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Abstract

Operationsl hedging has emerged as an important strategy to manage risk and optimize profit
in the global supply chain; however, there has been little effort so far to understand the impact
of the risk framework chosen by the manager on the optimal stzategy. In this paper, we focus on
exchange rate risk as the key source of profit uncertainty faced by a US multinational with a US
plant and a foreign plant, and investigate the impact on the optimal strategy of different models
to capture the decision-maker’s risk exposure. We provide theoretical insights for a broad class
of risk measures and compare three models, based on standard deviation, shortfall and value-at-
risk, respectively, through extensive numerical experiments using both simulated and historical
exchange rate data. Our empirical study suggests that, although shortfall has become a popular

risk measure in finance, it exhibits lackluster performance in operational hedging.

Keywords: risk measures, operational hedging, shortfail.



1 Introduction

“A large US automotive manufacturer with several key models manufactured exclusively in Europe
suffered a loss of more than half a billion dollars in 2004 at its European operations. Two-third of
this loss was blamed on the US dollar’s fall, which hampered the company’s non-US cost and US
revenue dynamics.” (Mahidhar 2006) This assessment in a recent report by the Deloitte Research
Group underlines the risks posed to global companies by the prolonged decline of the US dollar,
and more generally by shifts and trends in the exchange rates dominating the economy. Exchange
rate exposure affects production costs, sourcing decisions, retail prices and ultimately a company’s
ability to compete with other global multinationals. In this context, operational hedging “pro-
vides companies with flexibility in their supply chains, financial positions, distribution patterns
and market-facing activities by allowing dynamic adjustments in the locations used to manufac-
ture, source and sell.” (Madhidhar 2006) While such flexibility has emerged as a critical tool to
protect profits against exchange rate uncertainty, in conjunction with or replacement of traditional
financial hedging instruments, the impact of risk modeling on the optimal strategy has received
little attention in the management literature; however, aversion to risk plays an important role in
the manager’s decision to implement hedging techniques, and identifying the risk framework best-
suited %o operational hedging is a critical component of multinationals’ strategies. Our purpose in
this paper is to investigate the effect of various models of exchange rate uncertainty on the global
logistics problem faced by a multinational with a home plant and a foreign plant and serving known
demand in both the home and the foreign markets. We assume for simplicity that the home plant

is located in the US.

Contributions. The major contribution of this paper is to provide the theoretical foundation
necessary to compare three well-known risk measures (standard deviation, shortfall, value-at-risk)
on operational hedging, and to test these three choices on extensive numerical experiments {using
both simulated and historical exchange rate data), which caution the decision-maker against using
shortfall in the context of exchange rate uncertainty, despite its growing popularity as a risk mea-

sure in finance.

Literature review. The potential of operational hedging was established in the early 1990s by
Huchzermeier and Cohen (1993), who showed that the flexibility of an international supply chain

configuration could be used to increase expected after-tax profit while reducing downside risk. Fur-



thermore, Kogut and Kulatilaka (1994) examined the value of changing production sites when the
exchange rate varies, and proved the optimality of barrier policies for the two-location production
switching problem. Dasu and Li {1997) extended these results to the general multi-facility case,
and described the optimal policies for convex cost functions as well as concave ones. Subseguent
research has addressed additional sourees of uncertainty and other types of operationsl hedges. For
instance, Sung and Lapan (2000) incorporate competition as well as variable outpus to the costless
switching model. Li, Porteus and Zhang (2001} investigate the benefits of using the inventory pol-
icy as an operational hedge under demand, processing time and exchange rate uncertainty. Kazaz,
Dada and Moskowitz (2005) analyze the value of under-production and unfulfillment of demand
in unprofitable markets as operational hedges under exchange rate and demand uncertainty. Kou-
velis, Axarloglou and Sinha (2001) study as operational hedge the ability to switch between three
different modes of production for foreign markets: exporting, joint ventures with local partners,
and wholly-owned foreign production facilities,. Harrison and Van Mieghem (1999) examine the
active decision of upper management to build in excess capacity or process options as a means of
enhancing expected returns. None of these papers incorporates the manager’s risk preferences.

In practice, multinational corporations can use operational hedges to minimize their exposure
to exchange rate risk, by incorporating performance constraints into their decision-making frame-
works. Chowdhry and Howe (1999) examine the use of financial and operational hedging to address
exchange rate and demand uncertainty when the company has a mean-variance objective, and pro-
vide qualitative insights into the optimal solution. Ding, Dong and Kouvelis (2004) analyze the
integration of operational and financial hedging when a risk-averse firm with a mean-variance util-
ity function invests in capacity, which it can delay allocating until the uncertainty is resolved. Van
Mieghem (2006) studies operational hedging in networks of newsvendor problems and finds that
risk-averse decision-makers increase capacity {safety-stock levels) when facing multiple sources of
demand uncertainty, compared ‘to risk-neutral decision-makers. While performance measures have
traditionally been based on the assumed distribution of future random variables, the probabilities
governing exchange rates are difficult to estimate with accuracy. Therefore, much attention has
been focused among financial managers on shortfall, a more recent risk measure which was first
proposed by Uryasev and Rockafellar {1999} and Bertsimas et. al. (2004) in the field of portfolio
management. An appealing feature of this risk measure, at least when the underlying random
process is stationary, is that i§ can be computed using non-parametric estimators. To the best of

our knowledge, the present work is the first to investigate the performance in operational hedging



of shortfall.

Outline. In Section 2, we introduce the general model of risk-averse operational hedging. Section
3 provides insights into the impact of risk aversion on the optimal strategy for two of the three risk
measures under consideration: standard deviation and shortfall, Section 4 focuses on probabilistic
measures of risk, which do not$ fit the framework in Section 2. We present the empirical study in

Section 5. Finally, Section 6 contains concluding remarks.

2 Risk-averse operational hedging

2.1  The nominal model

We briefly review here the nominal model, in which the actual exchange rate is observed before the

manager selects an operational strategy.

2.1.1 Formulation

The decision-maker’s objective is to maximize his total profit while meeting demand in both coun-
tries; each plant has enough capacity to supply both markets and the exchange rate is known. We
use the following notations:
Parameters:

d1: demand in US market,

dg:  demand in foreign market,

c1:  unit cost of production in U3 %alant (ir: US dollars),

ca:  unit cost of production in foreign plant (in foreign currency),

t12:  unit transportation cost from US to foreign market {in US dollars),

fp1: umit transportation cost from foreign to US market (in foreign currency),

ki: fixed start-up cost to start production in US plant (in US dollars),

ky:  fixed start-up cost to start production in foreign plant (in foreign currency},

p1:  unit sales price in US market (in US dollars),

p2:  unit sales price in foreign market (in foreign currency),

v: exchange rate of foreign currency (in US dollars),

Decision variables:




#3:  amount produced at US plant for US market,

zo:  amount produced at foreign plant for foreign market,

y1: binary variable representing decision to start production at US plant (if closed),

y2:  binary variable representing decision to start production at foreign plant (if closed).
Because demand for each market must be met and producing more for one market than its demand
is suboptimal (as the additional items would not be sold), the amounts produced at the foreign
plant for the US market and at the US plant for the foreign market are equal to dy — 23 and
da — 3, respectively. In line with the operational hedging literature, we assume that only one plant
is currently open for production and that the decision to start production at the other plant has
yet to be made. _

If the US plant is open, but not the foreign one, the global production planning (US-GPP)

problem can be formulated as the following mixed-integer programming problem after a straight-

forward rearranging of terms:

US - GPP : max ["/ ((32 +t21) — (31} 1+ [C; +t12 ”’““')’Cg] oo — Ykoyo

+lp1 =y leg +tar)) dr + [ype — 1 —t1z]de (1)

st.  0<ax <di, (2)
0<zp < dy, {3)
21 > da (1 —y2), (4)
T2 < days, ()
2 € {0, 1}, (6)

where Equation (1) represents the profit in US dollars, Equations {2) and (3) ensure that production
at each plant for each market is nonmegative, and Constraints (4) and {5) set the binary variable
Yo to 1, i.e., pay the start-up costs at the foreign plant, if the foreign plant produces any item
(dy — 1 > 0 or z3 > 0.) A similar formulation exists if the foreign plant is open, but not the US
one.

Remark: The profit is a linear function of the exchange rate.



2.1.2 Optimal strategy

We now review the deterministic optimal strategy for comparison purposes with the stochastic,
risk-averse case. The existence of a “hysteresis band” in the presence of switching costs has been
well-documented (see, e.g., Kogut and Kulatilaka 1994), and describes the situation where the fixed
costs incurred to start up production at a plant introduce inertia into the optimal strategy, as the
decision-maker postpones opening a plant to avoid such costs. There are four possible hysteresis
types, depending on whether it ever is optimal for at least some values of the exchange rate to
produce in the US plant the whole US demand but no item for the foreign market, i.e., having
the US production equal to dy for some . We refer to this situation as “myopic production.” The
notation used for the breakpoints is summarized in Table 1. All the breakpoints can be interpreted
in operational terms; for instance, 4 is the exchange rate for which the decision-maker becomes
indifferent, from a variable cost perspective, between producing an item for the US market at the

US plant and producing it at the foreign plant and shipping it to the US.

[& [ T
moT gL T Jmmj—i; 2
_ atk/d _ cidy + (ep + i) do
2T T Tt (T (et tey)di T epds + ke
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BT o tkjd | T {ea +to1) ds +cpdy

Table 1: The value of the breakpoints.

The four hysteresis types are:

(1) Myopic production occurs in both directions of the hysteresis band.
When ~ increases, total US production increases from 0 to dy (at v2) to dy + da (at 7s.)
When ~ decreases, total US production decreases from dy + dp to dy (at ¥3) to 0 (at 11.)
This case arises for:

Yo < v4 and 3 > 7. (7)

(ii) Myopic production never occurs.
When ~ increases, total US production increases from 0 to di + dz (at 7s.)
When v decreases, total US production decreases from dy + dy to 0 (at vs.)
This case arises for:

Y2 = 74 and 3 < 1. (8)



(iii) Myopic production occurs only when the US plant is open and the exchange rate decreases.
When the foreign plant is open, we observe an all-or-nothing situation, where a plant produces
for both markets or none.

When ~ increases, total US production increases from 0 to dy + da (at vs.)
When - decreases, total US production decreases from d; + dg to di {(at 3) to 0 (at 71.)

This case arises for:

Yo > 4 and 3 > M. (9)

(iv) Myopic production occurs only when the foreign plant is open and the exchange rate increases.
When the US plant is open, we observe an all-or-nothing situation, where a plant produces
for both markets or none.

When v increases, total US production increases from 0 to dy (at v2) to di - da (at ~Yg.)
When ~ decreases, total US production decreases from dy + da to 0 {(at vs.)

This case arises for:

Y2 < 74 and 3 < 7. {10)

2.2 Measuring risk
2.2.1 Preliminaries

In practice, the exchange rate at the end of the time horizon is not known when the manager decides
on the production plan; hence, the profit realized by the multinational becomes a random variable,
which must be quantified in numerical terms in order to solve the global production planning
problem. The concerns of the decision-maker are twofold: he seeks to maximize his monetary
gains and to minimize his exposure to risk. It is rarely possible to achieve those two objectives
simultaneously; hence, most managers focus on maximizing a measure of their profit while imposing
a bound on the level of risk that they are willing to tolerate.

The computation of the values taken by the risk and return measures may require the precise
knowledge of the underlying exchange rate distribution, e.g., when return is measured by the
decision-maker’s expected utility. This is unappealing for real-life implementation because the
probabilities and values taken by the future exchange rate are difficult to estimate accurately.
Therefore, we focus on three specific risk measures that allow the manager to solve the global
production planning problem under limited information: standard deviation, shortfall and value-

at-risk (also called profit-at-risk). To measure return we focus on the ezpected value of the profit,



a8 this is the metric most commonly used in practice. In the remainder of the paper, we will denote

by # the expected value of the exchange rate.

2.2.2 Properties

We denote by p the risk measure and 7 the maximum level of risk allowed by the decision-maker.
We also denote by § the feasible set of the operational-hedging problem, i.e., Constraints (2)-(6),
and by a{z,y) and b(z,y) the parts of the revenue that do not and do depend on the exchange rate
uncertainty, respectively. (In other words, we write the profit as a(z, y) -+ b(x,y).) The risk-averse

global production planning (RA-GPP) problem can then be formulated as:

RA — GPP : max a(z,y)+5b(z,y)
st. pla(z,y) +b(z v < (11)
(@,y) €5,

where @ and b are linear functions of the decision variables. In order to rewrite Problem (11) in
a more tractable manner, we need to investigate the impact of adding and multiplying random
variables by a scalar on the risk measure. As standard deviation and shortfall have similar impacts,
we will analyze these two measures in this section; Section 4 focuses on profit-at-risk.

Adding a constant amount to the profit changes neither its standard deviation nor its shortfall
(as mesasured by the expected profit minus the tail conditional expectation for a pre-specified

quantile, see Bertsimas et. al. 2001):
pla + X| = p{X] Va, VX ruv. {12)
Furthermore, standard deviation and shortfall both satisfy the assumption of positive homogeneity:
p[bX] = bp[X] Vb > 0, VX rv. (13)

2.3 The Model

We now reformulate Problem {11) in a tractable manner. First, we need the following lemma.

Lemma 1 The value associated with the decision-maker’s risk is:

p{a(m!y} + 7b(ma y)] = max{b(;c,y) p{’Y)? -"b(IL‘, y) P(“’Y)}> (}‘4}



where p is the standard deviation of the exchange rate or its shorifall.

Proof: Immediate from the definition of standard deviation and shortfall. O

Theorem 2 presents the risk-averse global production planning problem. We observe that intro-
ducing risk aversion through either standard deviation or shortfall amounts to introducing bounds
on the revenue realized in the foreign market, and distinguishing between the cases whether the

appreciation of the foreign currency increases or decreases revenue.

Theorem 2 The risk-averse global production planning problem (11) can be rewritten as a single
mixed-integer programming problem, where the part of the profit subject to exchange rate uncer-

taindy 45 bounded:
RA — GPP : max alx,y)+b(z,y)7

t =T < b2, y) <

R o R R O) 1
(x, ) € S.

Proof: Follows from distinguishing between b(z,y} = 0 and b(z, ) < 0 in Problem {11) and invoking

Lemma 1. !

Remark: A key consequence of Theorem 2 (using the fact that Problem (15) becomes a linear
programming problem when the foreign facility is opened, and hence has an optimal solution at
a corner point of the feasible set) is that, provided that v # 0, it is never optimal to choose the
production plan in order to cancel out the effect of the exchange rate on the profit, when the
decision-maker measures his profit by its expected value and uses standard deviation or shortfall

t0 measure risk.

For shortness sake, we only provide below the explicit formulations when the US plant is already

open. The case when the foreign plant is open can be derived in a similar manner.

Corollary 3 (US plant open)
(i) When the US plant is already open and the manager opens the foreign plant, the optimal allo-

10



cation is obtained by solving the linear programming problem:

US — GPP: —Fky +p1 ~F(c2 +t01))dy + [Tp2 — 1 ~ tiz] dot

max [Flez+ta)—c]z +le +tie —Feal oo

ot Jy 4 (cg +lo)dy — pody ~ i < {cg+tos)y — ca 22 < ko 4 (e + to1) dy — pada + =,
2+ (cp +101) d1 — pada p(__(},)w(z 21} 1 — caz < ko 4 (cp +ta1)dy — pads e
nglidla

0 < 2o < do.
(16)

(ir) If Kf—ﬁ < pody, keeping the foreign focility closed does not satisfy the risk constraint and the
optimal solution to the risk-averse production planning problem has been found in (i).

(i) If .—()—(’Cﬂ > po dy, the optimal solution to the risk-averse production planning problem is found by
comparing the higher objective found in (3) with the profit [p1 — 1) dy + [Fp2 — ¢1 — t12] da, achieved

when the foreign plant remains closed.

Proof: This is a straightforward application of Theorem 2 where we inject yo = 1 (foreign plant
open) and replace a(z,y) and b(z, y) by their exact expressions as a function of the decision variables

and cost parameters. O

Section 3 investigates conditions for the risk-averse production problem %o be feasible, as well as

the impact of the risk threshold on the operational hedge.

3 The impact of risk on operational hedging

In this section, we discuss the impact of the decision-maker’s risk preferences on his operational
hedging strategy. Sections 3.1 and 3.2 present our insights when risk is measured by the shortfall
of the profit and its standard deviation, respectively. We present the standard deviation case last
as it can be derived as a simplification of the shortfall case, where we replace p(y) and p(-v) by

the standard deviation o of the exchange rate,

3.1 Shortfall

We focus our attention on the case where the US facility is already open; the case where the foreign
facility is already open is similar and left to the reader.

Theorem 4 links the choice of the risk threshold 7 with the feasibility of the global production

11



planning problem and ties it to the decision of opening the foreign plant. We use the following

notation:

T = p(v)p2da, (17)
7 = pl=7)lke ~ p2da]s (18)
it o= plv)Iprda = ke — (co o) dy — 2 da], (19)

with p(y) =7 ~ Elyly < ga(7)] where go(7) is the a~quantile of the random variable 7 (o € 0,1)).
Note that 77 < 70. As mentioned above, the US plant alone cannot satisfy the risk constraint when
7/p(7) is smaller than pp d; this corresponds to 7 < 79. We will see in Theorem 4 that 7" and
7 represent risk thresholds that play a fundamental role in understanding the options available

to the risk-averse decision-maker.

Theorem 4 (Risk impact on decision of opening foreign plant)

(i) If T < max(7], 1i7), opening the foreign facility does not allow the decision-maker to meel the
risk constraint. It follows that if 7 < min{ry, max(r, 1)}, the problem is infeasible. |

(i) If min{ro, max(, )} < 7 < max(7o, T, 77}, the decision of opening or keeping the foreign
facility closed is dictated by feasibility (risk) considerations rather than the goal of mazimizing

expected profit.

Proof: Let K == kg + (cg+1tg1) di — pa da. The feasible set of (US-GPP) (Problem (16)) is nonempty
and bounded; hence, by strong duality, (US-GPP) is equivalent to (dropping the constant term in

the objective):

i K+-TI<stat—{ K~ —% T4 d d
min ( +P(’Y)>a ( W)a +dy B+ dg B2
st (eo+tar)(at — o)+ B 2 F(e2 + i) — e, (20)
—cplot —a7) 4+ B2 2 o1+ tip — Feg,

Q!+, oy ﬁly [32 Z 07

or, using that B; = max{0,¥(cz +t21) —e1 — (c2 + a1} (@™ —7)} and f2 = max{0,c; +f12—Fea +

co(at — o)}, and using that at — o™ = @, o = max(0, @) and o™ = max(0, —a):

min {'r (ma’;{((%’ o) + ma:)c((f)ﬂ,f;;a}) 4+ Ko+ dy (cg -+ to1} - max {Dﬁ - 02_?1—]75 - a}

+dgcg-max{ﬂ,%m—7+a}}.

(21)

12



Problem (21) is an unconstrained piecewise linear convex problem; hence, it has a finite minimum if
and only if the function has nonpositive slope when a - ~o00 and nonnegative slope when o — oo,
i.e.:

' T
e - iy — po dp <0, 22
P(w’}’) 2 — P2ag (22)

and
T
p()
If (and only if) either Condition (22) or Condition (23) is not satisfied, Problem (21) has an

+k2+(62+t21)d1——p2d2+02d2 >, (23)

unbounded optimal cost, which makes its dual, (US-GPP), infeasible {it cannot be unbounded
since its feasible set is bounded). In other words, (US-GPP) is infeasible if and only if:

T T
k2~p2d2>mOrk2+(62+t21)d1-pgd2+02d2<“m, (24)

which can be written as:

T or T < T (25)

This means that the risk-averse production planning problem with foreign facility opened is infea-
sible if and only if 7 < max(m, 7). Finaily, the master risk-averse production planning problein
(including the opening decision) is infeasible if and only if the US facility alone cannot meet the
risk constraint (7 < 7o) and (US-GPP) is infeasible as well. This proves (i). (ii} follows from
the observation that both the US facility alone and (US-GPP) can meet the risk constraint for

T > max(to, T, 71 ). I

We now investigate the impact of the decision-maker’s risk tolerance on the optimal profit
(Theorem 5) and allocation {Theorem 6), and draw managerial insights based on our findings.
‘We assume that the decision-maker can satisfy the risk const.raint by opening the foreign facility;
otherwise, the problem is either infeasible or the US plant meets both markets’ demand while
keeping profit volatility low.

The key insight of Theorem 5 is that the optimal profit is not concave in the risk tolerance. This
has important implications in practical examples, as the decision-maker might be able to increase

his profit significantly by accepting a moderate increase in risk.

Theorem 5 (Optimal profit as a function of risk) The optimal profit is piecewise linear in

the risk tolerance; specifically, it is piecewise concave, but not necessarily concave tn 7.

13



Proof: If {US-GPP) is feasible, then the minimum of the objective in Equation (21), which is a
linear function in the risk tolerance 7, is reached at one of the breakpoints, e, d =0, =%~
or § = 5 — ~4, where v, and 74 were defined in Table 1. Therefore, the optimal objective of (US-
GPP) is concave in 7. Finally, the optimal objective in the case where only the US facility is open
is constant in 7, provided that this operating situation is feasible in terms of risk. The optimal
objective for the whole problem is the maximum between these objectives (when the operating

conditions meet the risk constraint}. 0

Theorem 6 (Optimal allocation as a function of risk)

(1) The optimal allocation is piecewise linear in 7.

(ii) When the optimal allocation varies with the risk tolerance, one plant produces either oll or
nothing for its own market, and the production of the other plant for its own market is linear in

the risk tolerance.

Proof: Because (US-GPP) is a linear programming problem, we can use constraint splitting to
rewrite the problem under the following equivalent form, for the optimal non-negative shadow

prices ot and a™:

(at —a™ YK + (-%% + p(o‘—:ﬂ) T+ max A(z)+ [F-— ot +a”]Blx)
st. 0<2; £ d;, (26)

0 <zp<dy,

where A(z) and B(z) are linear in 2y and zp and represent the components of the expected profit
that do not depend, respectively depend, on the exchange rate. Problem (26) is equivalent to the
deterministic model {when the manager evaluates the optimal profit with the foreign facility open)
for a known exchange rate of m{y) — a* + a~. The optimal solution is found by enumerating the
four extreme points (z; = 0, 1 = dy, T2 = 0, Za = dp, in conjunction with B(z) = K + 7/ p(y) or

B(z) = K —7/p(=7)). a
Remarks:
o If ot > 0 at optimality, then o~ = 0 (the constraint B(z) = K — 7/p(—7) is not binding)
and the risk aversion of the decision-maker has the high-level effect of decreasing the value of

the exchange rate (from 7 to ¥ — a¥) to one of the breskpoints of the deterministic model;

this is the only way to have at optimality z;1 that is neither 0 nor di nor d; + do. Similarly,

14



if @ > 0 at optimality, the risk aversion of the decision-maker has the high-level effect of

increasing the value of the exchange rate (from 7 to 5+ 7).

e The profit is locally conver in the risk tolerance in the region for which it becomes optimal
to open the foreign facility, i.e., increasing the risk level 7 increases the slope of the profit
function around that point. This suggests that a strategic decision such as opening facilities
can have a significant and even counterintuitive impact on profit for the risk-averse decision-

malker.

The main managerial insight we draw from these observations is that understanding the specific
operating mode (facility open or closed) that is optimal for the risk level considered is critical to
risk-averse operational hedging; for some risk values, moderate increases in the threshold would
yield significant increases in the measured profit (due to local convexity). In those areas, the
manager should evaluate the strategic outcome that drives optimality and consider increasing his

risk level to take advantage of the local convexity of the profit curve.

3.2 Standard Deviation

In this section, we illustrate the approach when risk is measured by the standard deviation of the
profit. In particular, we have: p(y) = p{-7), which simplifies the exposition. We will use the
notation p{y) = o. The following results follow directly from Section 3.1; hence, we state them

without proof.

e Keeping the foreign plant closed is feasible if and only if 7/0 > pa dg, in which case the profit

is equal to [p1 — ci]ds + Fpe — ¢1 — t1z] da.

o The risk-averse production planning problem when the foreign facility is open can be reformu-
lated as, with R, = [p1 —F(ca+t21)] d1 + [Fp2 — (e1 +t12)] d2 —7 ko the total revenue generated
by the multinational for the expected exchange rate in the “altruistic” configuration where
the US plant serves the foreign market and the foreign plant {(upon opening) serves the US

market, and with Cuo = (cg + to1) dy ~ pady + ko the part of the cost (the opposite of the

15



revenue) incurred in the foreign market in the “altruistic” configuration:

Re +max [F{ea+te1)— c1] 1+ [e1 + tia — F el 22

st ~% -+ Cor < (ca+tor)my — ey £ 5+ Cz,

(27)
0o Sdi,
0 S €z S dg.
The reader can check using the dual formulation of Problem (27), specifically:
LT s
mén Eia] -+ [(Cg + t21) dy — pody -+ klﬂ a+di(ea+ t21) max(o, & R 'Yl) (28)

+dp g max{0, & — F + vq),

with 71 and 4 defined in Table 1, that Problem (27) is feasible if and only if 7 > max(r{, ;")
with 77 and ;" defined in Equations (18) and (19), respectively.

Remark: The choice of the risk measure will naturally affect feasibility. For instance, if the distri-
bution of the exchange rate is symmetric, p(y} = p(—=) when risk is measured by the shortfall, and
the condition 7 > max(r~, %) (shared by both risk measures to have the opening of the foreign
facility meet the risk constraint) becomes 7 = ot and 7 > p{y)t in the standard deviation and
shortfall cases, respectively, with ¢ = max{ky —pg dy, pada —ky — {ca +1t21) di — ¢co da). The shortfall
mode! allows greater flexibility through the choice of the quantile parameter while obtaining similar
qualitative insights as in the standard deviation case; the flip side of that coin, however, is that
the quantile must be chosen carefully to avoid over-conservatism. In practice it is often best to
compute a family of optimal allocations indexed by the quantile, for the decision-maker to choose

from based on his individual preferences.

The remainder of this section is devoted to the foliowing two points: (i) understanding when the
nominal production plan described in Section 2 remains optimal in the presence of risk consider-
ations, and (ii} illustrating how the optimal allocation and profit evolve with the decision-maker’s

risk tolerance.

Optimality of nominal solution:
To study the values of (7, 7/c) for which risk does not change the optimal solution, we compute the
risk associated with the deterministic solution for each production mode, and checking whether it

satisfies the risk constraint. The nominal solution is optimal if and only if 7/o exceeds a threshold.
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Since we only analyze here the case where the US plant is already open (the case where the foreign

plant is open is similar), we can group the four hysteresis types described in Section 2.1 as follows:

s Three production modes, depending on whether total US production is equal to 0, d; or
dy +dg (for v < 1, 11 < < 3 and ¥ > 73, respectively). This case arises when y3 > 7. In

turn, this means that we will have three thresholds for 7/0.

e Two production modes, depending on whether total US production is equal to 0 or di + dy
(for 7 < s and v > -5, respectively). This case arises when v3 < 1. We will then have two
thresholds for 7/o.

The threshold is equal to the absolute value of one of the following three parameters: (a) the
profit in the foreign market of the foreign-plant-produces-all configuration when the foreign plant
is opened, (b) the profit in the foreign market of the myopic configuration when the foreign plant
is opened, and (¢} the revenue in the foreign market. (In the case with two production modes, only

cases (a) and (c) occur.)

Dependence of profit and production plan on risk:
Because our purpose here is simply to illustrate the dependence of the decision-maker’s strategy
on his risk tolerance, we only point out notable properties of the optimal solution and profit when
77 < 0. Their counterparts when i~ > 0 can be derived in a similar manner. We highlight the
potential appeal of an “open plant without producing there” strategy for the risk-averse decision-
maker, when keeping the foreign facility closed does not satisfy the risk constraint but generates
higher expected profits. We also emphasize that the decision to open the foreign plant is not, in
general, a threshold policy in 7/c, as this decision is motivated by two posgible factors, constraint
feasibility and expected profit maximization, which drive the manager’s strategy for two potentially
disjoint regions of values taken by /0.

We know that the optimal profit when the fofeign plant is open (Equation {28)) is a piecewise
linear convex function to be minimized, with a finite minimum for + > 71", and we find its optimal
by comparing the values taken by the function for the three possible breakpoints: o =0, ¢ =7~

and o = — v4. The optimal solution is found by complementarity slackness.

Case F < 71
Figure 1 shows the optimal profit when ¥ < v and 7, > 0, where we introduce the notation:

7y = o [ko — (pg — c2) do] = 7; + cada o, in addition to the notation introduced previously.
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Figure 1: Optimal profit when 7 < 1.

We distinguish between three cases to analyze the optimal profit when the manager opens the

foreign facility:

max{0, ;) < 7 < 72: The US plant produces for the US market (z1 = di), while the amount
produced by the foreign plant for its own market increases linearly from max (0,7 /lo ca))
to da as 7 increases from max(0,7;) to 7 (22 = [r — 77 |/(0c2)). The slope of the profit

when the foreign plant is open is v¢ — %.

Te < T < w*rf" : The foreign plant produces for the foreign market (z2 = d3), while the amount
produced by the US plant for its own market decreases from dy to 0 (z1 = dy—[7-+77"]/[ (c2+
t21)]). The slope of the profit when the foreign plant is open is v ~7. (Note that v < vs.)

T > w'rf' : The foreign plant produces for both the US and the foreign markets (z1 = 0, 22 = dy.)

The slope of the profit when the foreign plant is open is zero.

To find the optimal -operational hedge, we must then compare the optimal profit when the
foreign plant is open with that when the US plant is operating alone, taking into account that
using only the US plant is feasible, from a risk perspective, if and only if T > 7g. Figure (1) shows
an example where 777 < 7y < 72 and 7< s (besides ¥ < 1). The most important observation we

draw from Figure 1 is that the decision to open the foreign plant is not a threshold-type policy with
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respect to the manager’s risk tolerance: here, it is optimal to open the foreign plant for low and

high levels of risk tolerance, but not for medium levels. Two opposite effects explain this situation:

1. for low levels of risk tolerance, the decision-maker would benefit (in terms of return) from
not opening the foreign facility, but operating the US plant alone viclates the risk constraint;
hence, the optimal strategy is solely driven by the manager’s risk aversion and the resulting

feasibility or infeasibility of the operating modes,

2. the decision-maker switches to the proﬁt—maximizi'ng strategy of keeping the foreign facility
closed as scon as the risk constraint is satisfied and this strategy becomes feasible; he later
opens the foreign facility when the risk tolerance is large enough and the strategy is more

profitable.

Case 711 <% < 7y

Similarly, we can show that, under the same assumption that m" > 0 as before (so that 7 > 0 as
well), the production plan as a function of risk, when the foreign plant is opened, is given by: (i)
for 7 < 7 < 73, the US plant produces for the US market (21 = dy) and the amount produced by
the foreign plant for its own market increases from 0 to dg; the profit slope is 74 -7, (ii) for T > 7o,
the US plant produces for the US market (#1 = d) and the foreign plant produces for the foreign

market {zg = dp); the profit slope is zero.

Case ¥ > 4

It is always optimal to have the US facility produce for both the US market and the foreign market.
Note that while we assume 7 = max(0, 71 ), so that it is feasible from a risk perspective to open the
foreign plant, we do not agsume 7 > 7o. In particular, when py do > kg, 7 < 7p and it is optimal for
7] €7 < 7p to incur startup costs at the foreign plant without operating it to bring the risk within
bounds despite the profit loss, because the standard deviation of the profit is decreased by opening
the foreign plant. Again, this behavior, which is plainly suboptimal from a profit perspective, is
dictated by the need to keep risk within bounds, i.e., the need for a strategy with moderate {or at

least tolerable} risk.

| In practice,. if the decision-maker truly wanted to open the foreign plant without operating it,
he would maintain production at minimum levels, as is often done in assembly plants with high
stopping costs when inventory vastly exceeds demand. This strategy would, however, be much
more difficult to justify in the context of exchange rate uncertainty than in a personnel situation,

as the standard deviation of the profit is much more difficult to visualize than immediate costs
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such as layoff indemnities or penalties for violating unionized labor contracts, and investors and
management would question the decision-maker’s risk tolerance. Therefore, the manager must be
aware that the situation where a mathematical model recommends to open but not use a plant
may arise, and possibly consider increasing his risk tolerance when it does. This suggests that
some values of the risk tolerance parameter aze undesireble in operational hedging, in contrast
with mean-variance models in portfolio management, where no portfolio on the efficient frontier
is strictly more desirable than another (lower return is counterbalanced by lower risk), and asset

allocations evolve without jumps.

4 Profit-at-Risk

Another well-known measure of risk is profit-at-risk, i.e., a quantile of the profit distribution; for
instance, there is (by definition) only a 5% chance that the profit will fall below the 95% Profit-
at-Risk. This risk metric does not fall within the framework developed in Sections 2 and 3, as it
does not satisfy the additivity axiom posited in Equation {12): adding a constant amount to a
random variable modifies the probability of exceeding a threshold. In this section, we analyze how
the choice of this risk measure impacts the manager’s optimal strategy.

The decision-maker protects his profit against exchange rate volatility by enforcing that the
profit will fall below a threshold 7" with probability at most e. (e should of course be small, and
is assumed such that F~1(e) < 0 < F~1(1 —¢). For instance, if the distribution is symmetric,
F~1(0.5) = 0 and we simply assume ¢ < 0.5.) This constraint is called the profit-at-risk constraint.

The problem is stated as:

max  a(e,y) +7b(z,y)
st Pria(z,y) +vb(z,y) <T] <e (29)
(z,y) € 5.

Note that in this framework, it is least constraining to have T as small as possible, since a small

threshold decreases the probability that the revenue falls below that value.

Theorem T The profit-at-risk global production planning problem (29} can be formulated as a
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mixed-integer programming problem:

PR - GPP: max a(z,y)+b(z, )7
_a(m,y -T alz,y) =T
st ~UBD=L < b(a,) < UEBEL (30)

(z,y) €5,

Proof: Is an immediate reformulation of Problem (29) upon distinguishing between b{z,y) = 0 and

b(z,y) £ 0. 0

We observe strong similarities between the profit-at-risk models (PR-GPP) on one hand and the
risk-averse models (RA-GPP) on the other hand. In particular, the risk level © has been replaced
by the difference o(z,y} ~ T, and the parameters p('y} and p(—) have been replaced by —FNe)
and F~1(1 — ¢), respectively. A major difference is that the ratios 7/p(v) and 7/p(—7) have been
replaced by decision-dependent quantities, due to the term in a(z,y). Hence, T is harder to fine-
tune beeause it must be selected in the context of actual production allocations and thelr impact

on the part of the decision-maker’s profit that does not depend on the exchange rate.

Let again Ry = [p1 — (co +to1) ¥ di + n{y)p2 — (a1 + t12) da — F ko the total revenue computed
for the nominal exchange rate ¥, Caa = (c + t21) di — pada + k2 the cost Incurred in the foreign
market, and Re1 = p1 d) — (¢1 + t12) do the revenue incurred in the US market, all in the altruistic

configuration. Furthermore, we define the function G by, forall 0 < e < 1t
Gle) = —Caz F7He) + dy (c2 + t21) max{0, F7Ye) 7} + d2 comax{0,v4 — F~e)}. (31)

Theorem 8 investigates the values of the threshold T for which the risk-averse production planaing
problem is feasible, as a function of the probability level e. This helps emphasize the influence of
various cost parameters on system performance, as well as provide some guidelines regarding the

selection of T" and ¢ for practical implementations.

Theorem 8 (Feasibility)
(i) (US-ONLY) is feasible if and only if:

T < (py ~c1)dy — (c1 + t1z) dp + pada F 2 (e). (32}
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(ii) The production planning p?"oblem with the foreign focility open is feasible if and only if:
T < By + min{G(e), G(1 — €} }. (33}

Proof: If the foreign facility is opened, the optimal strategy is found by solving the following linear

programiming problem:

R, + max [—61 + 7oy tg;)} T + {{Cl N tlg_) — ”fcz] T

5.t [cz + tay — -ﬁ,—%ﬁ:l z1 + [——cz + %}%} xp £ Cag + -*—1—0“;,:1(1) )

¢

[Cz-i-tm F—"ré—_c)] ml%‘{ 02+Fﬁ]$2wcaz+m:
0_'<.$1Sd17

0 <z < dy,

or, equivalently, its dual counterpart:

R, + min Ca2+%11—%ll a"‘"w[Oag—i——ﬁ,—z;i—v_(lngS a” +dy B+ de Fa

st |ep o~ F—ff@] ot - [cz-i—tzl - FT—(qll-——_e) o + B 2 e + T (ea +ta1)s
w_024—9—'5#1& ot — ——02+~—c]1i—hL_ o+ f2 2 (c1+tz) ~ Ve
i F™{e) FH1—¢)) - ’

O.’+, o, ﬁla 62 2 &

(35)
Two cases may arise: either both Problems (34) and (35) have a finite optimum, or Problem (34)
is infeasible and Problem (35) has unbounded objective. (Problem (34) cannot have unbounded
objective, since its feasible set is bounded.) To analyze the infeasibility of Problem (34), i.e., the
impossibility of meeting the risk constraint by opening the foreign facility, we study Problem (35)

in more details by rewriting it under the equivalent, piecewise linear formu:

R + min {Caz + %ﬁ%} at - [Oaz + F_?“i%lla} a”
+dy (cp + tg1) max {0, T [1 - Iﬂ,-;’_ff»(? at + {1 - Fj—%li—:e—)l a”’“} -
+dy co max{(),'m - {—F—_Yfig - 1} at + f:y%f——) - 1} a'}

—¢
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w‘“ ' —
which becomes after introducing the notations A = o — o™ and p = ~ ngl @ + le%l ) (a

well-defined change of variables because F~1(e) # F71(1 - ¢€)):

R, +min Caa A — {T — Ra1) it + dy (ca +121) max {0, - A +m (A +p)l}
+dg ez max{0, —F + X + v (1 + p)} (37)

st —FHl-ep< A< —FHe)p

Note that we must have g > 0 since F~1(¢) < 0 < F~*(1 —¢). Problem (37) is feasible if and only
if the slope of the objective is nonnegative when we follow the extreme rays A = —F " (e) i and
A==~ F~1(1—¢) p when p — co. We conclude by noting that the slope of the objective (in i) when
A= —FYe) pis: ~Clg F7Y(e) ~ (T — Ra1) +dy (ca +121) max {0, F~te) - Y1} +dace max{O,.'m -
F~Ye) = Ge). Similarly, the slope of the objective (in ) when A = —F Y 1~ pis: G(1—¢).
-

Remark: As is clear from Formulation (36), key to the change in production plan as F~Ye) and
F~Y1 — €) vary is their position with respect to v and s, Another important observation is that
the impact on the multinational’s performance of the threshold parameter T', when the foreign
plant is open, is entirely captured by the difference between the threshold T and the revenue Hga1
generated in the US market by the altruistic policy.

Finally, we analyze how the adoption of a probability-based model to capture risk impacts the
optimal production plan. The fact that the manager must fine-tune two parameters, T and ¢, once
the risk and return measures have been chosen, creates new flexibility in allowing the manager
more control over the regions for which a specific production strategy is optimal (e.g., the US plant
produces for its own market and the upper risk constraint is tight), but it also introduces more

complexity in the problem.

Theorem 9 (Optimal solution)

(1) The optimal production plan is piecewnse linear in 7. The coefficients of the linear pieces depend
on F~Ye) or F71(1 —¢).

(i) The transition points in the different regimes of the production plan (e.g., when x1 increases to
dy and cannot increase further) depend on F “1(¢) and F~1(1—¢), and as a result of the manager s
choice of risk parameters.

(i#t) One plant alwoys produces all or nothing of the demand in its own market.
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Proof: At optimality, either the production plan does not depend on risk (the nominal solution sat-
isfies the risk constraint or the foreign facility remains closed), in which case the results are trivial,
or one of the constraints b(x,y) = % and bz, y) = —%% is binding. Injecting the
expression of a(z,y) and b(z,y) allows us to conclude following straightforward algebraic manipu-

lations. [

Remark: We have seen that the production planning problem studied in Section 3 when the
manager decides to open the foreign facility can be interpreted as a deterministic problem with
a modified exchange rate linear in the marginal price the manager would pay to relax the risk
constraints. (We have also seen that, in order to have total US production differ from 0, d; and
dy + da, the modified exchange rate must be one of the breakpoints in the deterministic model.}
In contrast, the probability-based model can be reformulated, again using the optimal nonnegative

shadow prices o and o~ for the risk constraints:

at o + - 3 _
[F""’“(e) CF(1~ e)] T max {1 ~ gt g At ot + o] Blw)
st. 0<m <dy,

0 < 29 S dzw
(38)

Risk, measured by the probability the revenue will fall below a threshold, now affects the portion
of the revenue +hat is US-based, i.e., does not depend on the exchange rate, as well as the portion

that is foreign-based. The equivalent nominal exchange rate in this context would be: [m{v) —at +

V- oG + F

is not solely captured by the value of the shadow prices; the (manager-selected) value of F~(e)

], which is no longer linear in the dual variables. In this model, risk

and F~Y(1 — €) also have a direct impact on the nominal exchange rate.

The probability-driven model has appealing properties, but also raises implementation chal-
lenges, in particular in the selection of the parameters, and it is not clear that this approach
outperforms the simpler framework studied in Sections 2 and 3. The purpose of Section 5 is to pro-
vide some insights into the comparative merits of the models we have presented so far by conducting

a numerical study using simulated and historical data.
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5 Empirical study

5.1 Purpose

In this section, we analyze how the decision maker’s choice of exchange rate model and performance
measure affects the optimal allocation through extensive numerical experiments. In particular, we

investigate the following issues:

¢ How does shortfall perform compared to the traditional variance- and probability-based risk

meagures?

e How important to overall performance is it to assume the correct model for the exchange

rate?
s Do these insights hold for the kistorical data available?

Researchers have traditionally assumed that exchange rates follow either a Geometric Brownian
Motion (Huchzermeier and Cohen 1993, Dasu and Li 1997, Kouvelis, Axarloglou and Sinha 2001) or
a mean-reverting (Ornstein-Uhlenbeck) Brownian Motion (Kogut and Kulatilaka 1994) with known
distribution parameters. Therefore, we will focus our atfention on these processes using simulated
data from both Geometric Brownian Motions and mean-reverting Brownian Metions for a wide
array of parameters, as well as historical exchange rates in ranges around the breakpoints identified
in the theoretical part of our work. Our analysis compares the optimal strategies of seven types of
risk-averse decision-makers, whose characteristics {the exchange rate process they assume and the

risk measure they consider) are summarized in Table 2.

Exchange rate process Risk measure
1 | Geometric BM Variance
2 | Geometric BM Probability
3 | Mean-reverting BM Variance
4 | Mean-reverting BM Probability
5 Normal (i.i.d.) Variance
6 | Normal (i.i.d.) Probability
7 | Data only Shozrtfall

Table 2: Characteristics of the deciston-meakers.

5.2 Research Methodology for Simulated Data

Qur methodology in simulating the data can be summarized as follows:
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1. Cenerate n=8 or n=20 sequential exchange rates {to analyze the impact of the size of the

data set}.

2. Compute the parameter values for each exchange rate model based on this data (for shortfall,

we use a simple linear regression model to generate the residuals. )

3. Find the optimal allocation for each decision-maker, based on his exchange rate model and

performance measure.
4. Generate 100 “next period” exchange rate instances.

5. Compute the profit that would be realized for each of the 100 “next period” exchange rate

instances and for each of the allocations generated in step 3.
6. Create an Excel graph to evaluate the results from the simulation.

7. Repeat the process for each set of parameters presented in Tables 3 and 4 below for a Geo-
metric Brownian motion, with {a) drift= .1 and ¢ = .1 and (b) drift= 05 and ¢ = .1, and
a mean-reverting Brownian motion (with reverting factor A given in Table 4 and ¢ = 27,

respectively).

The second column in Tables 3 and 4 indicates the breakpoint that we are investigating for that
run, The last simulated data point must be close to the breakpoint for the simulation to be of any
inﬁerest; otherwise, there is no uncertainty on the strategy that will be optimal once the exchange

rate is realized in the next period. o in the shortfall column refers to the specific quantile considered.

5.3 Simulation Results

As a large number of scenarios were evaluated in the numerica) study, we chose a limited number
of instances to present the general results that are supported by the entire, wider collection of
simulation runs. Figures 2 and 3 present the profits when the exchange rates were generated using &
Geometric Brownian motion for the breakpoints 0.66 and 1.32, respectively; therefore, the standard
deviation, shortfall and profit-at-risk measured for the correct assumption of Geometric Brownian
motion serve as benchmarks to compare the results obtained assuming a mean-reverting Brownian
motion or a Normal distribution. Figure 4 presents the results when the exchange rates were

generated using a mean-reverting Brownian motion. Similarly, the metrics (standard deviation,
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Probability | Variance | Shortfall
Index | ~ nth ¥v| T € T o T

1 0.66 4000 0.1 10 0.1 30
2 0.66 4000 0.2 10 02 30
3 0.66 4000 0.3 10 0.3 30
4 0.66 4250 0.1 25 01 75
5 0.66 4250 0.2 25 0.2 75
6 0.66 4250 0.3 25 0.3 75
7 0.66 4350 0.1 50 0.1 150
8 0.66 4350 0.2 50 0.2 150
9 (.66 4350 0.3 50 0.3 150
10 0.66 4400 0.1 100 0.1 300
il 0.66 4400 0.2 100 0.2 300
12 0.66 4400 0.3 100 0.3 300
i 1.32 5000 0.1 100 0.1 300
2 1.532 5000 0.2 100 0.2 300
3 1.32 5000 0.3 100 0.3 300
4 1.32 4750 0.1 250 .1 750
5 1.32 4750 0.2 250 0.2 750
6 1.32 4750 0.3 250 0.3 780
7 1.32 4600 0.1 500 0.1 1500
8 1.32 4600 0.2 500 0.2 1500
9 1.32 4600 0.3 500 0.3 1500
10 1.32 4500 0.1 1000 0.1 3000
11 1.32 4500 0.2 1000 0.2 3000
12 1.32 4500 0.3 1000 0.3 3000

"Fable 3: Parameters for simnulation runs using Geometric Brownlan motions, for breakpoints 0.66
and 1.32.

shortfali, profit-at-risk) computed with the correct process assumption will serve as benchmark to
compare the other results. In the title of the graphs, the first number refers to the breakpoint and
the second number to the index of the simulation run, which refers to either Table 2 or 3. The
upper half of the graphs corresponds to runs with 8 data points and the lower half with 20 data
points.

Once the allocation is determined, the profit is linear in the realized exchange rate, which is
indeed what we observe in the graphs. A line with a slope steeper, in absolute value, than the
absotute value of the benchmark indicates that the performance measure did not constrain the
production allocation sufficiently to meet the targeted risk level. This is because the slope is the
revenue generated in the foreign market, which is bounded by 7/¢ when the manager makes the

correct assumption on the process. Similarly, a line with a siope gentler than the benchmark

27



Probability | Variance | Shortfall
Index | % A T € T o' T

1 0.66 0.3 | 4000 0.1 10 0.1 30
2 -,0.66 074000 0.2 10 0.2 30
3 0.66 1.01[4000 0.3 10 0.3 30
4 0.66 0.3 ]4250 0.1 25 0.1 75
5 0.66 0.7 4250 02 25 02 75
6 0.66 1.0|4250 0.3 25 0.3 75
7 0.66 0.31]4350 0.1 50 0.1 150
8 0.66 0.7 4350 0.2 50 0.2 150
9 0.66 1.0|4350 03 50 0.3 150
10 1066 034400 0.1 100 0.1 300
11 | 066 0714400 02 100 0.2 300
12 | 066 104400 0.3 100 0.3 300
1 1.32 0.3 15000 0.1 100 0.1 300
2 1.32 0.7 15000 0.2 100 0.2 300
3 1.32 1.0 | 5000 0.3 100 0.3 300
4 1.32 0.3 4750 0.1 250 0.1 - 750
5 1.32 674750 0.2 250 0.2 750
6 1.32 1.0 14750 0.3 250 0.3 750
7 1.32 0.3 4600 0.1 500 0.1 1500
8 1.32 0.7 4600 0.2 500 0.2 1500
9 1.32 1.0 4600 0.3 500 G.3 1500
10 1132 034500 0.1 1000 0.1 3000
11 {132 0774500 0.2 1600 0.2 3000
12 | 1.32 1.0|4500 03 1000 0.3 3000

Table 4: Parameters for simulation runs using mean-reverting Brownian motions, for hreakpoints
0.66 and 1.32.

{in absolute value) indicates that this performance measure overly constrained the production
allocation to meet the targeted risk level. Steep slopes in absolute value also indicate high profit
volatility. In this context, we interpret robustness as relative closeness to the benchmark and make

the following observations:

1. The number of historical data points used (n = 8 or n = 20) can have a significant impact
on the profit when the true exchange rate process obeys a Geometric Brownian motion. For
instance, GBMStd coincides with NormStd in the upper right panel in Figure 2 and with
GOUStd in the lower right panel, which indicates that these assumptions yield the same
production plan. The number of data points, however, does not have any significant effect on

the metrics when the true exchange rate process is mean-reverting (Figure 4).

2. Assuming a stationary Normal distribustion for the exchange rates leads to unpredictable per-
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Figure 4: Results for exchange rates from a mean-reverfing Brownian motion.

formance; for instance, this leads to the steepest slope in the upper left panel (simulation

run 4, first breakpoint) of Figure 2, but to the same allocation as the one obtained in GBM-

Std with the correct assumption of Geometric Brownian motion in the upper right panel

(simulation run 6, first breakpoint).

Assuming the correct Brownian motion process, while obviously desirable, does not substan-

tially improve performance, as indicated by similar slopes obtained under the assumptions of

geometric and mean-

rofitGOUvar in Figure 4.

reverting Brownian motions, for instance TheProfitGBMvar and TheP-

. In most instances, using shortfall as risk measure results in slightly over-constraining profit.

This effect is more pronounced at the second breakpoint value (Figure 3), where we observe

that the shortfall corresponds to the lowest plot on each of the four graphs.
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5.4 Research Methodology for Historical Data

We now apply our methodology to actual exchange rates between the US dollar and the currencies
of Brazil, Taiwan, Japan, Russia, Mexico, South Africa, Switzerland and Israel. We chose this
group of foreign countries because: (i) they represent varied regions of the world, (ii) they have a
strong, worldwide manufacturing presence, and (i) their currencies show considerable variability

to the US dollar (see Figure 5). In order to study the currencies near the breakpoints identified in

Historic Exchange Rates toUS $

e Brazil REAL
e Thawan &

Japan Yan
---Russian Rubbiz
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Figure 5: Normalized historical exchange rates to the US dollar.

the theoretical model, we normalize each currency data set by dividing all the instances by their
arithmetic mean, and then multiplying them by each breskpoint. This yields two sets of data
points per currency {one for each breakpoint). For each set, we follow the same procedure as for
the simulated data to generate the optimal allocation for each decision- maker. The parameters

used in this part of our empirical study are summarized in Table 5.

5.5 Results with Historical Data

Once again, we chose a limited number of representative results to present, which generalize the

entire collection. From these results (see Figures 6-7), we make the following observations:

1. Generally, choosing shortfail as a risk measure constrains the profit potential more than

choosing other risk measures, especiaily for the higher breakpoint, 1.32.
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Probability | Variance | Shortfall
Index | Breakpoint | T € T o T
1 .66 4000 0.1 10 0.1 30
2 0.66 4250 0.1 25 0.1 75
3 0.66 4350 0.1 50 0.1 150
4 .66 4400 0.1 100 0.1 300
5 1.32 5000 0.1 100 0.1 300
8 1.32 4750 0.1 250 0.1 750
7 1.32 4600 0.1 500 0.1 1500
8 1.32 4500 0.1 1000 0.1 3000

Table 5: Parameters in study using actual exchange rates.

9. The results when a stationary Normal distribution is assumed often differ quite noticeably

from the others.

3. There is no appreciable difference in performance

motion as opposed t0 a mean-reverting one.

when we assume 3 Geometric Brownian
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Figure 6: Results for historical exchange rates (variance model).
The conservative results associated with shortfall suggest that the use of linear-regression residuals

is likely inadequate in the case of actual exchange rates. This co
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or time-varying effects across

Figure 7: Results for historical exchange rates (probability model).

to obey i.i.d. distributions.

5.6 Summary of Numerical Results

actual exchange rates, whereas the simulated data points are assumed

The aim of this study was to test various risk measures in a realistic implementation of operational

hedging, and in particular to investigate the performance of shortfall as well as to compare its per-

formance with that of traditional measures such as variance and probability (profit-at-risk). When

we simulated exchange rates based on the stochastic processes commonly used in the literature, we

found that the shortfall-based approach performed similarly to (sometimes hetter, sometimes worse

than) the other risk measures. When we considered teal exchange rates, however, the shortfall-

based approach limited profit more than its variance and probability-driven counterparts. This

suggests that enforcing shortfall constraints to model risk aversion might not be appropriate in

operational hedging, as the resulting profit is often dominated by the profit obtained using other

metrics for a wide range of values of the exchange rate.
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6 Conclusions

We have integrated risk aversion to operational hedging when exchange rate is the only source of
uncertainty. This has allowed us to quantify the impact of the manager’s risk preferences on the
optimal strategy, and to compare three well-known Tisk measures: variance, probability (profit-
at-risk) and shortfall. We have also conducted an extensive numerical study to test our resuits
using both simulated and actual data. While shortfall has received much attention in the finance
Lterature and performs well for simulated values of the exchange rates, our results for historical
exchange rates indicate that this concept should be used with caution in operational hedging, as
it jeads to very conservative results compared to other measures of risk. Further research includes

extensions to facilities in several foreign countries and multi-period models.
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