi et al. (2004) [30]. Most of the previous
researchers focus on the problems from the point of view of the brand carrier. In contrast, our
research will consider the issues faced by the contract manufacturers. With a brand new feature in
our research, by considering the strategic decision of entering CM’s own market or not, we aim to

shed light on these issues.



3 Model Formulation
3.1 Problem Description

Before getting into the details of our model, we would like to present some results from the life-cycle
growth model proposed by Bass (1969) [2]. In his model, the adoption of an innovative product
by customers is driven by two sources: (1) impact of mass-media influences and (2) word of mouth

effect of previous adopters. The demand rate seen at an instantaneous time is given by,

n(t) = pm+ (g — PN () — TN(1)?
= [p+ ZN@)jm — N©)
where, N(t) = fot n(s)ds, is the cumulative demand up to time ¢, and n(0) = pm. The first
component in the second line is the probability of purchase given no purchase has been made, and the
second component is the number of customers that have not made a purchase yet. There are three
parameters determining the shape of demand curve in the Bass model; (1)m: the market potential,
(2)p: the coefficient of innovation (mass-media effect), and (3)¢: the coefficient of imitation (word
of mouth effect). The solution of the above equation is obtained by solving the following non-linear

differential equation;
dN (¢t}
Cdb
According to this, the solution is given by;
1 — g~ P+t )

o= (1 + (g/p)e{ptot
n(t) = m (p(p + q)ze—(p+q)t)

(p o qe—(i'?'i'q}t)z
and maximum value of demand is reached at time ¢t* is n{t*), where

SR Y vy Mo+ e
A (pwi»q)ln(q) and n(t") = ”

While the Bass model was originally defined assuming continuous time, we will use the discrete

=pm+ (g —p)N(t) - =N(t)*

analogue, in which time and size of the peak sales coincide with the original model. We will use
time subscript to indicate the demand for a given period. According to this demand at a given
period is;

ng = pm 4+ (g — p)Ny—y — ;%qu

9



where N, = Y gy and ng = pm.

Assuming that the demands are determined by the Bass model parameters, we can formally
build our model. Suppose a contract manufacturer (CM) produces a product for a brand CarTying
customer (BC). We consider a discrete time finite horizon {1, 2,.., 7'}, which is long enough for the
CM to observe increasing and diminishing demand pattern from the BC. We assume that demand
from BC, D?, is characterized by the Bass model (D! = n;). We further assume that the demand
ig stochastic with an i.i.d additive error & for each period. According to this, the realization of BC
demand is given by, d® = D! + £, where D? = n,. The pdf and cdf of the error is known and given
by f(&) and F(), respectively.

As a simplifying assumption, we will not deal with the periodic update of the demand parameters,
p, g, and m as the demand is observed. The CM has a fixed known periodic production capacity
C, and throughout the planning horizon, the CM has an option of entering a local market with a
product that uses the same capacity. The market entrance time 7 is also a decision variable for the
CM. There is a fixed, one time market entry cost K, and the demand in the local market follows
the BC demand with a known integer lag parameter k& and a known scale parameter v € (0, 1).
Similarly, we assume demand from the local market, Di* is stochastic with an additive error ¢,
which has identical distribution as the error in BC’s demand, but independent across the periods
and independent from the BC’s error. Then, the realization of demand from the local market is
given by,

dr =~Db 4 € Vi:T>t>k

Figure 1 shows a typical demand relationship between the BC demand and the local market
demand, where the parameters are k =2,v=0.8,p =002, ¢ = 0.7, and m = 1.

The CM faces the following set of decisions: (1) How much to produce and how much to satisfy
the BC demand at each period, and (2) Whether she should enter the local market or not, and
when. If she enters, she needs to decide the allocation scheme of the on hand inventory between
the BC and the local market. We assume that unsatisfied demand is lost for each customer types.
Departing from the classical rationing problem literature, we do not impose any priority scheme
between the two demand types. Instead, we assume the unit price of the product is driven by the

guantity demanded from each of the customer ftypes. For the local market, the unit price, =™ is
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Figure 1: Rela,tionship between the BC demand and the market demand

constant, whereas the unit price for the BC, w2(d?), is a function of the quantity demanded, and
it is diminishing in d?. Figure 2, shows an instance of revenues from the local market and the BC,
when the demand from each is supplied fully. The demand driven price method will clarify the
priority of the demands for the planning horizon.

We assume that production and market entry decisions take place at the beginning of each
period. The production is instantaneous, and in a given period if the CM decides to enter the local
market, she will be able to satisfy the market within that period. After the demand for each type of
customers are realized, allocation of the on hand inventory is made, and related costs are incurred
at the end of the period. We have three types of costs; positive unit holding cost, h, nonnegative
unit production cost, ¢ and nonnegative unit penalty cost, p°, and p™ for the unsatisfied demand
from the BC and the local market, respectively. In order to keep the model meaningful, we further
impose following assumptions among the model parameters.

Model Assumptions

1. w{d) + p* > c for all possible realizations of d?, and similarly «™ + p™ > ¢. This assump-
tion ensures that, it is not optimal to never satisfy current period’s demand and accumulate

backlogging costs.

2. o (ml () +p°) — (w2 (d?) +p*) < Sty R, This assumption ensures that, it is not optimal

to cut current period’s BC demand to satisfy the future period’s BC demand at a higher
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price. The assumption is practically relevant since the CM has no customer other than the
BC. Acting in this way, the CM would decrease the trust of BC, endangering the promise
of future BC demands. This assumption automatically holds for the LM case, since #™ is
constant. Note that we are not imposing any assumptions for the cross benefit cage (i.e.
cutting current period’s BC (LM) demand, to satisfy future LM’s (BC's) demand at a higher

price). Since, these allocation decisions play major role in the CM’s market entry decision.

The decisions that the CM faces throughout the planning horizon can be described as follows:
(1) v the inventory level after production at the beginning of period £. I; being the on hand
inventory level before the production decision takes place, the production can be at most the
production capacity; v — I+ < C, and the inventory level after the production cannot be less than
the beginning onhand inventory. [; < y. Without loss of generality, we will assume the orders
from the BC will be shipped first. (2) z;: Inventory level below which the CM cannot use the
on hand inventory to satisfy the BC demand. (z: < w). (3) 2 Inventory level below which the
CM cannot use the on hand inventory to satisfy the local market demand. In other words z, is the
minimum reserved inventory level for the next period. (0 < 2z, < ;). (4) 7 Binary decision variable
indicating the market entry decision. If it is 1, then the CM enters the local market incurring a
fixed cost of K, 0 otherwise. (Z;‘;l ry < 1) Note that, the order of shipments, does not affect the

problem structure, since for any given demand, the CM cannot satisfy more than the difference of
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two inventory levels assigned for that demand. According to this, in any given period, CM will
supply min{y; ~ z, db} to the BC. After satisfying BC demand, the remaining inventory level is
max{xy, y; — d°}. If the CM does not supply to the local market (i.e. the CM has not made the
market entry decision, yet.), then z; = z. If CM also supplies to the local market, then CM will
deliver min{max{z;,y: — b} — z, d"} to the local market, and then the remaining inventory level
at the end of period would be max{max{y, ~ df,:r:t} ~ i, 2}, which is the inventory level at the

beginning of the next period.

3.2 Model Formulation

CM'’s problem is to minimize total expected cost of the planning horizon. There is a periodic
discounting factor, « € (0, 1), of the cash flows. At the end of the planning horizon, the remaining
on hand inventory can be salvaged at the production cost, . Table 3.2 summarizes the notation
and description for our problem.

In the light of the above discussion, we can model the CM’s problem as follows. In order to
evaluate the value of the strategic decision, entering the local market or not, we will have to evaluate

two functions in each period:

1. H}(I;) = minimum expected net discounted cost in periods ¢, 1, ..., T, given that period ¢
begins with inventory level I}, and the CM decided to enter the local market at or before the

time period £.

2. HP(I;) = minimum expected net discounted cost in periods ¢, +1,..., T, given that period ¢

begins with inventory level I,, when the CM does not have the market entry option.

HY(1,) and H}(I;) are the cost-to-go functions of operational problems. (i.e. how to allocate
the fixed capacity when serving one and two customers, respectively) HI(I;) is found according to

the following DP formulation.
H} (L) = min Elg7 (1, yo, 22) + 0Hisy (1))

subject to 0<uz, <y, <L +C, L <y (1)

T = maX{yt - di’, xt}

where, g2(1,, v, ;) is the periodic cost function and found by;
cly: — I) — Wf(df)min{yt — Xy, di’} + pb(yt — Ly d?)— + hmax{y; — di’, T}

13



Table 1: Notation and description

Notation | Description
m7(d;) | Unit selling price to the BC
am Unit seiling price to the local market
) Unit production cost
b Unit penalty cost of not satisfying demand from BC
feXis Unit penalty cost of not satisfying demand from local market
3 Unit holding cost per time period
1 Inventory level at the beginning of period ¢
C Maximum periodic production capacity
K Fixed market entry cost
Ve Inventory level after production, 1 +C zy =2 I
Ty Minimum inventory level after satisfying the BC’s demand, y: > 2y
2 Minimum imventory level after satisfying local market’s demand, @y > % > 0
T Binary decision variable whether enter to local market or not at time ¢
d;, d7* i Realization of demands from BC and local market, respectively
k Integer lag parameter for the local market demand
¥ Scale parameter for the local market demand
F(E), F(&) | pdf and cdf of random error ¢
o Periodic discount factor

The first term above is the production cost, the second term is the revenues obtained from BC,
the third term is the penalty cost of unsatisfied BC demand, the fourth term is the holding cost of
the inventory carried to the next period. Similarly H}{I;) is found according to the following DP

formulation.

th(ft) :yﬁiﬁ, E[Qg(ft,%,xt, 2) + aHt]H (Ly1)]

subject to O0< n <z <y <L+ C, I <y (2}

Liy1 = max{max{y; — d°, z;} — d7", %}

where, g} (It, %, 71, 1) is the periodic cost function and found by;

elye — L) — m(dd)min{y: — @2, &} + p*(ye — 2 — &)™ — 7" min{max{y, — d¥, @} — 2, df*}
+ p"(max{y, — &, z} — 2 ~ d")” + hmax{max{y; — d°, z;} — d™, z}

The first term above is the production cost, the second term is the revenues obtained from BC,
the third term is the penalty cost of unsatisfied BC demand, the fourth term is the revenues obtained
from the local market, the fifth terms is the penalty cost of unsatisfied LM demand, and the last

term is the holding cost of the inventory carried to the next period. The boundary conditions for
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Formulations 1 and 2 are HY. w11} = Hk w1(Ir41) = —eclryq, where Ipyy are found from the
recursions in 1 and 2, respectively.

The market entry decision depends on the costs before the market entry and after the market
entry. If the CM enters the LM at 7 € [1, 7Y, then during the interval 1, 7) the CM serves only BC,
and during the interval [, T} the CM serves to the BC and LM both. In order to find the optimal

market entry time, we need to solve to solve the following DP formulation;
Villy) = Hﬁn re( K + HY (L)) + (1~ 7y) 5;175313 Blg? (L, g1, @) + Vi1 (Iis1)]

T {3)
subject to Zn < 1 and constraints for 1 and 2
f=1

where, r; is a binary one time decision. V;(l;) is the expected total cost of CM from # to 7. To
calculate Vi(1;), at each period, the market entry option is evaluated. Similar to H2(I,) and H}(Z,),
the boundary condition for Vp1(Iry1) = —elpyy. If vy = 0 V¢ then the total cost for CM is H. 1),
the minimum discounted total expected cost of the planning horizon when CM is only serving the
BC. If 7 is the market entry time, then for ¢ > 7, Vi(%,) = H}{I,), the minimum total expected cost
from ¢ to T, when CM serves to LM and BC. For ¢t = 7, V() = K + H}(1,), the minimum total
expected cost from ¢ to T', when CM serves to LM and BC plus the market entry cost. For ¢ < 7
Vi) = > ot min g2 (I, v, 2:) + " ~H(K + H2(I,)), the minimum expected total cost from ¢
to 7 when CM is serving BC only, plus the market entry cost and the total cost from 7 to 7 when

CM is serving BC and LM. When above DP formulation is solved, Vi(I;) will be the total cost of

the problem for a given beginning onhand inventory I;.

4 Preliminary Results

"The optimization problem 3 is quite complex to solve. To gain some insights, we first analyze the
structure of two cost-to-go functions separately. (i.e. H)(I;) and H} (1))

Without the capacity constraint, the optimal policy is the base-stock policy for the case when
the CM is serving the BC only. (It can be easily shown that H(I;) is convex in [, V¢ € {1.T})
With the capacity constraints, the optimal policy is again base-stock type but constrained with
the capacity. At each period one brings the on hand inventory to the base stock level as close

as possible, if on hand inventory is less than base stock level, and produces nothing, if on hand
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inventory is more than the base stock level.

However, the analysis of H}(I), even without the capacity constraints, is complicated. In
this situation, the CM needs to decide the inventory level y; after production, and the minimum
inventory level z; for LM in each period. For the unlimited capacity case, there is no need to
produce more than the demand needed in current period (i.e. z = 0). Then, the cost function in
each period is H}{I;) in formulation 2 except the upper bound on y; < I + C and that z, = 0 Vt.

We explicitly analyze H}(I;) for the unlimited case starting from the last period T The under-
lying cost-to-go function is;

o0

YT BT yr —di
Ab) = =clrt min e+ [ ety - [T aparay v [ - aparap)|
T o] 0 Y

3 TWGET

o] -'yTw‘di}
e f (& + df — yr)dF(dZ) + (h - ac) / (yr — b — AP)AF(R) | dF(dh)
W 0

o
T—d.

[ [—w%(d%){w )+ o — (yr — or)) — 77 { [0 "~ dpar(ap) + | airam| @
Yy Ty

T—%T

+37 [ @ - on)aP @) + (- 0) [ (or - )RR | a(a))

T

subject to
0oy Syr, Ir Syr

First two line of the above equation is the cost of last period, given that demand from the BC
is less than the amount of inventory reserved for it (i.e. d%» < yp — 2r). Note that, there is no
penalty cost for not satisfying the BC demand in this part, since the realized demand does not
overshoot the on hand inventory for the BC. Last two lines of Equation 4 represents the cost of
last period, given that the demand from the BC is more than on hand inventory reserved for the
BC. (ie. db > yr — o7). After combining the terms and making simplifications (see Appendix ),

Equation 4 becomes;

Hi(Ir) = — clp + p" iy + p™ uP+

yrzer

yr—~TT
min cyr ~ (p° + 7" ) yr — z7) ~ (P™ + 7 ™)z + (PP + 7~ p™ — Wm)f F(dh)dd},
0

yr—zp  pyr—di = T
+ (™ 1™ 4 b~ o) fo fo F(@m)adpdr(ds) + / / PR )ddE dF(db)
yr—er

where p5 and u are the mean levels of the BC and the LM demand at period 7. Unfortunately,
the function in the minimization part is neither convex nor strictly quasiconvex.(See Appendix I)

Even in the uncapacitated case, we are not able to find an analytical solution for H}(1).
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Inability to find an analytical solution to a dynamic programming problem is quite a common
issue. In most cases a numerical solution is necessary. However, the computational requirements
for this are often overwhelming, and for many problems a complete solution of the problem by
DP is impossible. The reason lies in what Bellman has called the ”curse of dimensionality”, which
refers to an exponential increase of the required computation as the problem’s size increases. For
H(L) (for the capacitated case), state, control and the disturbance spaces are (R (RS, (RH)?,
respectively. In a straightforward numerical approach, these spaces are discretized. Taking d
discretization points per state axis results in a state space grid with d points. For each of these
points, the minimization must be carried out numerically, which involves comparison of d® numbers,
and to calculate these numbers, one must calculate an expected value of over the disturbance, which
is the weighted sum of d numbers. Also, calculation must be done for each of the T stages. Thus,
number of computational operations can be as much as 7d5. If T = 10 and d = 100, then we the
number of computations is 10'®, Even a computer can perform 1000 operations/sec., then finding
a numerical solution would take 317 years.

As indicated by the above discussion, in practice one often has to settle for a suboptimal control
scheme that finds a reasonable balance between convenient implementation and adequate perfor-
mance. For this problem, we propose to apply a modified Certainty Equivalent Controller (CEC)
to simplify the computational requirements, while keeping the essence of the problem.

CEC is a suboptimal control scheme that is inspired by linear-quadratic control theory. At
each stage CEC finds an optimal decision if some or all the uncertain quantities were fixed at some
"typical” values. Bertsekas (2000) [6]. In our problem uncertain quantities are the periodic demands
of the BC and the LM. " Typical” values for these random quantities would be their expected values,
g and p Wt € {1..T}, for the BC demand and the LM demand, respectively. The CEC approach
often performs well in practice and yields near optimal policies. In fact, for the linear quadratic
problems where there is no constraint on the selection of decision variables, the CEC produces the
optimal policy. However, this is not the case for our problem environment, since we have capacity
constraints on our decision variables even though we formulate a quadratic problem.

CEC only considers the expected demand information and uses a deterministic approach to a
stochastic problem. In order to minimize the error obtained from the CEC policy, we would like

to use a modified version of CEC. In this approach, in order to solve one problem with expected
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demand information, we would like to solve r problems which have demand sequences sampled
from BC’s and LM’s demand distribution, and take the average of the optimal decisions from each
sample. By this we are able to account the stochasticity of demands into the approximation scheme.

In order to find HY(I,) generate r samples of demand sequence for the horizon. The ¢ sample

would look like, {df;, d3;, ..., d7;}, and solution to the " problem would look like { (y1, 21:), (yas, Z2:), ...

By averaging over the sample size we obtain the optimal policies as 1@, 21), (T2, Ea), ooy (Try T}
These policies are applied to the formulation 1 to obtain an approximated cost-to-go function. Sim-
ilar procedure is applied to approximate the cost to go function H}(l,). However, in this case r
samples of BC and LM demand sequences are generated and solved to obtain (Gt, Tt, Z,) VE. Once
the approximate cost-to-go functions are obtained we can solve the problem 3.

In the subsequent parts, we will find the optimal CEC solutions to the two cost-to-go functions,
H{(I;) and H}(I;). In order to prevent confusion, we will denote the deterministic cost-to-go
functions as HY(7;) and H}(I,), and optimal decisions as ¢, 4, 2 ¥Vt € {1..T'} that are generated by
CEC.

4.1 Optimal CEC Policies

With CEC, our problem reduces to find an optimal policy to two deterministic problems. The first
problem is to find an optimal order up to level (§;) and optimal supply to the BC (§: — £) in a
given period {. The second problem is to find an optimal order up to level (@), optimal supply to
the BC (§; ~ %), and optimal supply to the LM (2, — 2,). Note that, in the first problem (in the

second problem), &, (2) plays a role to determine next periods beginning inventory level.

In the next sections we re-formulate the problem for the two cases. 1. Deterministic problem -

when the CM supplies to the BC only, and 2. Deterministic problem when the CM supplies to the
both BC and LM. As we mentioned above, we will use the same notation except to differentiate
from the original functions we add "to the originals. Then for each problem we will provide an exact

algorithm that finds the optimal solutions.
4.1.1 Case 1: When the CM Supplies to the BC only

In this section we will provide an exact algorithm to find an optimal solution to & (1) given that

the initial inventory level is I;. Without loss of generality, we will use expected demand values,
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instead of sampling a sequence from the BC demand distribution. Note that when the BC demand
is known for a given period, we also know the price for the unit demand. So, for a known sequence
of demand {4, 15, ...u%} we can associate a known price vector {n?, 3, ..., 7%}, Let g1, z, ;) be

the periodic cost function.

g (Lo e, y) = elys — L) — mimin{y, — @4, 48} + pPmax{ il — (g — 2), 0} + hmax{es, v, — ub}
Note that mex{z,, y; — pb} = Ii41. In order to collect the same stage terms together, let;

R h .
90 (L, x4, 30) = (5 = )l + cye — w'min{y, — e, ul} + pPmax{pd — (y; — z,), 0}
h

= (= = )l = mipy + cys + () + p")max{] ~ (3 — 2.),0}
Second equality is obtained by using the relation min{e, b} = b—max{0,b—a} The CEC cost-to-go
function AP(1;) can be written as (using the boundary condition H2 willrir) = (hfa— ) Irys)
H)(L) = i?lﬁ 9Ly vty ye) + HYyy (Tesa)
subject to Jopy = max{z, ;e —pl}, 0< 5 <y <C+ L, I <y Vte {1,2,.7)

The initial inventory level at the beginning of horizon I is exogenous and known. Although Problem
5 is a shortest path problem, continuity of the state and decision variables makes it intractable to
enumerate the optimal decisions for every possible state variable. In the subsequent parts, we will

characterize the structure of optimal decisions, and then propose our algorithm that exactly solves
Problem 5.

Proposition 4.1. At period T, optimal value, £y =0

Proof. The last stage cost-to-go function is;

ﬁg”('[T} == 1IN g%(IT,ZET, yT) -+ aHf(l)"+E(IT—i—1)

vyrer

h i N
= (5 = O)Ir = mpprp + min eyr + (wp + p"Ymax{0, 4y ~ (yr — 20)} + B (Ir4s)

0L zp Syr K CH Iy, Ir < yp

Consider only the minimization part of the second line because zr and yr have no effect on the
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first two terms of the second line.

min cyr -+ (75 + p")max{0, ub — (yr — 27)} + (h — o¢) Iry

Yt
b b
. T+ P
= min cyp -+ L
yr T 2

(1~ (r = o0)| + (s — (o - )

h—ac
5 (fﬂJT —yr + ph| + (zp +yr — M%))

b b
. h— ac
= min cyy + —=~ Ll

YT E T 2

w4+ — (h—ac
(l#l:?“(yTWW)HmT)Jr L 2( )(/J'{%_QT)

The second and third lines follow from the definition max{a, b}=1/2(]b — a| + (a + b)), and the
last line is obtained from simple algebra. Suppose Z7 and {r be the optimal solution to the above
minimization problem satisfying 0 < &y < gy < C -+ I7, and let ﬁT(IT) be the cost obtained from
6 using o, and gr.

There can be two cases regarding the BC demand pb.. 1. pb > C'+ Iy and 2. pb < C + I7.

Case 1. ,uf} > C'+Ir. Then pb + &y — gy > 0, since §r < C'+ I, and from simple algebra the cost
Hr(Ir) becomes (ha~ ¢)Ip — mlgle + el + (15 + 0°) (U — 97) + (2 + pb + b — ac)Zp. Note that
w8 + pb + h — e is strictly positive using our model assumption 1. Let E’T(IT) is the cost function
obtained from 27 = 0 and §. Then ﬂT(IT) < Hp, thus &7 > 0 cannot be optimal.

Case 2. uf < C+Ir. We also need to analyze this case in two subcases. 2.1. b < C+Ip < pb4yp
and 2.2, ph <yl + 3 < C+ Ip.

Case 2.1 exactly follows the same logic with Case 1, since ub + ¢ — g > 0.

Case 2.2: In this part, depending on the value of §r, pé + Z7 — 9 is either positive, 0, or negative.
When it is positive Case 1. applies. When it is 0, Hr(Ir) = (/o — ) Ip — whpb, + i + 0.5(zd. +
'+ h —ac)iy + 0.5(nh + p° ~ (h — ac)) (i — §r). Since, (7% +p° + A — ac) is strictly positive
Zr > 0 cannot be optimal. When pb. 4+ Zr — g1 is negative, the absolute value in 6 comes out as
— by — &7 + 7 and after simplification Hp(I7) = (hjo — ¢)lp — whyly + (h — ac) (G — pb.) + cijz.
Note that,

Hr(Ir) > (hfor— &)Ir — wppdy + (b~ ac) (4 + Fp — ) + clyshe + r)
= (hfa ~ c)Ip — mhul + cpl + (b + ¢ — ac)dp

"The inequality comes from replacing §r with pf + Zp. (Since A+c— ac > 0 and 7 > pb + &r)
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Let ﬁT(IT) be the cost function obtained from §r and &7 = 0. Then
Br(Ip) > (Bjo— &) Ip — Tl + el + (b -+ ¢ — ac)Eyp
> (h/a— c)Ip — mhpb + e + (h + ¢ — ac)iy

= (h/e— o)z ~ (7} ~ Yuf = Hr(Ir)

Thus, Zr > 0 cannot be optimal.
Corollary 4.1. At period T, optimal value, §r = maz{Ip, min{pl, C + Ir}}

Proof. Using Proposition 4.1, we insert £p = 0 into first line of Equation 6. The resulting function
is : b b b b
min oy + (s + p)masc{ b~ yr, 0} + (h ~ ac)manclyr ~ i, 0}
T
b b

. Top +
= min cyr + T2 (lyr — uy] + (0 — yr)) +

s
When pf > C' + I, above function becomes cyr + (74 + p*) (44 — yr). Since 7t + p° > ¢ from
model assumption, g7 = C + Ir is optimal. When uf. < C' + Ir, §r = max{Jr, ub} is optimal.
(There is no negative production, if the demand is less than beginning on hand inventory) Thus
g7 = max{Ir,min{ph, C + Ir}}. Then the optimal cost-to-go function H(Ip) becomes;

) (hja— ) g +pPpb — (b 4+ p* ~ NC + Ip) if pb > C + I,

Hy(Ir) = { (k) — ) Iy — (7 — c) b if Ip < pb < C + I,

(h/a+h — ac)(Ir — pb) — nhuby if ply < Ir < C+ I,

Proposition 4.2. Let j be the smallest period in {1,2,..,T} such that p < C+ I, Vi€ {j,5+
1,..,T}, then &, =0Vie {j—1,5,...T}.

Proof. Let, j = T. Then from Proposition 4.1 &7 = 0, and from Corollary 4.1 §7 = max{/r, bk,

We need to show, Zr_1 = 0. The cost to go function at period T — 1 is given by;

HY (Ir_;)= min 931 (Iror, 21, yr—1) + aHY(I7)

Yr—1.%7-3
h
bob :
= (=~ c)lpoy —mr_ypp + min eyry
(84 YT ~-3,07 3

+ (W%_1 +pb)max{0, M?r—1 - (yT—l - 33Tw1)} +(h — QC)IT - OJ(W(:?’ - c)u%

Second equality is obtained by replacing ﬁ%(h)’s value from Corollary 4.1. (WLOG with the
second case) Since the last term above is constant, it can be excluded from the minimization. Then,

minimization in the second line has the same structure as the first line of Equation 6, thus we can
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apply proposition 4.1 and find 27..; = 0. {If we had used the third case for H2(I7), after removing
the constant terms, we would have (h + ah — a®c)ly instead of (h — ac)ly, and we could still use
Proposition 4.1). In order to keep simple, from now on we will do our analysis assuming u? > I,

Let § = T'—1, then from above discussion we know that Zp_; = £ = 0 and §r = ur. Using the
fact that pb_; < C'+ Ir_y following the same logic as in Corollary 4.1, §r_y = ph_y. If we write
the cost-to-go function for 7' — 2, we see that after excluding the constant terms, the minimization
part has the same structure as the first line of Equation 6, and thus we can conclude that £, = 0.

Continuing in this fashion we can show that 2, =0, Vi € {j ~ 1,4,....,T}and §; = b Vi €
{5,5+1,..,T}

Corollary 4.2. Cost-to-go function in period § — 1 is

T
HY (L) = a )~ (nf — c)ui+
i=j
(B + 0Pl — (7 + 0 = YO+ Lot) if by > C+ Iy,
(% — o)l — (ﬂ?_1 - C)M?‘q if uﬁml SC+ Iy

Proof. From Proposition 4.2 we know that &, = 0Vi € {j ~ 1,7 +1,..,T}, and §; = 1L Vi €
{7,7+1,.,T}. Thus, I; =0Vi € {,7+1,..,T}. The first term is the cost-to-go function at period
j, H (I; = 0). Since, ﬁf(O) is constant, the minimization at period j — 1 has the same structure
as the one in the proof of Corollary 4.1. Thus, §;-1 = min{ub_,,C'+ I,_1}. Then, HY_,(I;_1) is

straightforward.

Proposition 4.3. It is never optimal to carry inventory to the next periods unless current period’s

demand is fully satisfied.

Proof.This proposition is a direct result of our 2"* model assumption. The cost of producing one
product (by cutting current period’s supply) and carrying it for i periods is, 72 +pP 4+ ¢+ Z;;B adh.
The benefit of being able to satisfy one more unit demand at ¢ periods later is (assuming capacity
is binding at ¢t +1), o’ (2, , +p°). Using the relation in our model assumption we obviously see that
cost > benefit, hence it is not optimal to cut current period’s demand and produce for the next

periods.

Corollary 4.3. If ub > C + I for any t, then §y = C + I, and £, = 0.
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Proof. #;, = 0 is a direct result of Proposition 4.3(i.e. not to cut the BC supply by z; > 0), and

¥ = C' 4+ I; is a result of cost minimization in period ¢.

Proposition 4.4. Suppose at current period pb < C + I, and py; > C + Iy for some i €

1,2,..,T — t}. If total cost (sum of costs from t to T') is reduced by carrying inventory for 4
™y

periods, then ¢+ 3 1"y alh < (b, + p¥)ot must hold.

Proof. ¢+ Z;;B o h is the cost of producing one more unit product today (without cutting supply
of the current demand) and carrying it for i periods. (wf,; + p*)at is the benefit obtained from
satisfying one more unit of product 7 periods later. If ¢ + Z;;é odh > (mi.; + p*)at then carrying
inventory for ¢ periods will not reduce the total cost at ¢.

Now, we can propose our algorithm to find the optimal CEC solutions for the CM’s BC problem,
for a given beginning inventory [;.
The BC Algorithm
Step 1: For all t, assign y; = max{l,, min{ul, C' -+ ;}} and z; = max{y, — uf, 0}.
Step 2: Find all ¢ such that pf < C+ I, and pb ;> O+ Iy, for some ¢, € {1,2,..., T —t}. If there
is no such ¢ end the algorithm, else put them in a list and go to Step 3.
Step & 1f the list is empty end the algorithm, else select the largest ¢, delete from list and go to
Step 4.
Step 4: Among the all 4;’s of ¢, select the one as if=argmax{(#},; + p®Ja —c — Zj{_fol ofh}. If
the value in argmax is positive, then increase z; (Vj € {t,...,t + 1 — 1}) by min{prs, — (Vg —
Tiyi,), O+ I~y } and increase y; (V5 € {¢,...,t +4.}) by min{psers, — (Yers, — Teas, ), C -+ I — e} If
the value in argmax is negative, then go to Step 3. Repeat step 4 until either y;, = C + I, becomes

true, or until the value in argmax becomes negative. In both cases go to step 3.

Theorem 4.4. the BC algorithm terminates after finite number of steps, and at termination values

of ¥ and x: are optimal. (i.e. Gy, &)

Proof. Algorithm ends in finite number of steps, since the size of the list can be at most T'— 1. For
each ¢ in the list, one checks at most 7" ¢t values (the values in argmax function). Once, production

capacity is reached for £, or there is no improvement in the cost by carrying inventory, then one
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never considers ¢ again. Thus, after checking all the improvements that can be made, algorithm
will end in the finite number of steps,
To prove second part of the theorem, we will first prove that if at Step 2 no t is found then Step
1 produces optimal results. If we cannot find a £ that satisfies the condition at Step 2, then either
all o > C+Lorall ud <C+ 1. Iall ud>C+ I, then Step 1 assigns y; = C + I; and 2, = 0 V¢
(Note that I; is supplied to the demand at first period, thus I, = 0 V¢ > 1), then, from Corollary
4.3, y; and z; are optimal. (i.e. §, and &) If all yuf < C + I, then Step 1 assigns y; = max{l;, u°}
and z; = y; — u2, 0. If initial inventory I; < 142 then all i = ub and z; = 0. Then using Proposition
4.2 (using j=1), 1 and 2, are optimal. If initial inventory I} > pf then no extra production is
made until all beginning inventory is used to satisfy demand. One can never reduce costs acting
otherwise, since all the demands can be satisfied from that period, and carrying would incur extra
positive holding cost. Thus, if there is no ¢ found in Step 2, algorithm ends with the optimal ¢; and
Tt

Now, suppose in Step 2, some t is found. These are the only #'s that might improve the overall
cost-to-go function by carrying inventory to the future. By selecting the largest ¢ from the list at
Step 3, we are attempting to find the optimal cost-to-go function at £. Since, there is no other
periods larger than ¢ that can produce more than their demand, the cost-to-go functions at periods
greater than t are optimal. At Step 4 one chooses (if exists) best improvement period (¢ +4,) for ¢
among the all future periods of ¢. If the function in argmax is positive for the i}, then production
at ¢ is increased by the minimum of what is needed to supply the demand at ¢ + ¢} and how much
more can be produced at . Then this amount is carried until ¢ + i, by adjusting the vy and z
levels for periods [t, ¢+t +14:]. When the capacity becomes hinding for ¢, then ¢ cannot improve the
cost-to-go function further. (Note that from Proposition 4.3, decreasing period #’s supply for p?, to
carry inventory to the next periods, would increase costs). Thus when capacity is binding H2(1;)
is optimal. When no 4, is found, then from Proposition 4.4, cost-to-go function can not be reduced
by carrying inventory. Thus it is optimal.

Going backwards, the algorithm produces the optimal cost-to-go functions for each ¢ in the list.
Thus, at termination we have the optimal cost-go-functions for each period. ff{’([ 1) is the optimal
cost of the CEC problem.
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4.1.2 Case 2: When the CM Supplies to the both BC and LM
Similar to the derivation of §2(I;) we will use following periodic cost function for the CM.,

G (T 2,20, 91) = (g ~ &) + ey — mpmin{y, ~ zy, pu} + prmax{p — (y — ), 0}
— m™min{max{y; — pf, 2} ~ 2, 4"} + " max{u" + 2 — max{y; — p, z¢}, 0}
= (g — )y — mpy = 7 b oy, - (g + pPymax{uf — (y ~ =), 0}
+ (1™ + p™)max{p® + 2 — max{y; — pf, .}, 0}
The boundary condition is Hi,,(Iry1) = (h/er — ¢)Ipyy where I,y is obtained from the recursive

formula f;41 = max{z, max{y, —p?, z:} — 1" }. Then being analogous to Problem 5, CEC cost-to-go

function;

f;rsl(ft) ﬂyﬁitn% ég(It: Zg, T, Yt ) - aﬁ1:1+1(ft+1)
subject to [y =max{z, max{y, — ul, z,} — 17"}, (7)
0 <z <y <CH+ L, Vie{l,2,.7T}
Using the similar arguments we did above for the BC problem, we will analyze the structure of’

the cost-to-go function for BC and LM problem.
Proposition 4.5. At period T, optimal value 37 = 0.

Proof. We will follow an analogous procedure as the proof of Proposition 4.1. After excluding the

constant terms, the minimization problem to find the last stage cost-to-go function can be written

as;
Wn;inz’r cyr + (w5 -+ pPYmax{ul — (yr — 2r), 0} + (7™ + p™ymax{ul + 27 — max{yr — (&, 27}, 0}
+ (h — ac)max{zr, max{yr — p, o1} — '}
g+’

= min cy +
YT, e 2

(IM%‘ +zr —yr| + (,MI% + T — ygr')> +0.5(2™ + p™ + h — ac)zp

7™ g™ A+ h— ac 1
pz M?+ZT“5(1#3’“3”371‘_yT;“*"(ZET“‘}“yT“Ug’)))“E*
7 A ™ — (h— ac 1
3 ( )(u?m §(I#§'~+mr—yr|+(m:n +y:r~u5})))

8)

Third, fourth and fifth lines are obtained from the definition of max and min functions. Let

Yr, Zr Zr be the optimal solution to the minimization problem 8 satisfying 0 < Zp < 2y < §r <
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C + Ir, and HL(I7) is the cost obtained from this solution. As in Proposition 4.1 we will analyze
HL(Ip) in two cases; 1. pb + pf > C+ Iy and 2. ph + pyf < C+ Ip

Case 1 p + u > C + Ir. Then, depending on the value of &r and §ir the outer absolute value
in the fourth line simplifies to either |uf + Zr — &7} (if, 97 < g+ 2r) or, WP + Zp + pb — 97| (if,

gp > b+ Zp). In the first case;
P+ Ep—Ep > W+ Fr+ph— 9 > C 4+ Ip+ 2 —9r > 0

The first, inequality is obtained from using g7 < pd + 27, second equality is obtained using the
fact that pb + u® > C + Ir and the last inequality is obtained using Zr > 0 and jr < C' + Ir.
Thus in either case the function in the outer absolute value {on the fourth line} is positive. Since
™+ p™ - b~ ac > 0 (from our first model assumption) Zr > 0 cannot be optimal.

Case 2 pb + uft < C + Iy. From the Case 1 discussion, it is sufficient to analyze the sign of
{4 Zr + 1 — g Depending on the value of §ir, uf + Zr -+ . — fir can be positive, 0, or negative.
When it is positive Case 1 applies. When it is 0, ff%(ft) becomes cfir + 0.5(a™ +p™ + h — ac)ir +
0.5(n™ + p™ — h + ) + pb ~ §r). Since (x™ + p™ + h — ac) > 0 Zr > 0 can not be optimal.
When p + 7 + 1 — § is negative, then Hk(Ir) becomes, cir + (h — ac)(fr — 1 — p&). Since

h+c—ac> 0 we can use §r > b + pf + 3 to have;
Hi(Ip) > c(py + 1) + (h+c— ac)ir
Thus, Zr > 0 cannot be optimal.

Corollary 4.5. At T, §r =maz{Ir,min{ub + u2,C + Ir}}, and for pb + uff > Iy

5 maz{fr — 14,0} if, 7h +pb > 7™ 4 p™

T . . .
min{ pig, gr} if, iy +pb <A™ 4P

Jor pb + p < Ip, Br = fir — pf-
Proof. Due to the similarity with Corollary 4.1, when pb + ut < Iy, §r = Ir and &r = 7 — .
For the other cases, we will analyze the cost-to-go function (with Zr = 0), in four categories:
1. pb > C o Ip and pf > C + Iy
2. uh < C+ Ipand pf > C+ Ip
3. uh > C+ Ipand yf < C+Ip
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do b+ oy < O+ Ip
Case 1 ub > C'+ Iy and pf > C + I

min cyr + (rb, + p"Ymax{ s + 1 — yr, 0} + (7™ + p™)max{puF — max{yr — uy, 27}, 0}
(h — ac)max{0, max{yr — u7, or} — 47’}

= min cyp + (75 + DY + zp — yr) + (77 4+ ™) (w — 1)

yreT

=+ ")y + (o + P + min eyr — (g + ' )yr + (77 + P = 7F —p")ar

Third line is obtained by the fact that ub + zp — yp > 0 (since pb > C + Iy > yr and 27 > 0),
max{yr — g, 27} = zp (since yr — pb < 0) leading to max{uf — zr,0} = puf — zr (since
R > C+ Ip 2 yp > xr). The h — oac term becomes 0, since z7 — p7t < 0.

For the minimization problem in the last line, since 75 + p* > ¢, the minimization leads to §r =
C+ Ip, and if b+ p¥ > 7™ — p™, &1 =0, else &y = r = C + Ir.

Case 2 pb < C+ Iy and pt > C + I

min cyr + (1% + pP)max{uh + or — yr, 0} + (=™ + p™max{pF — max{yr - p, 2r},0}

Yr.&r

(h — acymax{0, max{yr — b, or} — uF}

= min cyr + (mb + p")max{ph + 27 — yr, 0} + (a7 + p™) (uF — min{uf, max{yr — pf, z7}})
(h — ac)(max{yr — pf, o7} — min{pf, max{yr — p7, or}})

=(mg + p™ ) + yr;f}lw% cyr — (7™ 4 p™Ymax{yr — pb, 20} + (75 + p"ymax{uy + zr — yr, 0}

= min cyr — (1" + p™)max{yr — pip, or} = (77 + p)min{yr — g, o0} + (v + P
Third line is obtained by using the relation max{0,b — a} = b-min{a,b} with b = u7* and
a =max{yr — pb, 7} for the (™ + p™) term, and with a = uF and b =max{yr — py, 2} for
the (h— ac) term. (h— ac) term is canceled since min{gf, max{yr — pf, 27 }y=max{yr — pf, zr}.
Last relation is obtained (after omitting the constant term) by using the relation max{0,b —a} =
b—min{a, b} with b = z7 and @ = yr — ph. If 7™ +p™ > 7} + p* then last relation is minimized at,

G = C + Iy and §p = C + Ir, else the solution is §r = C + Ir and 2y € [0, §p — 1]
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Case 3 y4 > C + Ip and pf < C 4+ I

ﬁ?ﬂ cyr + (mh + pPymax{yh. + 27 — yr, 0} + (7™ + p™)max{pF — max{yr — pp, 77}, 0}

(h — ac)max{0, max{yr — b, zp} — U}
= min eyr + (th + ') (i + @7 = yr) + (77 +p"max{pg — or, 0} + (b~ ac)max{0, a7 — ur}
= (g + p")y + (AF + ™)+ min oyr — (77 +0")yr + (7 + 9+ h—acjer

— (7™ + p™ + h — ac)min{zy, T}

Above function is minimized at §r = C 4+ Iy and &p = 0, (if 72 +2° > 7™ + p™) or &7 = uf (if
7h +pb < 7™+ p™).

Case 4 yb + u® < C + Ir. This part is straightforward. g = pf + pf and 27 € (0,97 — ph].
There is no need to produce more, since cost of carrying unit inventory h +¢— ac > 0.

If we combine all the solutions together we obtain;

Proposition 4.6. Let j be the smallest period in {1,2,..,T} such that p! + p < C+ I Vi €
(541, T}, then 5 =0Vie {j—1,5,...T}

Proof. The proof has the same analogy as the proof of Proposition 4.2. At the end of the proof
we have the result 9; = b+ u* Vi € {4, +1,..,TH, &y = §; —pd = p" Vi€ {5, + 1,..,T} and
=%—-ult=0vie{j—1,4, ..,T} are optimal.

Differing from the BC Problem, in this case when the capacity is binding at a given period, it
might be still optimal to carry inventory and increase the supply of the future period demands.
These are the cross benefit cases. i.e. Cutting BC's (or LM’s) demand today to satisfy more LM

(or BC) demand tomorrow. We will show this in the following Proposition.

Proposition 4.7. Let (4,5), (j > i) be a pair of two periods satisfying pl +uit > O+ I, ,Uf;- + gt >
C +1I;. Assume an allocation satisfying y; ~ 3 < pb, i — 2 < i and y; — 25 < pb, @5 — 25 < pi*.
Then a better allocation can be made if (7% + p°) + Y35t abh < (2™ + p™)ad ™ or (7™ +p™) +

vt akh < (mh 4+ p¥)ad ™t holds.

Proof. We will only show the case, cutting BC supply at period ¢ to increase LM supply at period
§ improves cost. The other way follows exactly the same logic. The unit cost of cutting BC demand

is 7 -+ pb, and cost carrying unit inventory for i — j periods is 34 | &®h. Note that production
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cost s not considered since, no extra production is made at ¢. Current benefit of supplying one
more unit to the LM at period j is (7™ + p™)a?~%. If the relation in the proposition holds, then
one can reduce y; — z; (without affecting the LM supply at period 4) and increase z; — z; (without
affecting the BC supply at period j) and reduce the overall cost.

Before proposing our algorithm we need to show a similar argument as in Proposition 4.4.
However, the logic of the proof is exactly same, thus without showing it here, we will say that
argument in Proposition 4.4 holds for LM and BC problem, too.

Below we propose our algorithm to solve CM’s BC and LM Problem. To improve the initial
solution, we will not only check the periods where there is available production capacity, but also
the periods where the capacity is binding. For the periods in which the capacity is binding, by
cutting low priced customer’s demand and reserving inventory, the CM might be better off when
she satisfies a higher priced customer’s demand in the future. We call this action Switching. After,

switching the algorithm goes as the BC algorithm, by checking the periods where there is available
production capacity.

The BC and LM Algorithm
Step 1 For all t, assign y; = max{l,, min{p? + pu, C + L;}}. If pb + p7* < I, assign

. = max{y; — p2,0} if, i +p* > 7™+ p™
‘ min{ gf", ys } if, 7?4+ pb < ™ 4 p™
else, assign 7, = y — p?. For all £, assign z = max{z; — u*, 0}
Step 2 Switching. Find all ¢ such that pl+ul > C+IL and pl,; > Yers, — Tri, OF Wls, > Leas, — ey
for some 4, € {1,2,..T —t}. If no such ¢ is found go to Step 3, else put them in a list and go to Step
2.1.

Step 2.1 1f the list is empty go to Step 3, else pick the largest ¢, delete from the list. While,
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Ye — Ty > 0 or 2 — 2 > 0 find £} according to;

iy =argmax{ (7™ + p™)at - (72 + p* + iajh)} Vie {1,2,..T -t}
=0
subject to 1 — z, > 0 and py; — (;M — Zpi) > 0
it =argmax{(nl,, +p")at — (7™ + p™ + ioﬁh}} vie {1,2,.T—t}
=0
subject to z; — % > 0 and ,ufﬂ - (yt; - Tpyi) > 0

iF—1 b1
iy =argmax{max{(z™ +p™)a¥ — (n} +p* + I oh), (n} L+ ot — (1™ + p™ 4 > adn)})

If the function in the last argmax is negative or no ¢} is found, then go to the beginning of Step
2.1, else do the following; If the function in the last argmax is maximized by the first component,
then increase y;, (Vj € {t+1,..,t+4}), z; (Vj € {t,.,t+i}) and z; (V] € ¢, t+4—1)
by min{y; — =, uft;, ~ (Te4s, — 2e44,) . If function in the last argmax is maximized by the second
component, then increase y;, (Vj € {t+1,...,t+i}), z; (Vi€ {t+1,..,t+4,~1}) and z; (V] €
£y b dg — 1) by min{me — 20, u8 . — (pin = Tewis) }

Step 3 Find all £’s such that pf+u* < C+1 and pb,, +u, > C+1;, for some ¢, € {1,2,...,T—t}.
If there is no such ¢, end the algorithm, else put them in a list and go to Step 4.

Step 4 If the list is empty, end the algorithm else, pick the largest ¢, delete from the list and find

iy as follows
i1
it =argmax{a’(nt,; + ") — ¢ — Zajh} vie{1,2,..,T—t}
=0
subject to p.; — (Ysei — Teps) > 0
-1
i =argmax{a’(n]l, +p™) — ¢ — Za’h} Vie{l,2,..,T —t}
=0
subject to gy, ~ (Tis — 2ia4) > 0

-1 =1
i =argmax{max{ai?(ﬁf+ig +p') —c— Z o’h, o (mihip +P™) —c~ Z o’h}}
=0 =0

If the function in the last argmax is negative or no ¢} is found, then go to beginning of Step
4, else do the following; If the function in the last argmax is maximized by the first component,

then increase y;, (Vi € {t,...t +4}), z; (V7 € {t,.,t + 4 — 1}) and 2; (V5 € #,..., b+ — 1)
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by min{ul, ;. ~ (Yers, — Tra), C + It — e}, If the function in the last argmax is maximized by
the second component, then increase y;, (Vi € {t,...t +4,}), z; (Vi € {t,..,t+14; — 1}) and
zj (Vj €t t+ip = 1) by min{pf};, — (Tres, — 204,), C + I, =y}

Theorem 4.6. The BC and LM algorithm terminates after finite number of steps, and at termi-

nation values of yi, zs and 2z are optimal. (i.e. G, ¢, %)

Proof. In Step 2, the size of the list can be at most T — 1. For every t in the list, the algorithm
searches for a befter allocation than the one assigned in Step 1. For a given £, the result of a search
can be either negative (when no 4; is found or cost cannot be improved for i), or positive (when
i; improves overall cost). In the first case, t is removed and is not considered in this list, again. In
the second case, a better allocation is made (by reducing current allocation of one customer and
increasing future allocation of the other customer). After the allocation, either current allocation
of the customer becomes 0, or future allocation of the customer is at its demanded quantity. In the
latter case, algorithm searches for the next best 4. Again, if the search for iy is positive, a better
allocation is made. At some point, algorithm will stop the search for next best 1y, since current
allocation for the customer will hit 0, and in this case other #’s in the list will be considered. After
switching step is done, the algorithm will search for cost improvements by producing more, and this
step proceeds exactly same as the improvement step in the BC Algorithm. Hence, the algorithm
will end after finite number of steps.

"To prove the optimality of the allocation, first we will prove that, if no ¢ is found in Step 8, then
the allocation is optimal. If the algorithm cannot find any t at Step 3, then either e+ < CH- I W,
or wl + > C 4+ I, Vt. In the first case, then Step 1 assigns y, = max{ly, u} + ™}, 2, = y, — I
and z; = max{z, — uf*,0}. If initial inventory Iy < 48 + u?, then y; = pb + ul, 7, =y, — ph =
and z; = 0. Then using Proposition 4.6, (using j=1), 4, 2; and z are optimal. If initial inventory
I > pf + 7, then algorithm imposes no production until all beginning inventory is used to satisfy
demand. One can never reduce costs acting otherwise, since all the demands can be satisfed from
that period, and carrying would incur extra positive holding cost. Thus, the allocation at Step
1 is optimal, when p? + 4* < C + I, ¥t. The algorithm does not find any t at Step 2, since all
the demands have been satisfied. In the second case, (P + p® > C -+ 1, V) Step I assigns all
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1 = C 4+ I, z = 0, and selects z; depending on the profitability of the customers. However, this
allocation may or may not be optimal. Step 2, searches for a better allocation. In this case, all the
periods (except the terminal period) will be in the list. Because, the total supply is less than the
total demand at each period. By going backwards, Step 2 checks whether cost can be decreased by
cutting the supply of one customer at that period and increasing the supply of the other customer
for all the future periods. If no such period is found then the current allocation is optimal for that
period. If a period is found, then a better allocation is made. This procedure repeats itself until no
improvement can be found for that period. Since, every period is checked, Step £ produces optimal
cost-to-go functions for each period. When Step 2 ends no ¢ is found at Step 3, since Step 2 does
not reduce production level of a given period. (Still each period use its capacity in full).

For all the other demand cases, every step of the algorithm will be executed. After the allocation
at the initial step, the algorithm will search for switching. Step 2 checks only the periods that use
its capacity in full. Allocation after switching is at least as good as the allocation made in Step 1.
Since, the periods that have available capacity haven’t been checked, the algorithm performs this

at Step 3. Hence, all of the periods are checked by the algorithm, starting from the largest periods.

5 Future Agenda

In the previous section, we proposed two algorithms to solve the CEC approximation to problems
1 and 2. (Namely problems 5 and 7, respectively). Solutions to the CEC problems provide us
the optimal allocation scheme in the deterministic environment. We aim to approximate the true
cost of the original problems 5 and 7, by simply inserting these solutions to the original cost-to-
go functions. However the strategic market entry decision depends simultaneously on the cost of
the CM serving BC (the costs before the market entry) and the cost of CM serving BC and LM
(the costs after the market entry). Currently, both algorithms proceed independently. In order
to approximate the cost of our main problem 3, we need to combine the two algorithms. After
combining the two algorithms, we will be able to approximate the cost-to-go function V;(I,). Let
Vt(lt) be the approximation of the cost-to-go function Vi(Z;). Then, by evaluating Vi(I,) for all
possible values of market entry points, we can select the one that gives us the minimum YA/l(I 1)

This means we need to make T' — k + 2 evaluations. {Remember that k is the lag between the BC

32



and the LM demands) One evaluation for each period in {k,k+1, ..., 7'} plus one evaluation for no
market entry decision.

In the previous section, we also discussed the quality of the CEC approximation and proposed
a modification to reflect the stochastic environment of the original problem. Once, we are able
to combine the two algorithms, we can generate numerous samples from the BC and LM demand
distributions, and solve the CEC problems for each sample. Then, averaging these sample solutions
to hopefully get a better cost approximation for Vi(I,).

After having developed the theoretical background described above, our aim is to generalize the
theory for a wide range of settings, and combine them into a strategic planning tool. We plan to

direct our future research into following areas;

1. The characterization of the decision patterns under different demand types.
A significant factor of the above decision framework is the modeling of market demand. We
will consider short life-cycle products follows as life-cycle growth model, which exhibits a
demand life-cycle of growth, maturity, and decline. These types of models are suitable to
describe high technology products such as mobile phones and micro chips. Meade and Islam
(1998) document 29 different growth curves found in the literature, which provide a rich set of
demand modeling options. By investigating the optimal decisions under these demand type
setting, we hope to get some insight from the aspect of CM, about how she should react to

the market environment,

2. The impact of the contracting type between the CM and the BC on the CM’s decigions.
Most of literatures study the outsourcing problem from the aspect of brand carrying customer.
In this research, we are taking the view of CM to study the influence of outsourcing. As we
have seen in the literature, different contracts affect the decisions a lot. Thus, it is quite
useful to study the impact of different contracting types on the CM’s decisions under our
framework. A wide variety of contract types could be investigated, for instance, minimum
quantity, quantity flexible, buy-back, etc. We might even consider the CM has the option to

outsource part of her production to a smaller contractor.
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