Orbital Branching

James Ostrowski
Jeffrey Linderoth
Lehigh University

Report No. 06T-007

Orbital Branching

JAMES OSTROWSKI, JEFF LINDEROTH

Department of Industrial and Systems Engineering,
Lehigh University '
200 W. Packer Ave. Bethlehem, PA 18015, UUSA

jao204@1lehigh.edu - jti3@lehigh.edu

FABRIZIO ROSSI, STEFANO SMRIGLIO

Dipartimento di Informatica,
Universita di L' Aquila
Via Vetoio I-67010 Coppito (AQ), Italy

rossi@di.univag.it + smriglio@di.univag.it

November 15, 2006

Abstract

We introduce orbital branching, an effective branching method for integer programs containing a
great deal of symmetry. The method is based on computing groups of variables that are equivalent
with respect to the symmetry remaining in the problem after branching, including symmetry which s
not present at the root node. These groups of equivalent variables, called orbits, are used to create a
valid partitioning of the feasible region which significantly reduces the effects of symmetry while still
allowing a flexible branching rule. We also show how to exploit the symmetries present in the problem
to fix variables throughout the branch-and-bound tree.

Orbital branching can easily be incorporated into standard IP software. Through an empirical study
on a test suite of symimetric integer programs, the question as to the most effective orbit on which to
base the branching decision is investigated. The resulting method is shown to be quite competitive
with a similar method known as isomorphism pruning and significantly better than a state-of-the-art
commercial solver on symmetric integer programs.

Keywords: Integer programming; branch-and-bound algorithms.

1 Introduction

In this work, we focus on packing and covering integer programs (IP)s of the form

. én{léic}n{eTm | Az < e} and (PIP)
w&g’%n{e‘f’x | Az > e}, (CIP)

where A € {0,1}™%", and e is a vector of ones of conformal size. Our particular focus is on cases when
(CIP) or (PIP) is highly-symmetric, a concept we formalize as follows. Let II” be the set of all permutations
of I* = {1,...,n}. Given a permutation = € II" and a permutation ¢ € II"™, let A7,) be the matrix
obtained by permuting the columns of A by m and the rows of A by o, ie. A(r,0) = P APy, where Py
and P, are permutation matrices. The symmetry group G of the matrix A is the set of permutations

G(A) % (r € II* | 3¢ € TT™ such that A(x,0) = A}

So, for any 7 € G(A), if % is feasible for (CIP) or (PIP) (or the LP relaxations of (CIP) or (PIP)), then if
the permutation 7 is applied to the coordinates of &, the resulting solution, which we denote as w(£), is also
feasible. Moreover, the solutions £ and = (&) have equal objective value.

This equivalence of solutions induced by symmetry is a major factor that might confound the branch-
and-bound process. For example, suppose £ is a (non-integral) solution to an LP relaxation of PIP or CIP,
with 0 < &; < 1, and the decision is made to branch down on variable z; by fixing z; = 0. If 37 € G(A)
such that [m(£)]; = 0, then 7(%) is a feasible solution for this child node, and eTs = el (n(%)), so the
relaxation value for the child node will not change. If the cardinality of G(A) is large, then there are many
permutations through which the parent solution of the relaxation can be preserved in this manner, resulting
in many branches that do not change the bound on the parent node. Symmetry has long been recognized
as a curse for solving integer programs, and auxiliary (often extended) formulations are often sought that
reduce the amount of symmetry in an IP formulation [1, 7, 14]. In addition, there is a body of research on
valid inequalities that can help exclude symmetric feasible solutions {9, 17, 18].

A different idea, isomorphism pruning, introduced by Margot [10, 11] in the context of IP and dating
back to Bazaraa and Kirca [2], examines the symmetry group of the problem in order to prune isomorphic
subproblems of the enumeration tree. The branching method introduced in this work, orbital branching,
also uses the symmetry group of the problem. However, instead of examining this group to ensure that an
isomorphic node will never be evaluated, the group is used to guide the branching decision. At the cost of
potentially evaluating isomorphic subproblems, orbital branching allows for considerably more flexibility
in the choice of branching entity than isomorphism pruning. Furthermore, orbital branching can be easily
incorporated within a standard MIP solver and even exploit problem symmetry that may only be locally
present at a nodal subproblem.

The remainder of the paper is divided into five sections. In §2 we give some mathematical preliminaries.
Orbital branching is introduced and formalized in §3, and a mechanism to fix additional variables based on
symmetry considerations called orbital fixing is described there. A more complete comparison to isomor-
phism pruning is also presented in §3. Implementation details are provided in §4, and computational results
are presented in §5. Conclusions about the impact of orbital branching and future research directions are
given in §6.

2 Preliminaries

Orbital branching is based on elementary concepts from algebra that we recall in this section to make the
presentation self-contained. Some definitions are made in terms of an arbitrary permutation group I', but for
concreteness, the reader may consider the group I' to be the symmetry group of the matrix G{ A)}.

Foraset § C I, the orbit of S with respect to T is the set of all subsets of ™ to which S can be sent
by permutations in I, i.e.,

orb(S, 1) def

{8 C I" | Ir € " such that §' = w(8)}.

In the orbital branching we are concerned with the orbits of sets of cardinality one, corresponding to decision
variables z; in PIP or CIP. By definition, if 7 € orb({k},T), then k € orb{{j},I'), i.e. the variable =; and
2y, share the same orbit. Therefore, the union of the orbits

o) = | Jorb({3},1)

=1

forms a partition of I = {1,2,...,n}, which we refer to as the orbital partition of I", or simply the orbits
of T'. The orbits encode which variables are “equivalent” with respect to the symmetry T
The stabilizer of aset S C I™ in I is the set of permutations in I' that send S to itself.

stab($S,T) = {x € I'| =(S) = §}.

The stabilizer of S is a subgroup of I,

We characterize a node ¢ = (FY, F§) of the branch-and-bound enumeration tree by the indices of
variables fixed to one F{ and fixed to zero F§ at node a. The set of free variables at node a is denoted by
Ne = I™\ F§\ F. At node q, the set of feasible solutions to (CIP) or (PIP) is denoted by F(a), and the
value of an optimal solution for the subtree rooted at node a is denoted is z*(a).

3 Orbital Branching

In this section we introduce orbital branching, an infuitive way to exploit the orbits of the symmeiry group
G{A) when making branching decisions. The classical 0-1 branching variable dichotomy does not take
advantage of the problem information encoded in the symmetry group, To take advantage of this information
in orbital branching, instead of branching on individual variables, orbits of variables are used to create the
branching dichotomy. Informally, suppose that at the current subproblem there is an orbit of cardinality &
in the orbital partitioning. In orbital branching, the current subproblem is divided into k& + 1 subproblems:
the first & subproblems are obtained by fixing to one in turn each variable in the orbit while the (k + 1)t
subproblem is obtained by fixing all variables in the orbit to zero. For any pair of variables z; and 2; in
the same orbit, the subproblem created when z; is fixed to one is essentially equivalent to the subproblem
created when 2; is fixed to one. Therefore, we can keep in the subproblem list only one representative
subproblem, pruning the (k& — 1) equivalent subproblems. This is formalized below.

Let A(FT, F§) be the matrix obtained by removing from the constraint matrix A all columns in Fg§ U FY
and either all rows intersecting columns in F¢ (CIP case) or all columns nonorthogonal to columns in FY
(PIP case). Note that if z € F(a) and x is feasible with respect to the matrix A, then z is feasible with
respect to the matrix A{F{, F§).

Let O = {i1,%2,...,¢10;} € N7 be anorbit of the symmetry group G(A(F{, F§)). Given a subproblem
a, the disjunction
Ty =1VEy =1V 2 =1V 2;=0 (1)
€0
induces a feasible partition of the search space. In what follows, we show that for any two variables z;, 2 €
O, the two children a{7) and a(k) of a, obtained by fixing respectively z; and . to 1 have the same optimal
solution value. As a consequence, disjunction (1) can be replaced by the binary disjunction

zp=1V Y 2 =0, 2)
{=t0]

where h is a variable in O. Formally, we have Theorem 1.

Theorem 1 Let O be an orbit in the orbital partitioning O(G(A(F§¢, F§))), and let j,k be two variable
indices in O, If alj) = (Fe U {5}, F$) and a(k) = (F{ U {k}, F§) are the child nodes created when
branching on variables x; and zy, then z*(a(j)) = 2*(a(k))-

Proof. Let z* be an optimal solution of a(j) with value z*{a(j)). Obviously z* is also feasible for a.
Since 7 and k are in the same orbit O, there exists a permutation m € G(A(FY, F§'}) such that 7§} = k.

By definition, 7(z") is a feasible solution of a with value z*(a(j)) such that zy = 1. Therefore, w(x*) is
feasible for a(k), and 2*(a(k)) = 2" (a(7)). i

The basic orbital branching method is formalized in Algorithm 1.

Algorithm 1 Orbital Branching

Input: Subproblem a = {F{, F§), non-integral solution &.
Output: Two child subproblems & and c.

Step 1. Compute orbital partition O(G(A(FY, F))) = {01,009, . .. ,Op}.
Step 2. Selectorbit Ojs, 5* € {1,2,...,p}.
Step3. Choose arbitrary k € O;+. Return subproblems b = (Ff U {k}, F§}) and ¢ = (F}, Fg' U Oj).

The consequence of Theorem 1 is that the search space is limited, but orbital branching has also the relevant
effect of reducing the likelihood of encountering symmetric solutions. Namely, no solutions in the left
and right child nodes of the current node will be symmetric with respect to the local symmetry. This is
formalized in Theorem 2.

Theorem 2 Let b and ¢ be any two subproblems in the enumeration tree. Let o be the first common ancestor
of band c. There Az € F(b) such that 3r € G(A(F, F{)) with m(z) € F(c).

Proof. Suppose not, i.c., that there 3z € F(b) and a permutation = € G(A(Fg, FT)) such that 7(z) €
Fle). Let O; € O(G(A(FE, F§))) be the orbit chosen to branch on at subproblem a. W.lo.g. we can
assume z = 1 for some k € O;. We have that z;, = [w(m)]ﬂ(k) = 1, but pi(k) € O;. Therefore, by the
orbital branching dichotomy, = (k) € F§, so n{z) ¢ F{c). O

Note that by using the matrix A(F, Fy), orbital branching attempts to use symmetry found at all nodes in
the enumeration tree, not just the symmetry found at the root node. This makes it possible to prune nodes
whose corresponding solutions are not symmetric in the original IP.

3.1 Orbital Fixing

In orbital branching, all variables fixed to zero and one are removed from the constraint matrix at every node
in the enumeration tree. As Theorem 2 demonstrates, using orbital branching in this way ensures that any
two nodes are not equivalent with respect to the symmetry found at their first common ancestor. It is possible
however, for two child subproblems to be equivalent with respect to a symmetry group found elsewhere in
the tree. In order to combat this type of symmetry we perform orbital fixing, which works as follows.

Consider the symmetry group G(A(FF, 1)) at node a. If there exists an orbit O in the orbital partition
O(G(A(F£,1))) that contains variables such that O N F§ 5 @ and O N N # , then all variables in O
can be fixed to zero. In the following theorem, we show that such variable setting (orbital fixing) excludes
feasible solutions only if there exists a feasible solution of the same objective value to the left of the current
node in the branch and bound tree. (We assume that the enumeration tree is oriented so that the branch with
an additional variable fixed at one is the left branch).

To aid in our development,we introduce the concept of a focus node. For z € F(a), we call node b(a, z)
a focus node of @ with respect to x if 3y € F(b) such that Tz = e’y and b is found to the left of g in the
tree,

Theorem 3 Let {01, 02, ... 0y} be an orbital partitioning of G(A(F{, D)} at node o, and let the set

g def {je N*|3k e F§ and (jN k) € Ogfor some £ € {1,2,...q}}

be the set of free variables that share an orbit with a variable fixed to zero at a. If x € F(a) with z; = 1 for
some i € S, then there exists a focus node for o with respect to x.

Proof: Suppose that o is the first node in any enumeration tree where .S is nonempty. Then, there exist
j € F¢ andi € S such that ¢ € orb(j, G(A(FF,B))), i.e., there exists a 7 € G(A(F},0)) with ©(¢) = J.
W.Lo.g., suppose that 7 is any of the first such variables fixed to zero on the path from the root node to a
and Jet ¢ be the subproblem in which such a fixing occurs. Let p(c) be the parent node of ¢. By our choice
of 7 as the first fixed variable, {m(i)|i € Fg — Ff} 0 FF® = §, Therefore, m(2) is not feasible in a since
it does not satisfy the bounds, but is feasible in p(c) and has the same objective value of . Since j was
fixed by orbital branching then the left child of p(c) has z; = 1 for some h € orb(j, GA(FF®, R,
Let 7 € orb(j, G(A(FY) E (©) 24 ©)) have #'(4) = h. Then «’(x(z)) is feasible in the left node with the
same objective value of 2. The left child node of p(c) is then the focus node of a with respect to .

If o is not a first node in the enumeration tree one can apply the same argument to the first ancestor b of
a such that § # . The focus node of ¢ = (b, z) is then a focus node of {(a, x).

O

An immediate consequence of Theorem 3 is that for all ¢ € F§ and for all § € orb(¢, G{A(FT,0))) one
can set z; = 0. We update orbital branching to include orbital fixing in Algorithm 2.

In orbital fixing, the set S of additional variables set to zero is a function of Fi§. Variables may appear
in F§ due to a branching decision or due to traditional methods for variable fixing in integer programming,
e.g. reduced cost fixing or implication-based fixing. Orbital fixing, then, gives a way to enkance traditional
variable-fixing methods by including the symmetry present at a node of the branch and bound tree,

3.2 Comparison to Isomorphism Pruning

The fundamental idea behind isomorphism pruning is that for each node a = (F}, Fg), the orbits orb(Ff, G(A))
of the “equivalent” sets of variables to F¢ are computed. If there is a node b = (F?, F?) elsewhere in the
enumeration tree such that F? € orb(Fg,G(A)), then the node a need not be evaluated—the node a is
pruned by isomorphism. A very distinct and powerful advantage of this method is that no nodes whose

4

Algorithm 2 Orbital Branching with Orbital Fixing

Input: Subproblem a = (Ff, F§) (with free variables N = I" \ F#\ F§), fractional solution &.
Output: Two child nodes b and c.

e rieNe Tk e

Step 1. Compute orbital partition O(G(A(FY, M) = {(51,@2, e ,Oq}. Let S
Fg and (j N k) € O, for some £ € {1,2,.. g}

Step 2. Compute orbital partition O(G(A(FY, F§))) = {01,04,...,0p}.

Step3. Select orbit Oy, j* € {1,2,...,p}.

Step4. Choose arbitrary k € Oj+. Return child subproblems b = (Feu{k}, F§ U S)yand ¢ =
(F¢, F& U Op U S).

sets of fixed variables are isomorphic will be evaluated. One disadvantage of this method is that computing
orb(F¢, G(A)) can require computational effort on the order of O(n|F¢{!). A more significant disadvantage
of isomorphism pruning is that orb(Fy, G(A)) may contain many equivalent subsets to F?, and the entire
enumeration tree must be compared against this list to ensure that a is not isomorphic to any other node & In
a series of papers, Margot offers a way around this second disadvantage [10, 11]. The key idea introduced
is to declare one unique representative among the members of orb(£7', G (A)), and if F} is not the unique
representative, then the node a may safely be pruned. The advantage of this extension is that it is trivial to
check whether or not node o may be pruned once the orbits orb(Fy, G (A)) are computed. The disadvantage
of the method is ensuring that the unique representative occurs somewhere in the branch and bound tree
requires a relatively inflexible branching rule. Namely, all child nodes at a fixed depth must be created by
branching on the same variable.

Orbital branching does not suffer from this inflexibility. By not focusing on proning all isomorphic
nodes, but rather eliminating the symmetry through branching, orbital branching offers a great deal more
flexibility in the choice of branching entity. Another advantage of orbital branching is that by using the
symmetry group G(A(Fg, F§)), symmetry introduced as a result of the branching process is also exploited.

Both methods allow for the use of traditional integer programming methodologies such as cutting planes
and fixing variables based on considerations such as reduced costs and implications derived from prepro-
cessing. In isomorphism pruning, for a variable fixing to be valid, it must be that ¢/l non-isomorphic optimal
solutions are in agreement with the fixing, Orbital branching does not suffer from this limitation. A power-
fal idea in both methods is to combine the variable fixing with symmetry considerations in order to fix many
additional variables. This idea is called orbit setting in [11] and orbital fixing in this work (see §3.1).

4 Implementation

The orbital branching method has been implemented using the user application functions of MINTO v3.1
[16]. The branching dichotomy of Algorithm 1 or 2 is implemented in the appl_divide () method, and
reduced cost fixing is implemented in appl.bounds () . The entire implementation, including code for
all the branching rules subsequently introduced in §4.2 consists of slightly over 1000 lines of code. All
advanced IP features of MINTO were used, including clique inequalities, which can be useful for instances
of (PIP).

4.1 Computing G{-)

Computation of the symmetry groups required for orbital branching and orbital fixing is done by computing
the automorphism group of a related graph. Recall that the automorphism group Aut(G(V, E)) of a graph

G = (V, E), is the set of permutations of V' that leave the incidence matrix of G unchanged, i.e.
A(G(V, E)) = {r e M| (i, 5) € B & (n(@), v(5)) € E}.

The matrix A whose symmetry group is to be computed is transformed into a bipartite graph G(A) =
(N, M, E) where vertex set N = {1,2,...,n} represents the variables, and vertex set M = {1,2,...,m}
represents the constraints. The edge (¢,7) € E if and only if a;; = 1. Under this construction, feasible
solutions to (PIP) are subsets of the vertices S C N such that each vertex ¢ € M is adjacent to af most
one vertex 5 € S. In this case, we say that § packs M. Feasible solutions to (CIP) correspond to subsets
of vertices § C N such that each vertex i € M is adjacent to af least one vertex j € S, or § covers M.
Since applying members of the automorphism group preserves the incidence structure of a graph, if S packs
(covers) M, and 7 € stab(M, Aut{G(A))), then there exists a o where 7{(S) packs (covers) o (M) = M.
This implies that if = € stab(M, Aut(G(A))), then the restriction of = to N must be an element of G(A),
i.e. using the graph G(A), one can find elements of symmetry group G(A). In paticular, we compute the
orbital partition of the stabilizer of the constraint vertices A in the automorphism group of G(4), i.e.

O(stab(M, Aut(G(A))) = {01, 04, ..., Op}.

The orbits O1, s, . . ., Op in the orbital partition are such that if 7 € Mand j € N, then ¢ and § are not in
the same orbit. We can then refer to these orbits as variable orbits and constraint orbits. In orbital branching,
we are concerned only with the variable orbits.

There are several software packages that can compute the automorphism groups required to perform
orbital branching. The program nauty [13], by McKay, has been shown to be quite effective [4], and we use
nauty in our orbital branching implementation.

The complexity of computing the automorphism group of a graph is not known to be polynomial time.
However, nauty was able to compute the symmetry groups of our problems very quickly, generally faster
than solving an LP at a given node. One explanation for this phenomenon is that the running time of nauty’s
backtracking algorithm is correlated to the size of the symmetry group being computed. For example, com-
puting the automorphism group of the clique on 2000 nodes takes 85 seconds, while graphs of comparable
size with little or no symmetry require fractions of a second. The orbital branching procedure quickly re-
duces the symmetry group of the child subproblems, so explicitly recomputing the group by calling nauty is
computational very feasible. In the table of results presented in the Appendix, we state explicitly the time
required in computing automorphism groups by nauty.

4.2 Branching Rules

The orbital branching rule introduced in §3 leaves significant freedom in choosing the orbit on which to base
the partitioning. In this section, we discuss mechanisms for deciding on which orbit to branch. As input
to the branching decision, we are given a fractional solution & and orbits O1, Og, .. .0, (consisting of all
currently free variables) of the orbital partitioning O(G(A(Fy, F¢))) for the subproblem at node a. Output
of the branching decision is an index 7* of an orbit on which to base the orbital branching. We tested six
different branching rules.
Rule 1: Branch Largest: The first rule chooses to branch on the largest orbit Oy
" . _

i€ mre g 103
Rule 2: Branch Largest LP Solution: The second rule branches on the orbit O;« whose variables have the
largest total solution value in the fractional solution 2

i* € arg max _&(0;).
je&{l,..p}

6

Rule 3: Strong Branching: The third rule is a strong branching rule. For each orbit j, two tentative child
nodes are created and their bounds zj and z; are computed by solving the resulting linear programs. The
orbit 7* for which the product of the change in linear program bounds is largest is used for branching:

o T Ta .-
it e argjerg??fp}(le & —zf)(le" 2 — 27).

Note that if one of the potential child nodes in the strong branching procedure would be pruned, either by
bound or by infeasibility, then the bounds on the variables may be fixed to their values on the alternate
child node. We refer to this as strong branching fixing, and in the computational results in the Appendix,
we report the number of variables fixed in this manner. As discussed at the end of §3.1, variables fixed by
strong branching fixing may result in additional variables being fixed by orbital fixing.

Rule 4: Break Symmetry Left: This rule is similar to strong branching, but instead of fixing a variable and
computing the change in objective value bounds, we fix a variable and compute the change in the size of the
symmetry group. Specifically, for each orbit j, we compute the size of the symmetry group in the resulting
feft branch if orbit j (including variable index ¢;) was chosen for branching, and we branch on the orbit that
reduces the symmetry by as much as possible:

' e arngEQ%gp}(lQ(A(Fl U{i; 1 FENI) -

Rule 5: Keep Symmetry Left: This branching rule is the same as Rule 4, except that we branch on the
orbit for which the size of the child’s symmetry group would remain the largest:

i* e argjer{xﬁfp} (G(A(FT U {g; 1, FgND

Rule 6: Branch Max Product Left: This rule attempts to combine the fact that we would like to branch
on a large orbit at the current level and also keep a large orbit at the second level on which to base the
branching dichotomy. For each orbit Oy, Os, ..., Op, the orbits P{, P3, . .. , P{ of the symmetry group
GA(F® U {iz}, FE)) of the left child node are computed for some variable index i; € O;. We then choose
to branch on the orbit j* for which the product of the orbit size and the largest orbit of the child subproblem
is largest:

& ; Pipy Y.
i cong e (1031, o 1FED)

5 Computational Experiments

In this section, we give empirical evidence of the effectiveness of orbital branching, we investigate the im-
pact of choosing the orbit on which branching is based, and we demonstrate the positive effect of orbital
fixing. The computations are based on the instances whose characteristics are given in Table 1. The in-
stances beginning with cod are used to compute maximum cardinality binary error correcting codes [8],
the instances whose names begin with cov are covering designs [15], the instance £5 is the “football pool
problem” on five matches [6], and the instances sts are the well-known Steiner-triple systems [5]. The
cov formulations have been strengthened with a number of Schoenheim inequalities, as derived by Margot
[12]. All instances, save for £5, are available from Margot’s web site; http://wpweb? .tepper.cmu.
edu/fmargot/lpsym.html.

The computations were run on machines with

AMD Opteron processors clocked at 1.8GHz and Name | Variables
having 2GB of RAM. The COIN-OR software C1lp cod83 256
was used to solve the linear programs at nodes of cod93 512
the branch and bound tree. All code was compiled cod105 1024
with the GNU family of compilers using the flags cov1053 252
-03 -m32. For each instance, the (known) opti- covl054 2952
mal solution value was set to aid pruning and reduce covl07s 120
the “random” impact of finding a feasible solution cov1Q76 120

in the search. Nodes were searched in a best-first covOsd 126
fashion. When the size of the maximum orbit in 5 243
the orbital partitioning is less than or equal to two, sts27 27
nearly all of the symmetry in the problem has been sts45 45
eliminated by the branching procedure, and there is

little use to perform orbital branching. In this case, Table 1: Symmetric Integer Programs

we use MINTO’s default branching strategy. The CPU time was limited in all cases to four hours.

In order to succinctly present the results, we use performance profiles of Dolan and Moré {3]. A per-
formance profile is a relative measure of the effectiveness of one solution method in relation to a group of
solution methods on a fixed set of problem instances. A performance profile for a solution method m is
essentially a plot of the probability that the performance of m (measured in this case with CPU time) on a
given instance in the test suite is within a factor of 3 of the best method for that instance.

Figure 1 shows the results of an experiment designed to compare the performance of the six different
orbital branching rules introduced in §4.2. In this experiment, both reduced cost fixing and orbital fixing
were used. A complete table showing the number of nodes, CPU time, CPU time computing automorphism
groups, the number of variables fixed by reduced cost fixing, orbital fixing, and strong branching fixing, and
the deepest tree level at which orbital branching was performed is shown in the Appendix.

A somewhat surprising result from the results depicted in Figure 1 is that the most effective branching
method was Rule 5, the method that keeps the symmetry group size large on the left branch. (This method
gives the “highest” line in Figure 1). The second most effective branching rule appears to be the rule that tries
to reduce the group size by as much as possible. While these methods may not prove to be the most robust
on a richer suite of difficult instances, one conclusion that we feel safe in making from this experiment is
that considering the impact on the symmetry of the child node of the current branching decision is important.
Another important observation is that for specific instances, the choice of orbit on which to branch can have
a huge impact on performance. For example, for the instance cov1054, branching rules 4 and 5 both reduce
the number of child nodes to 11, while other mechanisms that do not consider the impact of the branching
decision on the symmetry of the child nodes cannot solve the problem in four hours of computing time.

The second experiment was aimed at measuring the impact of performing orbital fixing, as introduced in
§3.1. Using branching rule 5, each instance in Table 1 was run both with and without orbital fixing. Figure 2
shows a performance profile comparing the results in the two cases. The results shows that orbital fixing has
a significant positive impact.

The final comparison we make here is between orbital branching (with keep-symmetry-left branching),
the isomorphism pruning algorithm of Margot, and the commercial solver CPLEX version 10.1, which has
features for symmetry detection and handling. Table 2 summarizes the results of the comparison. The
results for isomorphism pruning are taken directly from the paper of Margot using the most sophisticated
of his branching rules “BC4” [11]. The paper [11} does not report results on st s27 or £5. The CPLEX
results were obtained on an Intel Pentium 4 CPU clocked at 2.40GHz. Since the results were obtained on
three different computer architectures and each used a different LP solver for the child subproblems, the
CPU times should be interpreted appropriately.

Prob(within factor B of fastest)

Prob(within factor f of fastest)

1 i 1 i 1

¥
1
mp---!u---t-nnumov—-m-----mnmu-.---—--
0.8 1~ 4 [] : =
L
] . »
UH—--TI.I.Uhﬁ' '- SRR LN -
1 ' . H
] » . b
P] * %
' LR R A L3) :
0.6 “'! : ==
”‘ IOIIllllll.ll‘!ﬁlﬂ!ll'll:
|
1
»
4 L4
| —l .
04 ¥ - 7
: o ‘I‘- - " B8 w9
.I - .
. 3
£ »
r .
*
oz k- e -
. branch-laggest, me—
. branch—larg[]esa—lg sesusse
. strong—branch #wusn
v break—symmelry-Jefi == ==
. keep—symmetry~left = -
. Franch~max»vproéuci—leﬁ ..
ol { i 1 i
1 2 4 3 16 32
Figure 1: Performance Profile of Branching Rules
1 i T T ¥ T T
08Y t
05 ~
04 e
0.2 ~
orbitai~fixing Mwe—
| | | | | no—orbxtal»ﬁ)gmg snswene
Y
1 2 4 g 16 32 64

Figure 2: Performance Profile of Impact of Orbital Fixing

Orbital Branching | Isomorphism Pruning | CPLEX vi0.1
Instance | Time Nodes Time Nodes Time Nodes
cod83 2 25 19 33 391 32077
cod93 176 539 651 103 fail 488136
codl103 | 306 11 2000 15 1245 1584
covi053 | 50 745 35 111 937 99145
covi054 2 11 130 108 fail 239266
cov1075 | 292 377 118 169 141 10278
cov1076 | fail 13707 3634 5121 fail 1179890
covosd | 22 401 24 126 9 1514
f5 66 935 - - 1150 54018
sts27 1 71 - - 0 1647
stsdS | 3302 24317 31 513 24 51078

Table 2: Comparison of Orbital Branching, Isomorphism Pruning, and CPLEX v10.1

The results show that the number of subproblems evaluated by orbital branching is smaller than isomor-
phism pruning in three cases, and in nearly all cases, the number of nodes is comparable. For the instance
covl076, which is not solved by orbital branching, a large majority of the CPU time is spent comput-
ing symmetry groups at each node. In a variant of orbital branching that uses a symmetry group that is
smaller but much more efficient to compute (and which space prohibits us from describing in detail here),
cov1076 can be solved in 679 seconds and 14465 nodes. Since in any optimal solution to the Steiner triple
systems, more than 2/3 of the variables will be set to 1, orbital branching would be much more efficient if
all variables were complemented, or equivalently if the orbital branching dichotomy (2) was replaced by
its complement. Margot [11] also makes a similar observation, and his results are based on using the com-
plemented instances, which may account for the large gap in performance of the two methods on st s45.
We are currently instrumenting our code to deal with instances for which the number of ones in an optimal
solution is larger than 1/2. Orbital branching proves to be faster than CPLEX in six cases, while in all cases
the number of evaluated nodes is remarkably smaller.

6 Conclusions

In this extended abstract, we presented a simple way to capture and exploit the symmetry of an integer
program when branching. We showed through a suite of experiments that the new method, orbital branching,
outperforms state-of-the-art solvers when a high degree of symmetry is present. In terms of reducing the size
of the search tree, orbital branching seems to be of comparable quality to the isomorphism pruning method
of Margot [11]. Further, we feel that the simplicity and flexibility of orbital branching make it an attractive
candidate for further study. Continuing research includes techniques for further reducing the number of
isomorphic nodes that are evaluated and on developing branching mechanisms that combine the child bound
improvement and change in symmetry in a meaningful way.

10

Acknowledgments

"The authors would like to thank Kurt Anstreicher and Francois Margot for inspiring and insightful comments
on this work. In particular, the name orbital branching was suggested by Kurt. Author Linderoth would like
to acknowledge support from the US National Science Foundation (NSF) under grant DMI-0522796, by the
US Department of Energy under grant DE-FG02-05ER25694, and by IBM, through the faculty partnership
program. Author Ostrowski is supported by the NSF through the IGERT Grant DGE-9972780.

References

[1] C.Barnhast, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance. Branch and Price:
Column generation for solving huge integer programs. Operations Research, 46:316-329, 1998.

2] M. 8. Bazaraa and O. Kirca. A branch-and-bound heuristic for solving the quadratic assignment
problem. Naval Research Logistics Quarterly, 30:287-304, 1983,

[3] Elizabeth Dolan and Jorge Moré. Benchmarking optimization software with performance profiles.
Mathematical Programming, 91:201-213, 2002.

[4] P. Foggia, C. Sansone, and M. Vento. A preformance comparison of five algorithms for graph isomor-
phism. Proc. 3rd IAPR-TC15 Workshop Graph-Based Representations in Pattern Recognition, pages
188-199, 2001.

[5]1 D. R. Fulkerson, G. L. Nemhauser, and L. E. Trotter. Two computationally difficult set covering
problems that arise in computing the 1-width of incidence matrices of Steiner triples. Mathematical
Programming Study, 2:72-81, 1973.

[6] H. Hamalainen, I. Honkala, S. Litsyn, and P. Ostergérd. Football pools—A game for mathematicians.
American Mathematical Monthly, 102:579-588, 1995.

[7] S.Holm and M. Sprensen. The optimal graph partitioning problem: Solution method based on reducing
symmetric nature and combinatorial cuts. OR Spectrum, 15:1-8, 1993.

[8] S. Litsyn. An updated table of the best binary codes known. In V. S. Pless and W. C. Huffman, editors,
Handbook of Coding Theory, volume 1, pages 463-498. Elsevier, Amsterdam, 1998.

{97 E. M. Macambira, N. Maculan, and C. C. de Souza. Reducing symmetry of the SONET ring assign-
ment problem using hierarchical inequalities. Technical Report ES-636/04, Programa de Engenharia
de Sistemas ¢ Computagfio, Universidade Federal do Rio de Janeiro, 2004.

[10] F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Programming, 94:71-90, 2002.
[11] F. Margot. Exploiting orbits in symmetric ILP. Mathematical Programming, Series B, 38:3-21, 2003,
[12] F.Margot. Small covering designs by branch-and-cut. Mathematical Programming, 94:207-220, 2003.
[13] B.D. McKay. Nauty User’s Guide (Version 1.5). Australian National University, Canberra, 2002.

[14] L Méndez-Diaz and P. Zabala. A branch-and-cut algorithm for graph coloring. Discrete Applied
Mathematics, 154(5):826-847, 2006.

[15] W. H. Mills and R. C. Mullin. Coverings and packings. In Contemporary Design Theory: A Collection
of Surveys, pages 371-399. Wiley, 1992.

1

[16] G. L. Nembauser, M. W, P. Savelsbergh, and G. C. Sigismondi. MINTO, a Mixed INTeger Optimizer.
Operations Research Letters, 15:47--58, 1994.

[17] E. Rothberg. Using cuis to remove symmetry. Presented at the 17 Imternational Symposium on
Mathematical Programming.

718] H. D. Sherali and J. C. Smith. Improving zero-one model representations via symmetry considerations.
Management Science, 47(10):1396-1407, 2001.

12

Appendix

Instance Branciing Rule Time Nodes Nauty Time # Fixed by RCF {f Fixed by OF {f Fixed by SBA Deepest Orbital Level
codi0s Break Symmelzy 30568 il 22886520] e 0 4
cod105 Keep Symmelry 30647 1l 22925514 0 1020 0 4
codi05 Branch Largest LP Solution 283,54 7 14.872195 il V] 0 2
codi0s Branch Largest 18396 Ed 18.01626% k] 0 0 k]
codlDS Max Produet Orbit Size 30297 Ed 17.418352 & 920 0 3
codl05 Strong Branch 407.14 7 11853198 o 1024 1532 2
codd3 Break Symmaetry .35 5 1.091834 44 910 it 7
cod§3 Keep Symmetry .38 25 1104832 44 510 0 7
codB3 Branch Largest LP Solution 881 93 2769580 209 534 0 6
cod83 Branch Largest 18.03 i3 3418485 183 806 0 i4
cod§3 Max Product Qrbit Size 4.36 its 4.595302 109 634 0 i
cod83 Stong Branch 944 23 4975852 27 878 394 6
codd3 Break Synumetry 17547 529 75452572 3382 3616 0 17
93 Keep Symmetry 173.58 529 T5.31255¢ 3382 36i6 Nl 17
cod93 Braach Largest LP Solution 3268.39 12089 1326.263346 181790 3756 o] =]
codd3 Branch Largest 2385.80 8989 9245,900008 14235% 4986 o 49
x93 Max Product Orbit Size 587.06 2213 215.686208 28035 1560 o 2
codd3 Strong Branch 2333.22 161 19.761993 380 2406 13746 14
cov]053 Break Symmetry 50.28 745 27.515817 o 336 4 33
cov1053 Keep Symmetry 50.31 45 27.548797 3] 836 ¢ 33
cov1053 | Branch Largest LP Solutien 1841.41 23593 990.128463 0 5170 ¢ 7
cov1053 Branch Largest 148.37 2081 F0.138244 0 L5064 G 36
cov1053 Max Product Orbit Size 192.i8 2659 91.722062 o 1646 & 68
cov]1053 Strong Branch 199855 1435 53.963795 o 5484 34208 54
«ov1034 Break Symmetry 177 1 0.854870 G 186 ¢ 4
cov1054 Keep Symmetry 1.76 11 0856870 0 186 ¢ 4
cov1054 ;1 Branch Largest LP Solution 14408 54448 T600.808616 0 814 o 35
cov1054 Branch Largest 14400 54403 1533.807622] 1452 o 49
cov 1054 Max Product Crbit Size 14400 52782 7532717729 0 1410 0 33
cav1054 Strong Branch 14400 62l 87.764653 0 204 4928 32
<cov1075 Break Symneuy 14406 5387 13752.119386 372l i 0 2
cov]075 Keep Symmetry 269885 377 268.458199 79 926 0 15
cov1975 Branch Largest LP Solution 80648 739 B6L5T0018 $632 e 0 23
cov1975 Beanch Largest 2068.49 257 248.451226 7493 8 0 13
cov]{Ts Max Product Orbit Size 39511 431 366248313 1060 1066 0 21
cov1G?s Strong Branch 22353 67 60.7:576% 146 128 1838 1o
cov1476 Break Symmetry 14400 8381 13833.356013 2 0 o 3
cov 1876 Keep Symmetry 14400 13107 13818.474275 1z 1564 o 26
cov 76 Branch Largest LP Solution 14400 6481 13992.745742 10 16 o 4
covi0?6 Branch Largest 14400 6622 13988,715379 9 176 o 13
covi(I6 Max Product Qrbit Size 144G0 6893 13967 865561 7 580 0 i
coviOe Strong Brancl: 14400 158% 3255.748050 5 164 38 3
covd54 Break Symmetzy 2172 401 £4.816750 570 1308 0 4
covis4 Keep Symmetry zL.70 401 14.833737 570 1308 0 id
covis4 Branch Largest LP Sclution 11.30 175 7.035932 498 48 0 5
cove54 Branch Largest £5.69 265 #0.510393 671 212 0 2
covisd Max Product Orbit Size 1420 228 9.2595%1 602 212 0 i
coveSd Strong Branch 17.55 45 1.747737 50 100 i084 3
5 Break Symmetry 6586 935 73.255466 2930 2938 0 17
5 Keep Symmetry 65.84 935 3265478 2930 2838 0 7
5 Branch Largest L Solution 91.32 1431 28.958587 7385 2Tz Q 8
15 Branch Largest 100.66 1685 30.755329 7078 434 Q 1
15 Max Product Orbit Size 102.54 1691 30969289 7230 430] 13
3 Strong Branch 67151 123 2.595602 i87 760 8586 15
sts27 Break Symimetry 0.84 " 0.710892 [g 0 16
sts2? Keep Symmetry 0.83 7l 0.7138%1 o] 8 0 10
sts27 Branch Largest LP Solnion 233 113 2128681 3 86 0 14
sts27 Branch Largest 0.97 73 0.838868 i 28 0 13
51527 Max Product Orbit Size Z.88 399 2427621 i 888] 1
sts27 Strong Branch 163 75 1156827 2 b] 14
sts45 Break Symmetry 330270 24317 32302129859 12) 0 4
S1845 Keep Syrametry 330181 24317 3719885921 12 0] 4
stads Branch Largest LP Sclution 4727.29 36583 4618.669808 5 0 & 2
51545 Branch Lazgest 4389.80 33675 4289.456908 36 0 o 2
51345 Max Product Orbit Size 4390.39 33675 4289.798842 36 0 o 2
Sts45 Strong Branch 1214.04 7517 884.792493 2 i44 45128 21

Table 3: Performance of Orbital Branching Rules on Symmetric IPs

13

