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Absfract

Most technology companies are experiencing highly volatile markets with increasingly short-
ening product life cycles due to rapid technological innovation and market competition. Current
supply-demand planning systems remain ineffective in capturing the short life-cycle nature of
the products and the hi‘gh velatility in the markets. In this study, we propose a demand char-
acterization approach that combines life-cyele modeling with advanced demand signals from
leading-indicator products through a Bayesian update. The proposed approach describes life-
cycle demand in scenarios and provides a means to reduce the variability in demand scenarios via
leading-indicator products. Computational testing on real-world data sets from three semicon-
ductor manufacturing companies suggests that the proposed approach is effective in capturing
the short life-cycle nature of the products and early demand signals and is capable of reducing

the uncertainty in the demand forecasts by more than 20%.

1 Introduction

In the mid-to-late 1990s, high-tech companies, such as consumer electronics, telecommunications
equipment, and semiconductors, grew rapidly. To reduce costs and cycle times, many firms devel-
oped and deployed supply-chain-management systems, but continued to rely on traditional demand
planning in which the basis of a demand forecast is either an internal marketing judgement based
on customer projections or traditional time-series forecasting methods that rely heavily on histori-
cél data and require stable demand trends. These approaches are ineffective in characterizing the

volatile, non-cyclic high-tech product demands and in responding to the fast changing conditions

of the market-place, such as the industry decline that succeeded in 2001.

In the challenging technology-driven market conditions, firms rapidly innovate technology

and introduce new products to maintain their competitive position. This leads to shortening
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technology life cycles, which are known to follow a general demand life cycle that starts with an
initial growth (ramp up) followed by a period of stability and then a decline in sales when a new
generation of products is introduced. In this study, we develop a demand modeling approach
that combines the insights from leading-indicator products and growth models in order to capture

advanced market signals and demand life-cycles in an insightful manner.

The study has been motivated by our extensive analysis of demand data from a major U.S.
semiconductor manufacturing company (Meixell et al. 2001, Wu et al., 2006). The analysis starts
by grouping the products with similar attributes such as market segment, type of resource, and
fab technology code. Within each product group, a search is performed to identify some potential
leading indicator products. We define a "leading indicator product” as a single product or a group
of products that are introduced earlier into the market and are likely to give information about the
market a certain period ahead of time. We utilize the information from these products to extend

the available data set of the products that they lead.

Besides leading indicators, the second key ingredient of our demand characterization ap-
proach is the use of life-cycle growth models. Combining the concepts of product life cycles and
forecasting, growth models provide attractive alternatives to the traditional time-series forecasting
methods for short life-cycle (high-technology) products (Kurawarwalé and Matsuo, 1996). Tech-
nological forecasting literature, which studies the diffusion of innovations in a population, suggests
several growth models that we can use to describe a wide variety of life-cycle patterns observed in
practice. Mahajan, Muller and Bass (1990) provide an extensive review of these models and study

their applications to marketing.

Availability of several models, however, makes it difficult to select the model that best
describes the historical data of a given set of products and that generates accurate forecasts. As
opposed to the technological forecasting literature, which mostly focuses on the performances of
individual models, we use a large collection of models to characterize and predict the demand
growth patterns of the products. We use the additional data from several leading indicators to
extend the available data set of the products and to Bayesian update the estimates of the models
obtained from the available historical data. The update provides a means to incorporate the future
demand information, and reduces the uncertainty in the characterization of demand. In addition,
one problem associated with the short life-cycle product environment is the scarcity of available

data. A byproduct of this approach is that the increase in the number of data points can result in



parameter estimates with higher significance.

To investigate the impact of the additional data on the projections of the models, we first
study the relative change in the projections of the growth models. Asa meésure, we use the range of
the projections. Second, we consider the combined estimate of the models and describe demand in
terms of the scenarios that are sampled from the probability distribution of the combined estimate,
rather than from the probability distribution of the estimate of the single best model. We show
that the update streamlines the characterization of the future demand patterns of the products

and generates demand scenarios with smaller variation.

In the next section, we review the relevant literature. We introduce our demand charac-
terization approach in Section 3 and the analysis of the variability in demand characterization in
Section 4. The implementation of the approach on real-life data sets is presented in Section 5, and

concluding remarks follow in Section .

2 Literature Review

The emphasis of the technological forecasting literature has been on obtaining point forecasts via
trend extrapolation and improving the accuracy of these forecasts. The focus of the studies in
the literature in terms of improving forecast accuracy has been to select the right model(s) and to
determine the best parameters. Qur study Ifur’sher seeks to improve the performances of the best
models, by incorporating future demand signals. Furthermore, we aim to obtain demand forecasts

with smaller variation, so that their estimates can be given more confidence.

Algebraic estimation and fitting procedures are the two basic approaches in the literature
for the estimation of the best parameters and generation of demand forecasts. Mahajan and Sharma
(1986) propose an algebraic estimation procedure that uses the estimates of some key information
about the life-cycle of a product, such as the timing of peak sales and the market potential. Fitting
procedures determine the parameters that best fit the available data in each period. Various fitting
procedures have been suggested, including the ordinary least squares estimation (Bass, 1969), the
maximum likelihood estimation (Schmittlein and Mahajan, 1982), and the ronlinear least squares
estimation (Srinivasan and Mason, 1986). The ordinary least squares procedure requires that the
model be linear in its parameters, and therefore uses a linearized version of the original growth
model; however, linearization results in poor parameter estimates (Mahajan et al., 1990). Both the

maximum likelihood and nonlinear least squares estimation procedures provide superior results to



the ordinary least squares estimation procedure; however, a disadvantage of the maximum likelihood
estimation procedure is that it underestimates the standard errors of the parameters (Srinivasan
and Mason, 1988). Therefore, among these approaches, the most widely used is the nonlinear least

squares procedure.

Extensions of the algebraic estimation and fitting methods are the use of feedback filters
and Bayesian estimation procedures that allow the model parameters to be updated as additional
data become available. Feedback filters adjust the estimates of the parameters from the fitting
methods based on the error between the actual and the predicted values of the most recently
observed demand data {e.g., Meade, 1985). Bayesién approaches combine the data-based estimates
from the fitting methods with the estimates from the algebraic estimation procedure or with the
information from other sources such as from similar products that were launched earlier into the
market. Among the studies that use Bayesian updating to forecast demand over the product life
cycles, one well-known study is Sultan et al. (1990), in which a meta-analysis was performed
using 213 applications of diffusion moedels from 15 articles. The impact of factors such as the
type of innovation, geographic effect, and the marketing variables on the value of parameters is
determined. The estimates from the meta-analysis are used before a product is launched. As
new data become available, the bréor estimates from the meta-analysis are Bayesian updated with
the data-based estimates. It is shown that the Bayesian scheme produces more robust results,
particularly early in the product history. Zhu et al (2004) is another study that proposes a Bayesian
forecasting algorithm for products with short life cycles. The algorithm combines the knowledge
of the prior products with the actual demand data of the product to generate and update demand
forecasts. The empirical analysis on a data set from a PC manufacturer shows that the Bayesian
algorithm produces better forecasting performance than double exponential smoothing (assumes
linear demand trend), algebraic estimation {no update with actual data), and fitting methods. All
these studies use some past information for the update and do not take into account the future

changes in the conditions of the market-place and the product.

A study that is similar to ours in incorporating future information into demand analysis
is by Islam et al. (2002). They consider the diffusion of an innovation in several countries, which
have different starting times but similar dynamics of the diffusion process. Data. from several
countries are pooled using linearized growth curve models. However, the empirical analysis by
Takada et al. (1991) on the diffusion rates of several consumer durable goods in four Pacific Rim

countries shows that cultursl and communications systems in a country and whether a product is



introduced earlier or later do have an impact on the adoption rates of the products; therefore, the
use of data from other countries is not necessarily valid. Meixell and Wu {2001) is another study
that considers future market information. As in our study, leading-indicator products are used to
obtain advanced demand information, but in a different manner. The available data set of the
leading indicator product defines an expected nominal growth curve. The parametric deviations
from the nominal curve such as shift in volume and skewness form alternative demand scenarios.
The probability of each parameter state changes as more data from the leading indicator product

becomes available.

Another stream of related research is the quantification of uncertainty in growth-curve
forecasting, which is not a well-studied subject. Chatfield (1993) states the difficulty in modeling
the uncertainty in the estimates with linear models and describes several underlying reasons such
as incorrect model identification, uncertainty in parameter estimates, and changes in the data-
generating process. The intrinsic nonlinearity of the growth models contributes to this difficulty
and makes it a less appealing area to study. One of the noteworthy studies is by Meade and Islam
(1995). They suggest three approaches to construct prediction intervals for growth-curve forecasts
and compare their performances on both simulated data sefs and real data sets. The empirical
results indicate that as the number of data points available for parameter estimation increases,
the performances of the prediction intervals improve. However, no attempt is made to reduce
the variance of the forecasts and hence improve the width of the prediction intervals. Heeler and
Hustad (1981), Tigert et al. {1981), Srinivasan et al. (1986), and Islam et al. (2002) are among
the studies that empirically show that as the number of actual data points used for estimation
increases, estimates of the parameters stabilize (i.e., their estimation variance becomes close to
zero) and accuracy of the forecasts increases. Other than this line of approach that studies the
impact of the increase in the number of historical data points, to the best of our knowledge, there is
ne study in the technological forecasting literature that is concerned with reducing the uncertainty

in growth-curve forecasting.

An attempt in the general forecasting literature to reduce forecast variance is to combine
several forecasts. There are several empirical studies that show that with combination, forecasts
with smaller variances are obtained (Dickinson 1973). In the light of this information, we consider
the combined estimate of several growth models, and characterize the probability distribution of
this estimate. We then use the continuous probability distribution by discretizing and generating

random samples as demand scenarios.
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The resulting demand scenarios can be used in the decision-making activities of the firms.
For example, stochastic programming models use distributional forecasts rather than point fore-
casts as in deterministic optimization models. Since it is difficult to solve a stochastic program-
ming model exactly with the characterization of the random variables as continuous distribution,
the model can be approximated using random samples generated from the continuous probability
distribution. A related study is by Morton and Popova (2004). They use Bayesian forecasting to
model uncertain machine up-times and production rates in a production planning problem. Data
from the past months is used to update the distributional forecasts of these parameters, and Monte
Carlo random sampling is used to generate observations of the random parameters for & stochastic

decision problem.

We propose a demand characterization approach that aims to improve the accuracy and
reduce the variance of the forecas%é. The additional data from leading indicators that carry informa-
tion about the future demand is used to achieve this. If used together with the variance reduction
techniques in sampling, the proposed approach has the potential to increase the statistical efficiency

and time efficiency of the decision medels that will use the resulting demand scenarios.
3 Life-Cycle Demand Characterization: A Methodological Approach

The projections of the sales of the products with short life cycles typically go through one phase
of rapid growth, maturity, and decline and are subject to high uncertainty. The central concept of
our approach is to characterize the life-cycle projections of these products using a large number of
single-modal growth models and to update the projections with the advanced demand information
from leading-indicator products. We then study the change in the accuracy and the variability of

the projections with the update.

In this section, we first introduce the concept leading indicator products and propose a
search procedure to identify potential leading indicator products for a given group of products.
We next describe the modeling procedure with life-cycle growth curves. We then discuss how to
combine the life-cycle projections obtained from the available historical data of the products with
the information from leading indicator products through Bayesian approach. The output of the
Bayesian approach is the characterization of the estimate of each growth model with a probability

distribution that includes advanced demand information.



3.1 Leading-Indicator Analysis

- 'We define a leading-indicator product as a product that demonstrates a demand pattern that is
similar to the demand pattern of a larger product group a certain period ahead of time. With
the use of a leading-indicator product, we aim to obtain advanced indications about the demand
pattern of the pfoduct group. A similar concept is used in the fashion goods industry, where long
production lead times and short selling seasons are common as in the high-tech industry. For
example, Fisher and Raman (1996), Eppen and Iyer (1997), and Kim (2003} use the sales records
in some representative fashion stores in the pre-season test periods and the actual sales data in the
early season as demand indicators for the actual demand in the selling season. These studies also
épply the Bayesian approach to forecast demand, though without any consideration of life-cycle

modeling.

There are several ways to form the product groups, for which we perform the analysis. In
Meixell and Wu (2001), after the study of demand data for about 3, 500 products, it was found that
these products follow a few {approximately six) life-cycle patterns and can be grouped into these
patterns using statistical cluster analysis. In Wu et al. (2006), we focus on exogenously-defined
product groups, in which products that share the same resource, technology group, or market
segment are grouped together. This type of grouping is helpful in modeling production planning
problems, where there is typically a set of capacity-related constraints that link usage of a resource

to its available capacity.
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Figure 1: Examples of Leading Indicator Products

Within each product group, we search for potential leading-indicator products. Given a
group of products C, we treat each product ¢ in the group as a potential leading-indicator product

and check the time lag L ahead of which the product exhibits a similar demand pattern to the rest



of the product group. Let z;; and z: denote the demand data of the potential leading-indicator
product i and the rest of the product group in period ¢, respectively. At any time ¢, {21, ..., %54}
and {z1, ..., :} are known while {2; 4.1, Tig42, ..} and {&eiq, Teia, ...} are unknown. Given the data
available up to time T, we determine a potential leading indicator product based on the absolute
value of the correlation coefficient between the demand time series of the product over 1,7 — L] and
that of the product group shifted by the time lag of the leading indicator, that is, over [L + 1,77,

using the formula:

Z’{;L-{-«I(mi,t—-b e i’z) (I.Ct — ﬁ)
ML = = — o
\/ZtmL+1($i,t—L — & )? Yimr 1@ — F)2

where #; and & are the average demand of the potential leading-indicator product ¢ and the rest of

the group over the time interval for which the value of correlation is calculated. Table 1 gives the

details of the procedure to find candidate leading-indicator products.

Table 1: The Leading-Indicator Search Procedure

(1) Identify a product group of interest and set the threshold minimum time lag (L), maximum
time lag {L), and minimum correlation. Initialize the procedure by grouping all the products into
one group.

(2) To find all the leading indicators above the required threshold, for each product ¢ in a given
group C,
(a) Set time lag L = L.
(b} Compute the correlation between the demand time series associated with product ¢ where
the time series is offset by L and the demand time series assaciated with the product group €
as in Equation 1.
{c) Record the correlation p;r, computed for product ¢ and time lag L.
(dY Set L =L+ 1. If L < L, repeat Step (b).

(3) Examine all the recorded correlation numbers p;r. If at least one of the correlation values p;r,
and its corresponding time lag L satisfy the specified threshold, go to Step 4. Otherwise, recluster
ag follows:
(a) Using statistical cluster analysis, subdivide the product group based on statistical
patterns in each product’s historical demand; some attributes that can be used for clustering
are mean shipment quansity, shipment frequency, volatility, or skewness.
(b} Repeat Steps 2 and 3 for each subgroup.

(4) Return the leading indicator(s) and the corresponding product group(s).

For a given group of products, if a leading-indicator product that satisfies the minimum

requirements on the time-lag and correlation value cannot be found, the search procedure is per-



formed within subgroups of the product group that are obtained using statistical cluster analysis.
Once we determine a leading-indicator product with a time lag L and a value of coefficient of
correlation p;z,, we congtruct a forecast for the product group based on the time series of the lead-
ing indicator. By regressing the time series of the leading indicator over [1,T — L] against the
time series of the product group over [L 4 1,7, we determine the formula that transforms the
leading-indicator-based data into the data of the product group. Using this formula, we obtain the
leading-indicator-based forecasts over [T+ 1,7 + L], which is used to extend the available data of

the product group beyond the available data [1,T]. The details of the procedures follow in Table 2.

Table 2: The Leading-Indicator-Based Forecast

(1} Regress the time series of product group C over {1 + L, T against the time series of the leading
indicator over [1,T — L]. Determine the corresponding regression parameters £y and £;.

(2} For & given month ¢, generate the forecast for the product group, #;, using L-month earlier time-
series data of leading indicator 1 as follows:

2y = B+ BiTig-L

Figure 1 illustrates two examples for the monthly time-series data of a product group
(solid line) against that of a leading-indicator product {dashed line). The time series of the group
has been shifted ahead by the corresponding time lag to show the mapping between the two series.
The first chart shows a leading indicator that predicts the demand pattern of a larger group three
months ahead of time with a correlation of 0.95; the second chart shows a leading indicator with a

six-month time lag and correlation of 0.82. For more examples, see Wu et al. (2006).

3.2 Life-Cycle Growth Modeling

The projections of the sales of the products with short life cycles typically go through one phase of
rapid growth, maturity, and decline, and follow a single-modal curve. The use of non-cumulative
growth models requires the precise prediction of the patterns of & given set of time-series data. In
order to lessen the impact of the short-term fluctuations on the prediction quality of the growth
models, we use cumulative life-cycle models. Hence, an S-shaped curve characterizes the projection

of the life-cycle demand that occurs over time (Figure 2).

With this new characterization of demand, forecasting the demand in each time period
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Figure 2: Cumulative Demand and Projections of Different Curves

requires the projection of the S-shaped cumulative life-cycle demand patterns of the products into
the future. We use several cumulative life-cycle growth models, each of which exhibits different
features of a projection (Figure 2). For the selection of these models, we refer to the study by
Meade and Islam (1998). They survey the 29 models in the technological forecasting literature and
group these models into different classes. The classification is based on either the way the modeis
incorporate randomness or their shape. The shape of a model is characterized by the timing of its
point of inflection, which corresponds to the point on the growth curve with the maximum rate of

sales,

Given the projection of the life-cycie demand of the product group up to aﬁy time T, we
forecast the percentage of the projected demand that will be met by time T+ M (M > 0). Let
X (t) be the percentage of the life-cycle demand that has been met by time ¢ (0 < X(¢) < 1,¢ > 0),
and let }?k(t|@T) represent the estimate of the cumulative growth model & (k = 1,..., K), given
data up to time T, i.e., O = {X(1),..., X(T)}, such that:

X(t) = Xe(t|©r) + e (tlO7), (2)

where €, (f|©7) represents the estimation error. We assume that the estimate of a cumulative life-
cycle growth model for time T + M generates an unbiased forecast for the actual percentage of the
total life-cycle demand that will be met by time T + M. We further assume that the estimation
error is normally distributed with mean zero and constant known variance Jfk. In the next section,
we discuss the Bayesian demand analysis that combines the information from leading-indicator

products and life-cycle growth modeling from the historical data.
3.3 Bayesian Demand Analysis

Given the importance of associating a measure of uncertainty with a point forecast, we express

the uncertainty in the estimates of growth models using Bayesian approach, which treats the
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estimate of each growth model as a random variable and describes each random variable with a
probability distribution. This allows a complete characterization of the uncertainty associated with

the estimates.

The Bayesian approach starts with a prior distribution that suinmarizes the data available.
With the observation of new data, the prior distribution is updated, resulting in the posterior
distribution. In light of this explanation, we obtain the prior projection of a growth model from
the historical data, which is available up to time T, and derive the prior distribution of the estimate
of the model (Figure 3a). We then use several leading indicators with a time lag of at least I periods
to forecast the actual data over [T+ 1, T+ L}, and use the leading-indicator-based forecast to extend
the historical data. The estimate of a growth model over the data set extended with each leading
indicator provides a sample life-cycle projection for the true projection of the model that would be
obtained with the actual data over [1,7' -+ L] (Figure 3b). Bayesian updating the prior distribution
with the sampling information from leading indicators gives the distributions that characterize the

posterior life-cycle projections as the new estimates (Figure 3c).
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Figure 3: Probability Distribution of the Estimate of a Growth Curve
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3.3.1 Prior Life-Cycle Projections

We assume that the estimate of a model with the data available up to time T, ie., )’fk(T +
M|©7) (k= 1, ..., K), is an unbiased estimator of the actual data at time T'+ M, te.,, X{T + M).
We use X (T + M|©¢) to obtain prior information for X (T + M) from Eguation 2. From the
assumed normality of the estimation error, it follows that the estimate of the actual data is normally

distributed around the prior mean with variance O’%‘.
Xe(T + M) ~ N (Zu(T + MO7),0F)

where X (T + M) denotes the random variable that corresponds to the actual data at time T+ M

for model k.

We quantify the uncertainty in X x(T + M) by its variance, ¢f. Under the assumption

that the estimate of a growth model and the error between the actual data and the estimate are

independent (Equation 2), 02 can be expressed as the sum of the variance of the estimate of the

2z .

growth model, w,zc, and the variance of the estimation error, oy :

567 (KT + M)|Or) = Tar(Re(T + M|Or) + Tar(e(T + M|Or))

ok

il

w% +O‘§k.

The main sources of the uncertainty in the estimate of a growth model are known to be
the error in the estimation of its parameters and the inadequacy of the selected model. To estimate
the variance of this quantity, we refer to Meade and Islam (1995), in which three approaches to
construct prediction intervals for the estimate of growth models are proposed. The first approach,
the approximated variance approach, uses the variance of the linearized Taylor series expansion

.of the model at the final estimates of the parameters and the (asymptotic) covariance matrix of
the parameters. The second approach, the explicit density approach, derives the estimate of the
variance by explicitly modeling the uncertainties in the parameter estimates. The third approach,
bootstrapping, is a non-parametric approach that develops the distribution of the estimate of the
growth curve by resampling the residuals. Meade and Islam’s analysis with simulated data sets
shows that the explicit density approach performs best if the number of data points available is
small (less than 20 observations). As a measure of performance, differences between the percentage
of predictions that fall within the intervals and the significance level that is used to construct the

interval are considered.
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3.3.2 Samples of Life-Cycle Projections

At time period T, we use the L-period leading-indicator data over [I" — L + 1,7 to obtain the
estimate of the actual data of the product group over [I"+ 1,T + Lj, which is unknown at time T
As illustrated in Figure 3b, this advances the position on the projected curve from time T to time
T + L. We consider several leading-indicator products. With the data from each leading-indicator
product, we obtain the projection of the models, each of which gives a s_”ampie life-cycle projection

for the true projection of the model that would be obtained if actual data was used over [1,T + L],

We assume that the data from leading indicators provide unbiased samples for the actual
data over [T" -+ 1,T + L}; therefore, the estimate of a model with a leading indicator is assumed to
provide an unbissed sample for the true estimate of the model that would be obtained with actual
data over [1,T + L]. We use a sample of m leading indicators o derive the sampling information

about the actual data at time T+ M.

The estimate of model k with leading indicator j (7 = 1,...,m), is obtained over the
estimation period extended with the leading-indicator-j-based data, i.e., @‘% +1.» the first T—periods
from the actual data, and the next L—pericds from the leading-indicator-i-based data. We can
express our assumption that the estimate of a model with each leading indicator provi&es an

unbiased sample for the true estimate of the model with actual data, i.e. over Oryp, as:
Xei(T + M|0%, ) = Xu(T + M|Oryr) + ek (3)

where ep; represents sampling noise. We assume that ¢y; is normally distributed with mean zero
and constant known variance p?. Integrating our assumption that the estimates of the models
are unbiased estimators of the actual data gives that the estimates of the models with the leading
indicators are unhiased estimators of the actual data. As a result, under the assumption that
the leading indicators are independent, it is obtained that {)? i (T -+ M |951n+ Lhi=1..,m} are
independently and identically distributed observations from a normal distribution with mean X (T+
M) and variance 7§ = a;i + 7, where Jéf represents the variance of the estimation error at time

T + L. We can summarize the sampling information as:

o~ 1 m —~ . 1~2
Xl + M)~ N H;xkj(T+Mg@;+L),%&

The confidence in the sample mean increases with the number of leading indicators used. By the

strong law of large numbers, with probability one the sample mean provides an unbiased estimate
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for the actual data at time T+ M when m goes to infinity.

Biased Leading-Indicator-Based Data

There is a possibility that the data from a leading indicator is not an unbissed estimator of the
actual data over [I"+ 1,T + L]. Thus, the estimate of a model using this leading indicator will
not, be an unbiased estimator of the true estimate of the model with actual data over (1,7 + Li,
either. We model the impact of the bias as follows: We describe the bias of a model with a leading

indicator as a random variable and characterize it as a normaily distributed perturbation.

Proposition 1. Under the assumption that the bias of the estimate of a model with o leading
indicator, frj, is o normally distributed random variable with mean by; and variance ij, the
variance of the sampling estimmate tncreases with the bias; the mean of the estimate may shift

depending on the relative bias of the leading indicators.

Proof. By definition, the bias of the estimate of a growth model with a leading indicator implies

that

E[X(T + M|6%, ;)] BIXe(T + M|Orsr) + Bij

X(T + M) + by;.

fl

The mean and the variance of the sampling distribution change to:

LA : 1 &
E;ij(T+M|@{,~M) = X(T + M) + a?
- pYE
Vv = Lm0y

ar z; wi (T + MIO%, ;) pals

The results indicate that bias increases the variance of the sampling estimate; the mean of the

estimate may shift depending on the relative bias of the leading indicators. O
3.3.3 Posterior Life-Cycle Projections

The Bayesian update of the prior distribution with the sampling information gives the posterior

distribution of the actual data at time T+ M:

Proposition 2. If the m leading-indicator-based sampling estimates follow a normal distribution

with mean X (T + M) and variance 72, and X (T + M) has prior normal distribution with mean

14



Xu(T + M|O7) and variance o}, the posterior estimate is normally distributed:

Xe(T + M) ~ N(uh, o)

where
! = St S X AT M e R BT+ M j
e 1/of +m/7} KT+ l@T)+1/0ﬁ~§vm/T§m; & (T + MO, 1)
)
F mdﬁwk'rg

Proof. The proof is provided in the Appendix.

The updated life-cycle demand projections are the means of the posterior distributions,
which are the weighted averages of the prior projections and the sampling means. The weights
are inversely proportional to the variances of the prior distribution and the sampling distribution,

respectively. The use of additional data from leading indicators leads to the following conclusions:

Corrolary 1. Given the variances of the projections, the following are true:

(i) Bayesian update of the projections of the models with the additional data from leading indicators
results in estimates with smaoller variance, i.e., o';cz < O'E (k=1,..,K).

(i} If oll the leading indicators are unbiased, the variance of the estimates asymptotically approaches
zero as the number of leading indicators increases.

(#3) Variance of the projections is increasing with the bios of leading indicators, and the following

. " . . . . . . .
ordering holds: cr;f <o’ S oﬁ, where agz s the variagnce with some leading indicators biased.

The assumption of normal distribution is not restrictive. We can express our reason for
making this assumption as follows: Normal distribution provides a reasonable characterization of
the sampling and estimation errors. In our case, this results in a normal sampling distribution. The
corresponding natural conjugate prior distribution, which is selected for mathematical convenience,
is also normal distribution. The use of natural conjugate prior distributions has the advantage that
the induced posterior distribution is in the same family as the prior distribution, and therefore allows
for closed-form expressions. The analysis is still valid if this assumption is released. In particular,
when the variance is unknown, sample variance can be used, in which case t-distribution is a more

accurate representation of the uncertainty in the sampling estimates.
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We defined the change in the projections of the individual growth models with the addition
of data from leading indicators. In the next section, we investigate the impact of the additional

data on the variability in the characterization of demand with several growth models.

4 Variability in Life-Cycle Demand Characterization

Given the uncertainty associated with any forecasting method, this study emphasizes the impor-
tance of the degree of the variability of a forecast as well as its accuracy. In this section, we study
the variability in the life-cycle demand characterization and the impact of the additional data on
the variability. In particular, we question whether the additional data results in estimates with
smaller variability. We consider two measures. The first one is the change in the relative estimates
of the projections of the models, and the second one is the variance of the combined estimai;e of

the projections.
4.1 Range of the Life-Cycle Demand Projections

We use the distributional characterization of the estimates of the models to investigate the change
in the variation of the projections with the additional data. As a measure of variation, we consider
the range of the estimates at time T + M, which is the difference between the estimates with the
maximum and the minimum values at time T + M, and make a probabilistic conclusion regarding

the change in the variation of the projections.

The methodology used here follows a similar logic to ordénal comparison. Given a set of
alternative choices, ordinal comparison finds the best choice based on their relative performances,
rather than based on the exact estimates of their performances. Each decision is assigned a prob-
ability measuring that the alternative choices are ranked correctly and at least one good choice
is identified. Among the several studies, Chen (1996) and Chen et al. {2000) are concerned with
the selection of the best design in a manufacturing and communication system, Chen et al. (1999}
select among heuristic algorithms for combinatorial problems, and Bonser et al. (2001) consider
several supply contracts for fuel procurement in electrical utilities using ordinal comparison. These
studies approximate the exact performances of the alternatives using a finite number of sample
problem instances. Similarly, we approximate the true estimates of the growth maodels with actual

data using data from a finite number of leading indicators that sample the actual data.

Let A%_i_ s denote the range at time 1"+ M obtained using the actual data over [1, T}, that
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is, prior to using any additional data, and let N,y denote the random variable that characterizes
the range at time T' 4 M obtained using the posterior projections of the models. We determine
the exact probability that the variation in the projections (in terms of range) decreases with the
additional data, that is,

Pr(VR) = Pr{lran < D%}

where A% o 18 a constant, and Ay s a random variable:

Proposition 3. Let fi{) be the probability density function for the random variable .S{H"k(T + M)
that denote the estimate of model k, k = 1,..., K, for the actual date at time pertod T+ M. Define
two new random variables as Z, = max{Xi(T + M),... Xg(T + M)} and Z; = mn{X,(T +
M3, o X x(T+M)}. Under the assumption that the estimates of the growth models are independent,

the joint probability density function thot Z, = 2y and Zy = z3, fz,7,(21, 22), is:

K K K
fnman,m) =Y, > fla)fiz) ] Priz < Xu(T+M) <a}
dmm] fmel,fié k=1 ks kot

if 21 = 23, 0 otherwise. Then, the exact probability that range decreases is:

PriVR) = Prilprm < &%+M} = Pr{z —z < A%+M}

00 32‘{"&%4,,”
= f / fZ1Zz(zl1z2)dzldz2
—00 o 2

2

For computational purposes, we develop a lower bound for the exact probability of variance

reduction, which requires the summation of pairwise comparison probabilities:

Proposition 4. Given that the range of the prior projections for time T + M is A s the
probability thot the range of the estimates reduces with the edditional dato from leading indicators

is bounded below as:

Pr{vRy21- 3 [1 ~ Pr{=0% 4y < (T + M) = Z5(T + M) < Dy}
(>

Proof. By definition, the probability that the variation of the estimates reduces with the additional

dats is the probability that the maximum difference between the estimates of the growth curves is
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less than A%, .

P’I"{VR} B PT{AT.:,.M <A%+M}

Pr{ e {1 0+ 00) = (T4 20 ) < B}
4,510 >

which we can write more explicitly as:

Pr{| KT + M) = KH(T + M) |< Bpr, VG6,5) 15> i)

Pr{VR}
= Pr{=0% .y < KT+ M) = Xi(T+ M) < By, V0,5) 2 5> i)
To obtain a lower bound, we use the Bonferroni inequality, which states that P (., 4 >

1370 11— P(A:)], where A; represents any condition. This inequality allows us to write the

probability of a set of conditions in terms of the probabilities of individual conditions:

Pr{VR} = 1- Y [1 e Pr{Dy gy < KT+ M) = Zy(T+ M) < My}
(1>

l

The use of the normal probability distribution results in a specific case, which states that
if the range of the mean estimates is smaller than the prior range, the variation reduces with

probability equal to one when the number of leading indicators is infinitely large.

Corrolary 2. For 0%y, > mam{,u; - ,U,;,V(i,j) 1> i}, EMmmecPr(VR) =1
Proof. For the normal posterior distributions, the lower bound is:

Oy — i~ 1] e )
Pr{VR}>1- 3 {1_(@( o~ =l o SV Al
(i.5)>i NLAEN [0 4 o7

where ®(+) is the standard normal cumulative distribution.

As the number of leading indicators increases, a? — 0for ¢ =1,..,K (ie, more con-
fidence is given to the sample means). As a result, the lower bound and therefore the exact

probability converge to one. [
4.2 Combined Life-Cycle Projection and Life-Cycle Demand Scenarios

In this section, we study the change in the variance of the combined estimate of the projections and
describe demand in scenarios that are sampled from the probability distribution of the combined

estimate.
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The topic of forecast combination has been widely studied since the seminal work of
Bates and Granger (1969). The motivation for combining forecasts has been to avoid the risk
associated with the choice of a single "best” forecasting model and to aggregate information from
different models. Several empirical studies show that combining forecasts improves the forecasting
accuracy and reduces the variance of the forecasting errors {Timmermann, 2005). In light of
these, we consider the combined forecast from the projections of the growth models and show that
the variance of the combined forecast reduces with the additional data from. leading indicators.
Figure 4 illustrates the distribution of the estimates of individual models and combined forecast

for any future period T + M.

Combined
Estimate.

% of Pemand Filled

4 Ke o Hx

Time

% of Pemand Filled

(a) Prediction with growth models {b) The probability distribution of the estimate of the growth

models and the combined forecast at time T+M.

Figure 4: Distribution of the Estimates of the Growth Models and the Combined Forecast for time
T+M

. Among the many different combination methods, we consider the one that minimizes
the variance of the combined forecast (Dickinson 1973). This method determines the weights of
the individual model forecasts based on the covariance matrix of their estimates and takes into
consideration the relative accuracy of the models. Since the covariance matrix is not known, the
optimal weights must be estimated. There are several studies that propose different approaches
to estimate the weights and compare the performances of these estimates. A common conclusion
frorﬁ these studies is that the combination methods that assume independence between individual
forecast errors perform considerably better than those attempting to estimate the full covariance
matrix and include the correlation of the estimates. Newbold and Granger (1974) and Winkler and
Makridakis (1983} are among these studies and reach this conclusion from the analysis of 80 and
1001 time series, respectively. Under the assumption of independence, this method assigns each

model a weight, o, that is inversely proportional to the variance of its estimation error,
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Proposition 5. The variance of the combined forecast, which is a weighted average of the models
with weights being inversely proportional to the variance of the estimation errors, is smaller than
the variance of its component model forecasts, and reduces with the use of additional date from

leading indicators.

Proof. Since the combined forecast is a linear combination of the independent normal random
variables, from the Reproductive Property of Normal Distribution, the combined forecast is nor-
mally distributed. For the prior distribution, the probability distribution of the combined forecast
is

K K K
Y oeXp(T+ M)~ N (Zkak(T + MiOr), ZP%O%) ;
k=1 pras k=1

with the variance:

TETTTE
k=1 - 2= oy,
in which the variance of the combined forecast is no greater than the variance of its component

model forecasts. The same holds for the combined forecast of the posterior projections.

Since the update with the additional data from leading indicators results in a demand
distribution with smaller variance for the individual models {i.e., a;f < U]% yforvVe=1,..,K), the

variance of the combined forecast is also smaller when additional data is used (ie, o2 < ¢2). O

Given the Bayesian-updated probability distribution of the combined forecast, the results

in Corollary | also hold for the combined forecast.

Generation of Life-Cycle Demand Scenarios and Variation in the Scenarios

We utilize the characterization of demand with continuous probability distributions using discrete
demand scenarios. We use sampling to generate demand scenarios from the probability distribution
of the combined forecast. The main thesis of this paper is that the posterior probability distribution
of the combined forecast with smaller variance produces demand scenarios with smaller variation,

which also include future demand signals.

One way to obtain life-cycle demand scenarios is to generate random samples from the
probability distribution of the combined forecast. The variance of the sample average of these
scenarios is o2/n, where n is the number of scenarios. There are several other sampling tech-

niques that are suggested in the literature as appropriate for generating demand scenarios more
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Figure 5: Sampling Life-Cycle Demand Scenarios from the Distributions of the Combined Forecasts

systematically and with smaller variation than those generated with random sampling. One such
technique is a specific case of stratified sampling, which provides considerable intuitive appeal
The range of probable demand values are divided into ‘segments of equal probability (Figure bHa},
and a random observation is generated from each range as s possible demand scenario (Figure 5b,
¢). The variance of the sample average of the demand scenarios generated with this approach is

a2 fn — 3% (i — pey?/n?, where y is the mean estimate of the i

probability region, and pu. is
the mean estimate of the combined forecast (McKay et al.,, 1979). Given that the variance of the
posterior combined forecast is smaller $han the variance of the prior combined forecast, the demand
scenartos from the posterior distribution are likely to have smaller variation than those from the

prior distribution.

Through a Bayesian update, the variation in the life-cycle scenarios can be reduced by a
significant margin. One of the reasons is that a small shift on the time axis might correspond to a

drastic change on the curve, especially when the point of inflection is within this time shift.
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5 Empirical Analysis
5.1 Experimental Data

For the purpose of empirically demonstrating our approach to characterize life-cycle demand pat-
terns of short life-cycle products and the impact of additionsl information from leading-indicator
products, we use disguised real data sets from three semiconductor manufacturing companies, which
we will refer to as company A, company B, and company C. The latter two companies are members

of the Semiconductor Research Corporation.

The data set provided by Company A is the weekly sales data of approximately 3000
products from January 2002 to December 2003. Some of the attributes of the products are the
strategic business unit, business entity, fab process group, tester group, and package type. The data
set from company B is the weekly sales data of 228 products from April 2004 to March 2006. All
the products are in the same strategic business unit. The data set from company C is the weekly
sales data of over 2000 products from February 2005 to March 2006. Some of the attributes of the
products are the business unit, wafer-fab process group, package group, and technology code of each
product. In order to lessen the impact of the short-term fluctuations that carry less information,
we transformed the data into monthly figures. We then normalized the monthly data by taking

into consideration that some fiscal months are 4 weeks long and others are 5 weeks long.

For each company, we demonstrate the characterization of the life-cycle demand pattern of
an exogenously determined product group, as in Wi et al. (2006). The product group we consider
for company A consists of 105 products that share the same fab capacity and belong to the same
market segment. For company B, we consider all 228 products in the given strategic business unit.

For company €, we study a group of 969 products in one strategic business unit.

5.2 Experimental Design

Meade and Islam (1998) studied 29 models from the technological forecasting literature using
simulated and real data sets, and determined seven well-performing models in terms of their fitting
and forecasting performances. In order to practically perform the analysis, we also use these models,
namely, simple logistic, Mansfield, Gompertz, Floyd, Weibull, extended logistic, and cumulative
log-normal. Simple logistic and Mansfield models are symmetric about the point of inflection, which

is fixed at the value of cumulative proportion of 0.5. Gompertz and Floyd models are asymmetric
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with a point of inflection fixed at a value of cumulative proportion less than 0.5. The points of
inflection for Weibull, extended logistic, and cumulative log-normal models are flexible and fall
within a range of values that includes 0.5 depending on the parameter values. Different shapes of

these models allow the characterization of a wide range of life-cycle patterns observed in practice.

We use growth models to describe the projections of the cumulative proportion of the
total life-cycle demand that is met over time. Hence, we need to transform the given time-series
data of the products into the scale that represents the cumulative proportion. The transformation
requires an estimate of the expected total life-cycle sales, also known as the ‘market potential, This
quantity can be estimated as a parameter from the given data set, or its market estimate, which
can be determined through market surveys or management judgement, can be provided as an input
to the model. Heeler and Hustad (1980) and Tigert and Farivar (1981} are among the empirical
studies that compare these two approaches and report that the accuracy of the forecasts increases
significantly when the estimate of this quantity is an input to the estimation procedure since the
estimation procedure results in unrealistic estimates of this parameter in order to increase the
fitting performances of the models. In our study, we also use the market estimates of the expected

total life-cycie sales.

We proceed as follows: There are 24 months of data for company A and company B, and
14 months of data for company C. We first use the initial 9-month period (T = 9) as the estimation
period, in which the prior life-cycle projections of the individual models and the combined estimate
are obtained, Next, we use the L-period demand signals from m leading-indicator products. This
extends the estimation period to month T -+ L, the first T' months from the actual data and the
following L months from the leading-indicator-based data. The prior projections of the models and
their combined forecasts age updated with this additional informatioﬁ. We use the remainder of
the data, i.e., [T'+ L+ 1,24] as the validation period to compare the performances of the estimates

with and without additional data.

We first compare the range of the projections. We then study if the variance of the
combined forecast reduces with the additional data. In order to verify if the reduction in variance
is significant, we construct a paired-comparison experimental design, which compares the variance of
the combined forecast with and without additional information over the same sets of observations.
The variances of the combined forecasﬁs for each period in the validation horizon over the data

sets from all the companies provides a set of observations. The null hypothesis that the variance
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remains the same Hy : a?; = crg is tested against the one-sided alternative hypothesis Hy : o% > ag.
The hypothesis is evaluated using a t-test statistic based on the standardized average difference
between the variance of the prior estimates and the variance of the posterior estimates over all sets

of observations.

We identify three factors that can affect the results: (i) number of leading-indicator prod-
ucts, (ii) time lag of the leading-indicator products, and (iii) the bias of leading-indicator products.
From Corrolary 1, it follows that variances of the estimates decrease at a diminishing rate with the
number of leading indicators if all the leading indicators are unbiased. However, it is likely that
data from some of the leading indicators are biased, and therefore the results are distorted. We
want to test if there are biased leading indicators, and if so, how significantly they affect the results.
In addition, the time-lag of a leading indicator may have an impact on its estimation quality, which
in turn has an impact on the estimation quality of the growth models. To analyze the impact of
these factors, we consider different number of leading indicators (m = 5,10, 15, 20) that provide
data up to a time lag of 5 months (L = 1,...,5). We present the experimental resuits in the next

section.

5.3 Experimental Resulls

‘We start our analysis by illustrating the impact of a single leading indicator on the estimates of the
models. Figure ia plots the prior projections of the models obtained over the estimation period
with 9 months of actual data for the product group of company A. The demand signals from a
leading indicator with a time lag 5 months are used to extend the estimation period to month 14,

and the projections of the models change as in Figure 6b,

The updated projection of each model with this leading indicator provides a sampling
instance for the true projection of the model that would have been obtained over the estimation
period with 14 months of actual data. Similarly projecting with several leading indicators gives
the sampling distribution of the estimate of each model. Combining the sampling distribution with

the prior distribution determined at month 9 gives the posterior distribution.

We perform the computational analysis for different combinations of m and L. The goals
of the analysis are to study the following: (i) How closely do the sampling estimates with several
leading indicators approximate the true estimates with actual data? (ii) Does the additional data

from leading indicators result in projections with a smaller range? (iil) How significant is the
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Figure 6: Projection of Cumulative Demand with Life-Cycle Growth Models

reduction in the variance of the combined forecast with respect to the number of leading indicators
used? (iv) Do the time-lags of leading indicators have a notable effect on the results? (v) Are there
any biased leading indicators? If so, what is the impact of bias on the mean and variance of the

combined forecast? (vi) How does the forecasting performance change with the additional data?

Approzimation Quality of the Estimates with Leading Indicators

Our objective in using Bayesian forecasting is to combine the future demand data in the highly
volatile market environment with limited historical data. We use leading-indicator products as a
means to capture this information. It is inevitable that the true prediction of leading indicators
is critical to the success of our approach. In order to assess the impact of the prediction power
of the leading indicators on the given data sets, we compare the mean estimates of the sampling
distributions that are the averages of the estimates with several leading indicafors against the true
estimates that would have been obtained with the actual data instead of the leading-indicator-based

data.

Figure 7 depicts the mean estimate of the sampling distribution under different combi-
nations of m and L against the true estimates with actual data across the data sets from all the
companies. The value for each combination of (m, L) is the average of the sampling means of all
the seven models over all the periods in the part of the validation period over [T" + 6,24}, Here,
no one model or forecast horizon is given particular interest, so averages over all the models and
horizons are taken. The sampling estimates are obtained using T-period actual data and L-period

leading-indicator-based data as the estimation period. The true estimates are the averages of the
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Figure 7. Comparison of sampling means against the true estimates with actual data.

estimates of all the models with the actual data used over [1,7 + L} as the estimation period, and

shown with the lines that correspond to the tag (m = 0,7 =9+ L},

As shown in the figure, the mean sampling estimates are within 6% of the true estimates,
and the approximation quality has a tendency to degrade with increa,sing L. The changes are most
notable for companies A and B. One possible reason is that data from leading indicators replaces
the actual data over [T+ 1,7+ L]. As L increases, the number of data points the leading-indicator-
based data replaces increases, and approximation quality of the leading indicators decreases. This,
in turn, has a negative impact on the approximation quality of the models. The average over all
companies indicates the overall quality of the estimates. The results also suggest that the number
of leading indicators has no significant impact on the mean sampling estimates. That is, the use
of the top few leading indicators is sufficient to obtain mean estimates with approximately same

accuracy.

Change in the Range of the Projections with Leading Indicafors

We compare the expected value of the range of the posterior projections against the range of the
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prior projections. The results indicate that the range with the posterior projections is smaller for
all combinations of m and L. That is, the estimates of the models become more similar with the
additional data. Therefore, the condition for Corrollary 2 holds. Furthermore, the value of the
lower bound on the probability that the range of the projections reduces with the additional data
from leading indicators is equal to 1 for all combinations of m and L. This results in the range of

the estimates decreasing for all the examples under consideration.

Value of Increasing the Number of Leading Indicators

The empirical analysis that compares the variances of the combined forecast over all the time
horizons in the validation period across the data sets from the three companies rejects the null
hypothesis that the variances of combined forecasts obtained from prior and posterior projections
are equal {p < 0.01). That is, the reduction in variance is significant.
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Figure 8: Percent reduction in the vartance of the combined forecast with m leading indicators,
each of which provides L periods of data.

Figure 3 displays the percent reduction in the variance of prior combined forecast under
different combinations of (m, L} across the data from all the companies. The value shown for each
combination of (m, L) is the average reduction over all the time horizons in the validation period.

When all the leading indicators are unbiased, from Corrolary I, it follows that the marginal value
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of the additional data (as measured by the reduction in the variance) diminishes when more leading
indicators are considered. This is most apparent in the results for company A. However, the results
for company B follow a conflicting pattern. This may be an indication of bias in the estimates of

leading indicators, which we will discuss later in greater detail.

| Another notable effect that is apparent in the results is that the rate of change in the
reduction of variance tends to be less sensitive to m for smail values of L when all leading indicators
are unbiased. One possible reason is that as I decreases the approximation quality of the leading
indicators are likely to be better and the variation between their estimates be smaller. As a result,
the impact of m is smaller. Overall, the results indicate that it is possible to obtain 20 — 80%

reduction with the additional data across the data sets of all the companies.

Impact of Time-Lag of the Additionel Information

Figure 8 reveals that reduction in variance tends to be less for larger values of L due to the
relatively poor estimation quality of the leading indicators, as mentioned earlier. In addition, in
case of unbiased leading indicators; for large values of m, the rate of change is less sensitive to
L. This suggests the use of as many leading indicators as possible; however, this increases the

possibiiity of having biased leading indicators.

Impact of Bias of Leading Indicators

Leading indicators are unbiased estimators of the actual data over the estimation period [1,T].
However, it is possible that the data they provide over [T+ 1,7 + L] is biased. To measure if there
is any systematic bias in the L-period data provided by a leading indicator, we use a fest that
evaluates the null hypothesis that the errors have zero mean, for which a ﬁ—test is appropriate. The
test results indicate that all of the 20 leading indicators for company A and company C provide
unbiased data at 0.01 level of significance. However, 8 of the 20 leading indicators for company B
provide biased data at 0.01 level of significance. This suggests that smaller reduction in variance
for company B with m may be due to the biased leading indicators. This reveals that there is a
possible trade-off in increasing m. Leading indicators are selected based on their relative ranking
in terms of the absolute value of correlation coefficient between their demand time-series data and
the shifted time-geries data of the product group. As m increases, leading indicators with low
absolute value of correlation coefficients are included. This increases the probability of inclusion of
biased leading indicators, in which case increasing m may have a negative impact on the reduction

in variance unlike the case where all leading indicators are unbiased.
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The theoretical results imply that with bias, the variance of the estimates increases and
the mean of the estimates may shift depending on the relative bias of the leading indicators. To
empirically support these claims, we replaced the 8§ leading indicators diagnesed as biased with
unbiagsed ones. The average of the changes over all the periods in the validation pericd and over all
the companies are summarized in Table 3 for all combinations of (m, L). For instance, the variance
with biased leading indicators is 0.43% greater than the unbiased case when 20 leading indicaﬁorsl
with a time lag 5 are considered. Also, the mean estimate of the combined forecast with biased
leading indicators is 0.003 less than the mean estimate with all the leading indicators unbiased.
This corresponds to an approximately 0.5% change in the mean estimate. QOverall, the change in
percent variance reduction is less than 5%, and the change in the mean is less than 0.012, which is

about 2.5% of the mean with unbiased leading indicators.

Change in % Variance Reduction Change in Mean

m=5 m=i0 m=1l5 m=20 | m=§ m=1l0 m=15 m=20
L=1{-0.15% 042% 0.16% -0.02% |-0.005 -0.002 -0.003 -0.003
L=2| 231% 268% 0.79% 058% |-0.008 -0.010 -0.005 -0.005
Lex 3 | -1.32%  1.87% 0.39% 0.67% | -0.006 -0.007 -0.004 -0.004
L=4| 419% 368% 1.16% 047% |-0.012 -0.009 -0.005 -0.003
L=5| 1.34% 291% 1.04% 043% |-0.006 -0.008 -0.005 -0.003

Table 3: Impact of biasedness of leading indicators on the percent reduction in variance and on the
mean estimate of the combined forecast (in terms of deviation from the estimates with unbiased
leading indicators at 0.01 level of significance}.

There are a few negative signs in the change in variance reduction which indicate the
contradictory result that there is smaller reduction in variance with unbiased leading indicators.
Since there is no exact method to diagnose the bias, we think that one possible reason is related

to the method we use to identify unbiased leading indicators.

Forecasting Performance with Leading Indicators

An immediately raising question is how the forecasting performance is affected with the additional
data. We measure the forecasting performance of the distributional estimates as the average perfor-
mance of the resulting demand scenarios. This measurement provides a two-dimensional evaluation
of the forecasts, in terms of accuracy and uncertainty, and allows the acceptance of a series of de-
mand scenarios with slightly less accuracy but smaller variation over a series of demand scenarios

with greater accuracy but larger variation.

We generate demand scenarios based on stratified sampling. In particular, we discretize the
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probability distribution into regions with equal probabilities, and take the midpoint of each region
as a demand scenario. Table 4 compares the forecasting performances of the prior distribution
and the posterior distribution with six scenarios, and gives the forecasting performance of the
probability distribution obtained with actual data replacing the leading-indicator-based data, as a
reference. The results are in terms of mean absolute percentage errors of the scenarios over the
validation horizon {15, 24]. Due to the lack of data for company C over this time horizon, we present

results only for companies 4 and B.

Prior Posterior With Actual Data
m=0| m=58 m=10 m=1i m=20 m = 0
LI | T=9 | T=9 T=0 T=9 T=9 T=9+1L
Company A | 1 | 1.33% | 242%  3.30%  4.04%  4.24% 4.22%
2| 1.33% | 1.89% 258%  3.52%  3.83% 8.65%
3 1.33% | 220% 268% 378% 4.21% 11.58%
4 | L33% | 1.96% 257%  37T1% 4.38% 14.54%
| 1.33% | 1.93%  245%  3.55%  4.39% 14.58%
Company B | 1 | 17.87% | 17.30% 15.60% 15.91% 16.17% 14.75%
2| 1787% | 16.85% 15.57%  16.32%  16.16% 10.95%
311787% | 16.94% 16.17%  16.82%  16.40% 10.08%
4 | 17.87% | 11.11%  16.44%  16.91%  16.50% 9.45%
b | 17.87% | 17.23% 16.61% 16.87% 16.70% 8.97%

Table 4: Average forecasting performances of the combined forecasts with prior distribution, poste-
rior distribution, and distribution with the actual data in terms of mean absolute percentage ervor
over the forecast validation horizon across data sets from companies A and B.

The results indicate that the posterior distribution does not always perform better than
the prior distribution, rather it displays an average performance between the prior distribution
and the distribution with the actual data. The posterior distribution performs worse when the
scenarios with actual data performs worse, since the leading-indicator-based data replace the actual
data. Given the results in Table 4 and Figure &, we assess the change in the forecast accuracy
against the value of reduction in variance. For company A, around 2% deterioration in forecasting
performance is compensated with approximately - 70% reduction in variance. For company B,
about 1.5% improvement in forecast accuracy is accompanied by 45% reduction in variance. The
significant reduction in variance with a small change in the accuracy of the forecasts for these

examples indicates the value of the proposed approach.

Companies can use the proposed demand-modeling approach in their operationsl decision-
making processes. When the forecasting performance is not significantly worse, the reduction in

forecast variation has implications on both the computational efforts required in the decision-
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making processes and the value of the expected operational costs. Smaller variation in demand
scenarios either requires smaller number of scenarios to obtain solutions at a given Ségniﬁcanée level
of returns solutions at a higher significance level with the same number of scenarios. This, in turn,
has an impact on the computational requirements. In addition, the smaller variation has an impact

on the expected operational costs due to the reduced uncertainty that needs to be hedged against.

6 Conclusions

In this paper, we propose a demand characterization approach for technology products with short
life-cycle patterns and high demand volatility based on Bayesian forecasting. Several technological
growth models characterize the life-cycle projections of the products. Leading-indicator products
provide a means to learn from the uncertainty in future. Bayesian forecasting combines the life-cycle
projections obtained using historical data with the information from leading-indicator products, and
produces distributional estimates for the uncertain demand. Discrete demand scenarios describe

the distributional estimates of the demand.

Given the observed data of the products and several growth models that characterize the
technology life cycles, this approach allows us to develop a streamlined way to model demand
scenarios for a particular market segment in a technology-driven market. The scenarios can be
integrated into the supply-demand planning decision systems of the companies. Inclusion of the
leading-indicator-based data reduces the variability in future demand scenarios. This, in turn, has a
potential to improve the decision-making activities of the companies in terms of both computational

time and expected total operational costs.

One drawback of this approach is, however, that leading indicators might provide biased
information. In order to alleviate this affect, we use several leading indicators, the biases of which

may cancel out, but at the expense of increased variance of the estimates.

Computational testing on real-world data provided by three semiconductor manufacturing
companies suggests that the proposed approach is effective in capturing the short life-cycle nature
of the products and early demand signals, and capable of reducing the uncertainty in the demand

forecasts by more than 20%.
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Appendix

Preoof of Proposition 2 We simplify the notation for notational convenience as:

Xp(T+M) = Xy (T + M7y L) — Xi
)?k,j(T"FMi@‘;_*‘_L) "'“’)?ch )?k(T-!"Mi("aT)——*)?kg

The posterior distribution is obtained by updating the prior distribution with the sampling distri-
bution (J. Johnston 1984, S. J. Press 2003):

e The sampling distribution dictates that {)?kj, J =1,...,m} are independently and identically
distributed observations from N(X},7#). Their probability density function conditional on

Xp is:
o~ - — 2 1 o o
P (Xkl,...,X;cm|X;c) = (277%) ™/ exp ——:2—;5 ;(ij — X )?

where X is unknown.

¢ The prior distribution of X is N (X'kg, dg) with probability density function:

_ 1 -
p{Xy) = (270%) 72 exp l:““z“”&”ﬁ“(xk - Xk0)2:|
k

o Posterior probability density function of X from Bayes’ theorem is ;
p (Xkl, ~~~J?kmiXk) p(Xk)
[ (ercl: u-a)?klek) p{Xp)dXp

p (Xkl—)?kh ---})?km) -

where the denominator is a constant for a given sample data, G’%,Tg, and )?k(}. Thus, the

posterior probability density function cen be written as:

(X0t Rim) o (Rt s RimX2) 2 X,
When the probability density functions of the prior and sampiing distributions are substituted
and the constant multipliers are eliminated:

> < 1[5 (X~ X102 (X — Xo)?
p(inXkla---;ka> X exp {*5{ = T; +( : ) to) .
k A
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Rearranging the terms in the exponent gives:

- . 1{Xy — )2
p(Xk|Xm,---,X1cm) x exp {*5“—_ ,2%) }
T
where
1/c? N m/ e 1o o
! k k
P = g Xy o e ey — "
k 1/o% +m/7} 1/of +m/rf m?;; I
1o_ 1,1
of  oi TE/m

Thus, the posterior distribution of the estimate of the life-cycle growth curve & is normal with

’ . 9
nmean ,U,k and variance Ty
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