£ 5 @ o g E w
rsdustrial and
Syatoms bngineering

Supply Disruptions with Time-Dependent Parameters

Andrew M. Ross
Ying Rong
Lawrence V. Snyder

Report: 08T-002



Supply Disruptions with Time-Dependent Parameters

Andrew M. Ross | Ying Rong and Lawrence V. Snyder |
August 23, 2006

Abstract

We consider a firm that faces random demeond and receives product from a single supplier who
faces random supply. The suppler’s availability may be affected by events such as storms, strikes,
machine breakdowns, and congestion due to orders from its other customers. In our model, we
consider a. dynamic environment: the probability of disruption, as well as the demand intensity, can
be time dependent. We model this problem as a two-dimensional non-homogeneous continuous-time
Markov chain {(CTMC}, which we solve numerically to obtain the total cost under various ordering
policies. We propose several such policies, some of which are time dependent and others of which are
not. The key question we address is: How much improvement in cost is gained by using time-varying
ordering policies rather than stationary ones?

We compare the proposed policies under various cost, demand, and disruption parameters in an
extensive numerical study. In addition, motivated by the fact that disruptions are low-probability
events whose non-stationary probabilities may be difficult to estimate, we investigate the robustness of
the time-dependent policies $0 errors in the supply parameters. We also briefly investigate sensitivity
to the repair-duration distribution. We find that non-stationary policies can provide an effective
balance of optimality (low cost) and robustness (low sensitivity to errors).
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1 Introduction

1.1 Motivation

There is a growing realization that supply chain managers need to plan for disruptions. Some types of
disruptions, such as strikes, terrorism, and machine breakdowns, seem equally likely to happen at any
time of year. Other types, such as storms and congestion due to other orders, are more likely to happen
in some parts of the year and less likely in others. For example, hurricenes are more likely in the summer
and fall than in the winter and spring. Similarly, when the manufacturer’s production scale is large,
small retailers may find that the manufacturer has no supply at times due to a surge in demand from end
customers, or to randomness in manufacturing times. The demand for consumer electronics, toys, and
other products is highly seasonal, with greater demand near the end of a year, and such seasonality may
cause order congestion. From the downstream customer’s perspective, congestion at the manufacturer
locks identical to a supply disruption, since no product is available. Thus, the disruption risk itself is
seasonal.

One strategy for protecting against disruptions is to hold additional inventory. If the disruption risk
is non-stationary, then it seems reasonable that the inveatory policy should be non-stationary as well. If
inventory managers are reluctant to change their ordering policies based on seasonal factors, they may
either carry too much extra inventory during iulls in the disruption cycle or lose reverue during disruption
cycle peaks.

One problem with frying to make real-time decisions about the ordering policy is that it reguires
estimates of disruption frequencies, times to resolve disruptions, and demand rates. Like any estimafes,
these may be inaccurate, and thus we should ask how possible inaccuracies will affect the overall cost.

In this paper, we develop several reasonable inventory policies that might be used under non-stationary
supply and demand processes. We compare the performance of these policies empirically, focusing es-
pecially on the differences in performance between stationary and non-stationary policies. In addition,
we evaluate the robustness of non-stationary policies by examining their performance even when the
disruption parameters have been estimated incorrectly.

1.2 Problem Setting

We consider a single firm that sells a single product. Demands for the product oceur according to a
Poisson process, possibly with a cyclic arrival rate. The firm has a single supplier. We will consider both
zero-inventory ordering (ZI0O)} policies, in which the firm orders only when the on-hand inventory level
hits zero, and non-ZIO policies. The supplier might be able to fill the firm’s order immediately {zero lead
time}, which we call the “up” state. Or, the supplier may be impaired by a storm, strike, machine failure,
etc., and will be unable to fill the order immediately. We call this the “down” state. The firm knows
the state of the supplier at all times. When the supplier comes back up, the firm may revise its order
quansity (with no penalty). The time until the supplier comes back up is called the repair $ime. Unmet
demands (i.e., those that occur when the firm has no inventory and the supplier is down) are lost. Given
the current time of year, the demand process and the up/down process are stochastically independent.

The time spent in the up and down states have phase-type distributions, whose parameters may vary
in time. Phase-type distributions occur as the time until absorption in a continugus-time Markov chain
(CTMC), and are treated in detail by Neuts [18] in the constant-parameter setting. Each state in the
defining CTMC is called a phase or  stage. A phase-type distribution with n phases has n? +n — 1 free
parameters (n? exponential rates and n — 1 probabilities). Phase-type distributions are a generalization
of the exponential, Erlang, Coxian, and hyperexponential distributions. We use them because they allow
us to change the variability of the repair time relative to its mean, which we could not do if we used only
an exponential distribution. They also allow us to formulate our problem as a CTMC, which makes if
amenabie to numeric solution. Unfortunately, the word “phase” must have two meanings in this paper:
one meaning in the setting of phase-type distributions, and one meaning pertaining to the phase offset
of a sinusoid wave. The two meanings are not particularly related. We shall endeavor to keep the two
uses clear.



Although our model and numerical solution procedures can use phase-type distributions, for the most
part we wili use the special case of exponential distributions. This is because our focus is on the cyclic
behavior of the system. The use of exponential distributions makes the failure process a Poisson process,
often a non-homogeneous one. In Section 6.4.2 we will examine the impact of non-exponential repair
times.

The firmn faces three types of cost: an inventory holding cost, a fixed cost for orders, and a shortage
cost for lost demands. In our solution procedures, each of these costs may vary with time without causing
any difficulty. However, in our experiments we keep them constant for the sake of simplicity.

We assume throughout that the supplier provides zero lead time when it is in the up state. This
assumption ailows us to focus more clearly on the effect of disruptions, whereas non-zero lead times
would dilute this effect. For example, if the normal lead time is 3 months, then a l-month disruption
would be much less significant than if the lead time is 0. Since our purpose is to investigate the effects
of time-of-year failure rates, we want to avoid factors that distract from them. We anticipate that
an analysis with non-zero lead times would be significantly more complicated but would yield similar
gualitative results.

We propose various ordering policies, varying in complexity, for this problem. Some are simple and
have no parameters for fine-tuning, while others permit some optimization of parameters. We compare
these policies to each other and examine the robustness of a time-dependent ordering policy when there
is a mismatch between the estimated and true parameters of the disruption process.

The remainder of this paper is structured as follows. In Section 2, we review the literature on supply
chain disruptions. We also discuss the literature on gueueing systems whose arrival rates undergo daily
cycles, since the yearly cycles seen in our problem are somewhat similar. We formulate our model in
Section 3. In Section 4, we propose several ordering policies, set up a CTMC model, and discuss our
method for finding its time-varying probabilities. In Section 5, we discuss the time-dependent behavior
of the system, to build our intuition about how it behaves. In Section 6, we analyze the performance
of various policies under different scenarios and investigate the robustness of some of the policies. We
summarize our results and make recommendations in Section 7.

2 Literature Review

2.1 Inventory

The classic Economic Order Quantity (EOQ) model does not consider the possibility of supply disruptions.
Parlar and Berkin {19] provide several models for the economic order quantity under disruptions (EOQD}.
They assume that demand is deterministic, that the firm uses a ZIO policy, and that demands that occur
when the firm has no inventory and the supplier is down are lost. Berk and Arreola-Risa [2] show that
Parlar and Berkin’s cost function is incorrect and provide a correct model.

The 710 assumption is relaxed in several subsequent papers. Parlar and Perry [21] use a (Q,r)
model instead of an EQQ model. They consider supply uncertainty in the form of both disruptions
and vield uncertainty {i.e., the amount received by the firm may differ from the order quantity by a
random amount). Gupta [10} provides an anslysis of supply disruption together with Polsson demand
based on a (@, r) model. Mohebbi [15] extends Gupta's result to the situation of compound Poisson
demand and Erlang distributed leadtire. Parlar [20] shows that the cost function of a (@, ) model is
convex for asymptotic @@ {with mild restrictions on the demand distribution) when the duration of the
up state is Erlang distributed and down state has a general distribution. Parlar and Perry {22] consider
the EQQD with one, two, or multiple suppliers, allowing the order quantity to depend on the states of
the suppliers. They show that as the number of suppliers increases, the model reduces to the classical
EOQOQ; i.e., a ZIO policy becomes optimal. Giirler and Parlar [11] use a (@,7) model to analyze the
problem with two randomly available supplier when the distributions of up/down durations are Erlang
and general. Moinzadeh and Aggarwal [16] consider an unreliable system, analogous to the classical
economic production quantity (EPQ) model, with a finite production rate and a fixed cost to start
production; they propose a continuous-review (s, §) policy for this system. Liu and Cao [14] analyze a



similar problem with compound Poisson demand based on an (s, $) policy. Bielecki and Kumar [3] show
that for a somewhat different model, under certain conditions, & policy similar to ZIO may be optimal
even for a supply system subject to disruptions. Heimann and Waage [12] also demonstrate that a ZIO
policy may be optimal even in the presence of disruptions.

In general, the literature about supply disruptions can be categorized by the distribution of demand,
leadtime, duration of up/down state, in addition to backorder/lost sales and with/without fixed cost.

The addition of supply uncertainty to classical inventory models renders most of them analytically
intractable in the sense that closed-form solutions are rarely avallable. Nearly all of the models in the
papers discussed thus far must be solved numerically. However, Snyder [23] provides an approximate cost
function for Berk and Arreola-Risa’s [2] EOQD model; his approximation can be solved in closed form
and has a number of analytical properties reminiscent of the classical EQQ. The approximate EQQD cost
function plays a role in several of the inventory poiicies we propose below. Just as Snyder {23] found a
good approximation to the optimal order quantity in the ZIO case, Heimann and Waage [12] have found
good approximations to the optimal reorder point and order-up-to amount in the non-ZI0 case. These
approximations are alsc used below.

To our knowledge, only two papers consider non-stationary disruption probabilities. Tomlin and
Snyder [25] consider several up-states, called “threat levels,” each of which entails a different disruption
probability. The state transitions among threat levels, and between up and down states, according to a
Markov process. They show that a state-dependent base-stock policy is optimal and demonstrate that
the benefit of such a policy over a state-independent policy increases as the difference among the threat
levels increases. Li, Xu, and Hayya [13] allow the disruption probability to vary based on the length of
time since the last disruption; such a model is appropriate for machine breakdowns, for example. They
prove that an age-dependent base-stock policy is optimal and provide bounds on the optimal base-stock
levels. These two papers model the non-stationarity of the disruption probability as a stochastic process,
while we consider eyclic, deterministic changes to the disruption and demand rates.

2.2 Queueing

Cyclic variations in demand rates are common in queueing applications, where arrival rates often vary
by time-of-day. Eick, Massey, and Whitt [5, 6] provide fundamental descriptions of the results. The
main intuition is that multiserver queues act like low-pass filters: rapid variations in the arrival rate are
damped out. Also, the peak ocoupancy in the system occurs after the peak arrival rate (this is referred
to as “lag”).

The standard technique for solving a Markovian time-of-day queueing system is to set up a CTMC,
then numerically solve its Kolmogorov Ordinary Differential Equations {ODEs). Because this procedure
is somewhat laborious, it is common to start by looking at approximations. The two approximations that
are most relevant here are the

SSA : Simple Stationary Approximation, where we consider only the daily average arrival and service
rates, then treat the system as always in steady-state with those averape rates, and the

PSA : Pointwise Stationary Approximation, where we estimate the performance measures at each time-
point £ by taking the arrival and service rates at time ¢, then using those to find the steady-state
performance measures.

Cireen, Kolesar, and Svoronos [9] consider typical time-of-day cases where the awverage service duration is
short compared to the demand cycle duration. They demonstrate that when the peak arrival rate is as
little as 10 percent above the daily average arrival rate, the 88A is “likely to produce poor estimates of
performance.” Green and Kolesar [7] demonstrate that the PSA generally does well when service times
are not too long, and its accuracy increases as the arrival and service rates increase (which was confirmed
by Whitt [26]). Green and Kolesar [8] then improved the PSA accuracy by incorporating the lag effect.

Zipkin [27] considers inventory problems with changing rates. He recommends using long-run averages
if the rates change quickly (essentially, an SSA), and current rates if they change slowly (essentially, a
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Figure 1: Example demand rate and failure rate functions

PSA)}. This matches common intuition in the queueing literature. It is the middle ground, where rates
change too slowly for an SSA to be accurate but too quickly for a PSA to be accurate, that we investigate
in this paper.

In call centers, a common heuristic for initially setting the number of servers throughout the day is to
determine how many servers are needed at each timepoint to keep the PSA prediction of waiting times
within management goals, Thus, we will use this kind of heuristic below as one possibie policy when
setting order quantities. We will also allow a lag adjustment.

3 Model Formulation

3.1 Input Parameters

When discussing cycles in disruptions or demand, it is useful to think of the relative amplitude (RA) of
the cycle. This is defined as the distance from the average level to the peak, divided by the average. For
example, if the average demand rate is 100 items/year and the peak demand rate is 150 items/year, then
the relative amplitude is 0.50 or 50 percent.

Since our focus is on exploring the effect of seasonality in demand and disruption risk and on developing
effective but approximate inventory policies, we consider a simpie functicnal form to describe the demand
and failure rates. We will use one that is common in the queueing literature in which the cycle length is
1 time unit, which we set to be a year. The function that we use to describe the demand rate is given by

Mty = M- (1~ RAq - cos(2x(t + ¢a)))

See Figure 1 for a diagram. Here, ) is the average demand rate over the whole cycle, RAy is the relative
amplitude of the demand cycle, and ¢, is the phase shift. Using this form, we are restricted to RAg <1
(otherwise A() may be negative for some £). The failore rate fanction is defined similarly:

F&)=F-(1— RAg - cos(2n(t + ¢5)))

and we must have BAy < 1. Ouwr basic settings have ¢y = 0, so this function hits its minimum at
t=0,1,2,... and hits s maximum at the mid-year marks.

We could similarly define a cyclical repair rate, but we will limit our analysis to the constant-repair-
rate case for convenience. As mentioned above, the cost parameters could also Auctuate, but we will focus
on situations where they are constant as well. Table 1 summarizes our notation for the input parameters



Table 1; Input Parameter Notation

Parameters Definition Basic Setting
K Fixed cost 31/order

h Holding cost 1/item/year
e Stockout cost 11/item

r Repair rate 12/year

f Average failure rate 1/year

RA; Relative amplitude of fallure rate 0.9

b5 Phase of failure rate } years

X Average demand rate 100/ year
RAg Relative amplitude of demand rate 0

by Phase of demand rate 0 years

and provides sample values that constitute our basic problem settings. The basic settings have an average
of one failure per year, and an average repair time of 1 month. Our numerical procedures do not depend
on the sinusoid form of the cyclic functions; any cyclic function may be substituted, though sharply
discontinuous functions may require more care in computing.

3.2 Cost Equation

Let 7L(t) be a random variable representing the inventory level at time t, and let X (t) be a random
variable representing the state of the supplier at time ¢. The state of the supplier may be an integer or
symbol denoting which phase of time-to-fail or time-to-repair i is in, but for cost computations we are
concerned mostly with whether it is up or down, which we denote as U or D. We define the time-dependent
joint distribution of these two random variables as

Prly, z;t) = Pr(IL{f) = y and X(£) = z). ]
The marginal distribution of the inventory level is then
Pr(y;¢) = Pr(y, U;t) + Pr{y, D; 1) (@)

Also, let L(t) = E[I1L(t)] be the expected number of items in inventory at time £.

Our main controls on the system are the reorder-point function s{t) and the order-up-to level function
S(t}. For ZIO policies, we simply have s{f) = 0 for all {; our policies are then equivalent to an order-
quantity policy because of the assumption of lost sales, The value of S(¢} is only needed at times { when
an order occurs; since we don’t know o priori what times these will be, we define §(t) for all t. This
function applies to orders placed when the inventory level hits s(¢) and the supplier is up and to orders
placed at the end of a down-state when the supplier comes back up and the inventory level is at or below
5(t). The choice of () and S(2) curves determines the probability distributions given in {1} and (2),
which then are integrated into the overall cost function as follows.

First, let us consider the instantaneous expected cost due to holding inventory. At time £, it is simply
L{t)h.

Next, let us consider the expected cost due to stockouts. Let «(f) = Pr(0, D;t) be the probability
that the system is empty at time £. If the system is empty, then lost demands oceur at rate A(t), and
each incurs the stockout cost p. Thus, our instantaneous expected cost due to lost demands at time £ is
a(tY M),

Now, let us consider the expected cost due to ordering (that is, paying the fixed cost}. We will start
with the ZI0 case. If we were in state (1, ) at time ¢ (which happens with probability Pr{(1,U;¢)) then
we would order once a demand occurs, which happens with rate A{f). Or, if we were in state (0, D)
(which happens with probability Pr(0, D;t)) we would order once the supplier completes repairs, which



happens with rate . Thus, our instantaneous order rate at time ¢ is A(¢) = Pr(1, I 6)A(L) + Pr{0, D; tyr,
The instantaneous expected cost due to ordering is then B{H)K.

In the non-ZIO case, we need to extend the definition of the instantanecus order rate 8{£). It will be
useful below to allow non-integer recrder points, so here we will give examples of how to compute B(¢)
when s(t) = 1.8,

8t = (Pr({(), 1,2}, U;6) -+ 0.8Pr(3, U;t}) Mt) + (Pr({(}, 1}, Dty -+ 0.8Pr(2, Dy t)) r
and when s{f) = 3.9,
Bt} = (i’r({@, 1,2,3,4L U0+ 0.9P: (B, U, t)) A(E) + (Pr({[}, 1,2,3), D;t) + 0.9 Pr{4, D; t)) "

A precise definition of what non-integer reorder points mean will be given in Section 4.3.2.
We now have expressions for the expected cost at each time poing. The cost over a cycle is simply
the integration of these values. For example, the cost for the vear between ¢t = 2 and { = 3 would be

[ 2@+ a@now + 0K ®
2

4 Methods
4.1 EOQ and EOQD Review

The traditional assumptions for the EOQ model are
¢ Deterministic and constant demand with rate A
e Zero lead time
o No stockouts allowed
¢ Fixed cost of A per order
¢ Holding cost of h per unit per year

Under these assumptions, it is well known (see, e.g,, Nahmias {17]) that the optimal order quantity is
given by /2K \/h, with total optimal cost V2K Ah.

The EQQD model is a modified version of the EQOQ in which the supplier faces disruptions. The
assumption that stockouts are prohibited can no longer be enforced. Therefore, the EOQOQD assumes lost
sales whenever there is no inventory to satisfy demand. Suppose the disruption rate is given by v and the
repair rate is given by u. (Therefore, up-states last 1/ years and disruptions last 1/ years on average.)
Also, let p be the cost per lost demand. Using the approximation given by Snyder [23], the approximate
optimal order quantity is

o _ V(AR + 2hu(K M+ Xpp) — pAh
S* = ; 4)
hy
where p = % is the long-run probability that the supplier is down. The non-ZIO case treated by
Heimann and Waage [12] has more complicated formulas that may be found in their paper.

The EOQ and EOQD both assume deterministic demand, They can be treated as good approx-
imations under stochastic demand when the standard deviation of demand is small compared to its
mean. Under our basic setting, demand is Poisson with rate equal to 100 items/year, so the coefficient
of variation is 0.1. Therefore, we may use these two models as approximations for our basic setting.



Table 2: Summary of ZIO Policy Types {nurmber of parameters in parentheses)

Time-Independent | Real time
Non-Tunable | EOQ-S8A Z5D-PSA
Z8D-88A Z8D-PSA-f
Tunable Z5D-ut (1) Z8D-PSA-ph (1)
Z8D-t (3)

4.2 Policies
4.2.1 ZIO policies

In considering various policies, we will start by thinking only of ZIO policies, then expand to non-ZIO
below. In our time-dependent setting, it is unlikely that one could determine the true optimal order
pelicy §{t) for all £. Instead, we focus on & number of heuristics that trade off simplicity and flexibility.
‘We can categorize these policies in two ways. First, does the policy depend on time, or does it instead
prescribe a constant ovder quantity? Second, does the pelicy involve parameters that can be tuned to
reduce the overall cost? Policies that have no such parameters are substantially easier to nplement, but
are of course more costly. Table 2 summarizes these categories and gives the names of the policies, which
we describe in greater detail next. The Z3D stands for (s, §)-with-Disruptions, but when restricted to
ZIO policies we have s = 0, which we replace with a Z for Zero.

First, we define the policies that prescribe an order quantity that does not change in time. The first
two use the S8A approach, while the third is neither an SSA nor a PSA.

EOQ-55A: Use the optimal @ derived from the ordinary EOQ model under the average value for the
demand rate and ignoring disruptions; that is, S(t) = EOQ{t) = /2K \/h.

Z3D-8SA: Use the optimal § derived from the approximate EOQD model under the average values for
demand and failure rates; that is, use S* from (4), replacing A\ with A in (4) and v with f in the
definition of p.

Z8D-nt: Numerically find the optimal constant § value, evaluating the overall cost using the time-varying
demand and failure rates.

The ZSD-nt policy is not a PSA because it evaluates the Kolmogorov ODEs to determine the cost, rather
than using an approximate cost. Even though it uses a constant order quantity, it is not an SSA because
it chooses that guantity taking into account the full time-varying behavior rather than just the averages.

Next we define the policies that depend on time but have no tunable parameters. These use the
Pointwise Stationary Approximation systern.

7Z8D-PSA: Use the S derived from the EOQD mode! under the values of the failure and demand rates
at the current time. Let EOQOQDpga(t) be the resuiting order quantity function:

(p(B)A[E)D)? + 2hr - (KA(E)r + At)2pp(t)) — p(t) A(E)h
’ hr !

EOQDpsalt) = v

(5)

with p(t) = f(£)/(f(2) +7).
In the next policy, we will use the high and low points of the ZSD-PSA policy, so we will define the
following notation:

lo — i
EOQDEs 4 = Drgtuszl{EOQDPSA(t)}

- Py
EOQDY,,; = Grgggl{EOQDPSAW}



Table 3: Summaery of non-ZIQ Policy Types (number of parameters in parentheses)

Time-Independent | Real time

Non-Tunable | sSD-SSA sSD-PSA
Tunable sSD-nt {2) sSD-PSA-phl (1)
sSD-PSA-ph2 (2)

sSD-+ {6)

ZSD-PSA-f: This essentially fits a sinusoid to the Z8D-PSA function (the -f suffix stands for “fit"):
S(t) =EOQDpsa-5(t)

EEOQD’,@%‘S 4+ EOQDY, ( - EOQD?;S 4 — EOQDS .

2 EOQDY, , + EOQDEs 4

cos(Zvrt))

We use the ZSD-PSA-f policy to determine the importance of the precise shape of the PSA curve as
compared o & pure sinusoid. This policy fits a pure sinusoid to match the peak and valley of the PSA
curves exactly; other fits are possible.

Lastly, we define two policies that depend on time and that have tunable parameters:

ZSD-4: a sinusoid of the form _
S(t) = 8- (1 ~ RAg cos(2x(t + ¢5)))

where we then tune 5, Rdg, and ¢g to minimize the total expected cost.

#3D-PSA-ph: This policy lets us tune a single parameter, the phase shift, to compensate for the lag
effect discussed earlier:

S{(t) = EOQDpgalt + ¢s)

The ZSD-t policy has the most flexibility of any of the policies we consider. The ZSD-PSA-ph policy is
attractive because it strikes a balance between the simplicity of a plain PSA policy and the flexibility of
adjusting for the lag. This can make a substantial difference, as we will see.

One might also define a policy, call it ZSD-t-F (the F standing for Fourier), that consists of a sum of
many sinusoids of progressively higher frequencies. Fach sinusoid would have an RA and a phase shift
that we could tune. Such a policy should cutperform the ZSD-t policy since it is more Hexible. However,
because it involves more dimensions of parameters to optimize, we do not consider this pelicy in this
paper. We suspect that the benefit of increasing the number of sinusoids diminishes rather quickly.

Since Suyder 28} shows that the EOQD outperforms the EOQ under disruptions, we will not consider
EQQ-type policies except the non-time-dependent BOQ itself (which may occur in practice if a firm is
ignoring the possibility of failures).

4.2.2 Non-ZIO policies

Next we extend the above policies to the non-ZIO case. Each policy here could be defined using either
the true optimal steady-state s and & values or the approximations by Heimann and Waage. We use the
approximations rather than the exact values, because of the speed advantage. Table 3 summarizes the
new policies, in a manner parallel to Table 2 in Section 4.2. The sSD stands for (s, §)-with-Disruptions.
The s8D-8SA and sSD-PSA policies are natural extensions of our ZSD-S5A and ZSD-PSA policies
above. The sSD-ut policy allows us to choose a constant reorder point s and constant order-up-to level
S independently; thus it has two parameters to decide rather than the one parameter that the Z3D-
1t policy has. The sSD-PSA-phl policy lets us apply a phase shift to the s8D-PSA policy, but both
curves (s(t) and S{(t)) must have the same phase shift. The sSD-PSA-ph2 policy allows them to have
different phase shifts. Finally, sSD-t is the natural extension of the Z8D-t policy above; it would allow
three parameters each (average, relative amplitude, and phase shift) for the s(t) and S{£) curves, for a
total of 6 parameters. Finding the optimal set of parameters for sSD-t in any particular situation is too
computationally intensive, so we will not give the sSD-t policy any further consideration.



4.3 CTMC Models
4.3.1 ZIO policies

Now we will develop a CTMC model for the ZIO case. As mentioned in the problem setting, we consider
Poisson demand, and phase-type times to failure and repair. This allows us to define a CTMC to model
the problem. The state space has two dimensions. The first is the inventory level JL{t), which is a non-
negative integer due o the lost-sales assumpsion. The second is the phase of the current time-to-failure or
time-to-repair provess, denoted X (¢). Figure 2 diagrams the various types of possibie transitions. Since
the lead time is 0 when the supplier is up, the states with /L = 0 cannot be reached when the supplier is
up. As we mentioned earlier, we will use only exponential distributions for the time-to-failure, and mostly
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Figure 2: CTMC diagram with phase-type up and down times, and ZIO policy

exponential distributions for time-to-repair. We could easily extend our model to have different demand
rates depending on the status of the supplier, or on the inventory level, but for the sake of simplicity we
wili not do so. Either way, we are supposing that the demand process and the supplier availability are
stochastically independent, conditional on the current time of year.

Our order policies are not restricted to integer order quantities. To implement fractional order quan-
tities in our CTMC model, we split the transition arc that corresponds to an order. Each of the two new
arcs goes to an inbteger inventory level adjacent to the non-integer order guantity, with linearly interpo-
lated weights. For example, an order quantity of 10.2 will result in a shipment of 10 items 80 percent of
the time, and 11 items 20 percent of the time.

4.3.2 Non-ZI0 policies

Having formulated our CTMC model for the ZIO case, we now extend it to the non-ZI0 case. Recall
that s(¢) denctes the reorder point. Figure 3 shows how we must change the CTMC at a reorder point of
1 item. We have simplified the diagram to show only exponential up and down times, but phase-type up
and down times are still allowed. The outgoing transitions from states (1,U) and {0,U), which appear
to be impossible to enter, are there for two reasons. First, they are important when we want the reorder
point to fluctuate in time. It is not uncommon to have a low reorder point for a while, let the inventory
level drop, and then have the reorder point rise above the current inventory level. Then, the firm wili
place an order. We imagine that the system is event-based, so that the order wili only be placed when
a demand occurs. In the meantime, the system couid fail, thus giving the arcs from (3, U) to (1, D} and
from (0, U) to {0, D). '

If we wanted the system to place an order when the reorder point crosses the IL from below, we would
have to stop the ODE solver each time the reorder point crossed an integer from below. Then, we would
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Figure 3: CTMC diagram with reorder point egual to 1

adjust the probability vector o account for the order and fulfillment, and restart the ODE solver. This
is similar to how a gueueing system with a changing staffing level must be solved. However, we will use
the event-based paradigm because it is simpler.

The second reason is that those arcs allow easier treatment for non-integer reorder points (we also
allow non-integer order quantities, as before). For example, if we want a reerder point of 1.8, we start by
constructing the CTMCs for reorder points of 1 and 2 separately (call their generator matrices Ry and
Ry respectively). Then, the generator matrix for our final CTMC is a weighted sum: R = 0.2R; +0.8R;.
The resulting CTMC is shown in Figure 4. The outgoing arcs from (1, U) and (0, U) have the same rates
in both R, and Rz, so they appear in the final CTMC unaltered. Notice that Rg will have outbound arcs
from state (2,07) just as {1,U) and (0, U} did, above. Here is the logic for various transitions, starting
from: states:

(3,U} When & demand occurs, fill it and then flip a coin; with probability 0.8 the reorder point is 2 so
place an order (the upward arc), With probability 0.2 the reorder point is 1 so we transition o
(2,U). :

(3,D) If a demand occurs, fill it. The firm might want to order (with probability 0.8) but cannot, so we
move to (2, D).

(2,U) If the supplier fails, we move to (2, D) as usual. If a demand occurs, we fill it and then place
an order (the upward arc). This is where the outbound arcs from (2, U} in Ry make construction
gasier.

(2,D) If a demand occurs, we fill it but cannot order, so we move to (1, ). If the supplier is repaired,
we flip a coin to see if we should order or not, and change state accordingly.

We have a minor discrepancy in when the coin is flipped: if the supplier is up, it is flipped as we leave
IL = 8, but if the supplier is down it is flipped as we leave L = 2. The reorder point, and thus the
probability on the coin, may have changed in the meantime. However, since the reorder point changes
slowly this will make little difference. An inelegant alternative that we have not pursued is to construct
a special state to the right of (2, D) that signifies “when repair occurs, immediately place an order,” and
split the demand arc leaving (8, D).

11



Reorder point=1.8

* Legend:
0.8 demand
A 0.2
e e - - f3i}
0.2 E et [EPAIT
TS B
4 . % dertand, order,
£ fufitied.
i repair, order,
I - fulfilicd
supplier up supplicr down

Figure 4: CTMC diagram with reorder point equal to 1.8; values shown next to arcs multiply the original
rates of the arcs, '

4.4 ODE Solution

Because the various rates in our model change in time, our CTMC is non-homogeneous. For either the
ZIO or non-ZIO case, let R(¥) be the infinitesimal generator matrix (rate matrix) at time €. It has as many
rows {and columns) as there are states in our CTMC model; for example, if our order guantity is 1000,
uptimes are exponential, and downtimes aze Erlang-2, then the number of states is (1001} (1+ 2} = 3003,
and our matrix is 3003 by 3003, Its rates are as specified in Figure 2. Its diagonal has negative entries
that make each row sum to zero. We map the $wo-dimensional state space (IL =y, X = z) withy > 0
and 0 < 2 < N into one dimension using j = y - IV + z, and define the time-dependent state probability
vector P(E) = [p; ()] with p;(¢) = Pr(y, z;t). These probabilities as a function of time are described by
the Koimogorov ODEs (Stewart [24}),

50 = FOR()

This ODE system is first-order and linear, and can be large if the order quantity is large, as mentioned
above.

In order to derive the joint distribution of IL{¢) and the failure/repair phase, we must solve the
Koimogorov ODEs numerically. To do this, we use the workhorse ODE solver in Matlab, the ode4b
function. It is a single-step solver, based on the Runge-Kutta formulas [4] of 4th and 5th order,

We need an initial distribution on the system status (set of Pr{y, z;t = 0) values) to start the ODE
solver, Ideally, we want something as close to cyclic steady-state as possible, to reduce the amount of
time needed to “warm up” the system {let the initial transient behavior fade away). The easiest method
is to let the system start empty, but that is also perhaps the least accurate method. Instead, we use a
PSA at time 0 to find the joint distribution of IL{0) and the fallure/repair status, and use this as our
initial condition.

Another computation-related issue is the choice of a suitable warm up time. To choose an appropriate
time, we plot L(2), c(t) and A(t) from time G to 10 for the basic settings under the Z8D-SSA policy (that
is, constant order quantity, determined by EOQD formula) in Figure 5. Ideally, these performance
measures would stabilize rather quickly, but Figure 5 suggests that there is still some variability in the
height of the peaks even at time 10. However, as shown in equation (3), we actually only need [ L{t)dt,
[ aftydt and [ B(t)dt over one steady-state cycle to compute the long-run average cost. From the figure,
we can see the average values of TL(£), o) and B(t) per cycle are almost the same from year to year,
even from time (. So we use 1 cycle to warm up and compute the average cost based on periods 2 and
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Figure 5: Warm-up behavior of performance measures. Yearly averages are shown with “+” symbols at
mid-year marks.

3 to get our results. A pilot study showed that this method produced results that were very close to the
results obtained from 9 years of warm-up. Our method is more attractive than using a long warm-up
period because any real system would almost certainly see a change in its parameters in the many years
i apparently would take to reach a true steady-state, so a focus on the near future better matches reality.

The run time fo solve the ODEs depends on how much fluctuation the order quantity exhibits. For
the basic settings of the parameters, if we use a time-independent ZIO ordering policy, the run time is
approximately 5.5 seconds for § = 50, 100, 206, 400. If we use a time-dependent order policy with average
order quantity equal to 100, the run times are approximately 5.5, 15.1, 20.7, 27.1, 35.6, and 45.2 seconds
for RAg =0, 0.1, 0.2, 0.3, 0.4, 0.5, respectively. The computations were performed on a Dell Dimension
4600 P4 with a 2.8GHz processor and 512MB RAM running under Windows X¥.

5 System Dynamics

Cur system witk cyclic rates can exhibit sorne surprising behavior. In this section we discuss how the
system dynamics can evolve, Here, we are not concerned with the costs, only with the number of items
in the system. We focus on ZIO policies for simplicity.

5.1 Stationary Systems

First, we consider stationary systems. [t is well known that the inventory level under the ordinary EOQ
model without failures has a uniform distribution. This continues to hold in the discrete demand setting,
with the smali exception that non-integer order quantities can cause Pr(IL = [S7]) to be different than
all the others, Furthermore, if the demand rate is changed without changing the order quantity, the same
uniform distribution still holds. This is because there is only one rate in the model, so changing it is
similar to changing the time units.

in the stationary EOQD model, the Uniform distribution does not hold, as shown in Figure 6. We see
that, given that the supplier is up, we are more likely to have & large inventory than a small inventory.
Given that the supplier is down, the opposite holds. This is because when an order arrives, we know
the supplier is up, and it takes a while (as inventory drops) for probability mass to drift over to the
suppher-down states. With two exceptions, the marginal distribution of L (that is, Pr(y, U) + Pr(y, D))
is still Uniform. The exceptions are the Pr(0,d) state and the states just after an order arrives, if the
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Figure 6: Example joint distribution of inventory level and supplier status

order quantity is non-integer. Also, if we look at the marginal distribution of supplier status, we can
calculate it without considering inventory level, since the supplier status is an alternating renewal process
that is not affected by the inventory level.

In contrast to the behavior of the model without failures, if the demand rate is changed but not the
order gquantity, the distribution changes. This is because the demand rate is not the only rate in the
medel (the others are the failure and repair rates). Chauging the demand rate without changing these
rates changes the probability that the supplier will be down when an order is requested.

5.2 Cyclic Systems, Inventory Level Distribution

Now we move from stationary to cyclic systems. The easiest case to analyze is an EOQ (no failures)
model with a constant order guantity and a cyclic demand rate. The cyclic-steady-state distribution of
inventory level remains uniform, as we might expect from knowing that it does not change in steady-state
if the demand rate changes. If we add failures to the model, then cyclic demand rates cause non-uniform
distributions, again as we might expect from the steady-state case with different demand rates.

Building in complexity, we next look at an EOQ system {uo failures) with an order quantity that
changes in time. In practice, we would only do this if the demand rate varied in time, because it is known
that stationary order guantities are optimal for the stationary EOQ problem. However, to keep our
examination of system dynamics uncluttered, we will set the demand rate to be a constant and examine
the impact of cyclic order guantity policies.

A first question is: is this 2 linear system? In particular, if the input is sinusoidal, is the output
sinusoidal? This is the case for the queueing system analyzed by Eick, Massey, and Whitt [3, 8]. However,
it is not the case for our inventory system. Sinusoidal order quantity policies can give markedly non-
sinusoidal curves for L(t), among other performance measures. Thus, our system is not as easily described
as we might hope. For example, the amount of lag can vary not only with cycle frequency but also with
cycle amplitude,

A second question is: does the inventory level still have a uniform distribution? Let us take an example
using our basic settings, Our order quantity function will be sinusoidal with § = 86.614, Rds = 0.1,
¢g = 0. Here, the average order quantity comes from the ZSD-SSA policy, but we have chosen a different
RAg and ¢g. Figure 7 shows the distribution at a few time points in a cyclic-steady-state order quantity
cycle. The relative amplitude of the order quantity is only 10 percent. The distributions are markedly
non-uniform at all time points. We have added vertical lines to indicate the L{t) value for each curve
{between 30 and 60 items) and to indicate the current order quantity at the right-hand edge of each
curve. Af values above this quantity, the curves drop off rapidly. The dropoff is more rapid for the curves
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Figure 7 Distribution of inventory level at various time-pcints

for time points when the order quantity is rising. This figure is essentially a series of stills from a movie,
available as an [nternet supplement to this article.

5.3 Cyclic Systems, Equilibrium Behavior

Now we turn from the distribution of the inventory level to its mean L(¢) and its interactions with the
instantaneous order rate $5(t). This will give us an idea of when orders tend to get placed. We will plot
examples between years 7 and 10 to show 3 full cycles, but we will refer to times in the cycles using only
the fractional part of the cycle. Our demand rate is 100 units/year.

if the order guantity is small, there are many orders per year, and the fluctuations in L{t) and £(t) are
not large. This is demonstrated in Figure &, where there are an average of 12 orders per year. We can see
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Figure & Order quantity $(¢), Expected inventory L(z), and instantaneous order rate S{t) using an
average of 12 orders per year, and Rdg = 0.3

asmall lag in the peak L{f) values relative to the peaks of the order quantity curve, and the instantaneous

order rate curve is roughly a half-cycle out of phase. This essentially says that when the order quantity
is small, orders are frequent, and when they are large, orders are infrequent, which matches our intuition.
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However, when the average number of orders per year is small, interesting effects occur. If we make
the order size match the yearly demand, so we average one order per year, we can get different results
depending on the amplitude of the order quantity curve. For a low RA of 10 percent, Figure 9 shows
a phase-lock phenomenon. Our L{t) curve has more of a sawtooth shape, similar to what we are used
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Figure 9 Order quantity S(t), Expected inventory L(t), and instantaneous order rate ((t) using an
average of 1 order per year, and EAg = 0.1

to seeing in the traditional EOQ model. Orders are much more likely to happen around the £ = .75
point in the cycle (September and October) than at other times. This is because the order quantity
cycle crosses its average then. If we ordered exactly at ¢ = 0.75, we would order 100 units (the yearly
sverage demand), which would last us roughly until the same time next year. That is, ordering at this
time is an equilibrium. We might ask why a similar equilibrium does not seem to occur at t = 0.25 {late
March/early April), when the order quantity curve is also at 100 units, In fact, an equilibrium does occur
there, but it is unstable. For £ = (.75, if the order is a little early, it will be a little larger and will last
longer, bringing the next order point closer to ¢ = 0.75 in the cycle. Similarly, if the order is a little
late, it wili be a little smaller and not last as long, making ¢ = 0.75 a stable equilibrium. However, the
opposite behavior happens around ¢ = 0.25, making it unstable.

If we increase the RA of the order quantity to 50 percent, we are met with another surprise. Figure 10
shows that the relative variation in L(f) actually goes down, and orders are more spread through the
year. Consider an order near mid-year, when the order guantity curve is highest at 150 items. This will
last roughly 18 months, causing another order when the order quantity curve is lowest at 50 items, and
this order will last 6 months. Thus, we still average 1 order per year, but we alternate between long and
short inter-order intervals. Thare is also a stable equilibrium around ¢ = 0.75 as before.

Now that we have seen how the system can behave under fuctuating order quantities without regard
to cost, we turn to how the various policies affect overall cost.

6 Results

We look at three guestions in our numerical experiments. First, how do the policies behave in a wide
variety of parameter settings? Second, how do the policies behave as the parameters are varied in the
neighborhood of our central example from Table 17 And third, how robust are the policies to the
possibility of poor estimates of various parameters? We start, though, by looking at the optimal solution
to our central example, using 210 policies for simplicity.
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6.1 Central Example

Before we explore the general behavior of our policies under o variety of parameter settings in Section 6.3,
we start by focusing on a single set of parameters. We compare the EOQ-38A, ZSD-85A, ZSD-nt and
ZS8D-t policies for our basic settings described in Table 1. As expected, the optimal ZSD-t policy returns
the lowest cost. This is intuitive since this policy is both time dependent and tunable. In Figure 11, we
plot the cost functions as we vary the average order quantity, under the ZSD-nt and Z8D-t policies. Here,
we have fixed RAg = .2 and ¢g = .7, which are the optimal values for the ZSD-t policy. We can see
that the optimal average order quantity for the ZSD-t policy is greater than the order quantity for the
optimal ZSD-nt policy. In this case, the optimal order quantity for the ZSD-ut policy is essentially equal
to what the Z8D-5SA uses, so their costs are the same. If we used the optimal ZSD-ut policy rather than
Z8D-t, our cost would increase by 5 percent. Later examples wili show larger differences.

Cur ZSD-t policy has three decision variables: average order quantity, relative amplitude, and phase
shift. It would be difficult to visualize the objective function in these three dimensions, so we will look
at cross-sections. In Figure 12, we plot contours of the objective function for the ZSD-t policy, with each
subplot fixing one of the variables at its optimal value. In each subplot, the optimal solution is marked
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Table 4: Ten problem instances

Instance h K 5 A
1* 8 30 129.6 54
2 15 10 40.0 14
Jkx 650 175 1250.0 20
4* 20 50 250.0 20
Bk 4500 4500 44049.0 24
G** 500 300 5000.0 30
T 0.132 20 3.4 100
8* 50 28 800.0 52
g 0.5 12 120 31
10%* 360 12000 6573.0 80

Table 5: Percentage cost savings from ZSD-SSA policy

1 2 3 4 5 6 7 8 g 10
Z5D-nt 060 0060 084 002 000 003 000 004 000 0.02
ZSD-PSA 0.65 -0.19 057 072 029 112 -1.36 070 227 -3.10
Z8D-PSA-ph | 272 -0.10 066 096 1.62 260 1.3% 425 227 451
Z5D-1 260 0.00 O0GRB7 098 167 276 468 498 5.01 781
sSD-8S8A 544 0.060 000 -0.22 094 454 -002 1708 -0.05 (.13
s5D-nt 544 0.60 084  0.01 1.31 495 000 17.14 0060 .20
sSD-PSA 869 -0.19 054 164 445 935 -0.19 2223 162 -0.24
sSD-PSA-phl | 860 -0.10 0.62 1.77 451 935 031 2223 1682 -0.24
sSD-PSA-ph2 | 8.24 -0.10 064 1.97 4.70 049 0.84 2228 1.2 239

with a star.

6.2 Wide variety of parameter settings

To test the policies on cost and demand settings that encompass a wider view of possibilities, we start
with a set of 10 instances collected by Snyder [23], shown in Table 4. Those instances were collected from
production and inventory textbooks. Unfortunately, many of them result in very large order quantities
and very long solution times for the ODE solver. Thus, or most instances we have scaled up the holding
and shortage costs and scaled down the demand rates by a factor of 10 or 100 to bring the down order
quantities and thus decrease $he solution times. One asterisk demotes scaling by 10, and two asterisks
denote scaling by 100. These settings came from examples that did not include the possibility of failures.
We use a repair rate of r = 12 per year (average repair time of 1 month) and the same failure rate curve
as In our basic settings. We also let the demand rate be constant rather than cyclic.

Table 5 shows the resulting cost savings (ss percentages) from the Z8D-88A policy cost for each case.
Negative values mean that the cost savings was negative, i.e., the cost actually increased. Overall, we
see that the ZSD-t policy saved up to 7.8 percent compared to the naive ZSD-3SA policy. There are also
a few instances where the simple ZSD-PSA policy costs more than the naive 43D-3SA policy, but that
only happens once when a phase-shift is allowed (Z8D-PSA-ph). The best non-ZIO policies often offer
better savings than ZSD-t {cases 1, 4, 5, 8, 8), but there are cases where they are worse than ZSD-t. This
is initially counter-intuitive because oue thinks of the non-ZIO policies as having more freedom than the
ZI0 policies. However, the non-ZIO policies are constrained to use the reorder-point curve determined
by the PSA, though it might be phase-shifted. Iuterestingly, the sSD-PSA policy does better than the
ZSD-PSA, and adding one or two parameters for the phase shifts does not improve costs all that much.
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Having looked at these examples, we will turn to an exploration of the parameter space near our
central case.

6.3 Sensitivity around the central example

In order to investigate the benefit of the ZSD-t policy, we vary, one by one, the fixed cost K {Figure 13),
stockout cost p (Figure 14), average failure rate f (Figure 15), repair rate v {Figure 16), RA of the
failure rate RA; (Figure 17), RA of the demand rate RAy (Figure 18), and phase of the demand rate ¢y
(Figure 19). Each figure varies one parameter with the other parameters staying at the values given in
Tahle 1. Each figure shows the actual cost curves on the left, and the percent increase above the Z8D-t
cost on the right. Compared to those constant-order-quantity policies, the benefit of the ZSD-t policy
increases with stockout cost, average failure rate and its relative amplitude, and the relative amplitude
of demand rate.

From these plots, it is clear that the ZSD-¢ policy generally ouiperforms the other proposed policies.
The second best policy is ZSD-PSA-ph, which is clearly better than ZSD-PSA; that is, the ability to adjust
the phase in response to the system lag is important, as we mentioned when we first introduced ZSD-PSA-
ph. Generally, ZSD-PSA-ph stays within 5 to 10 percent of the ZSD-i policy. However, Figure 18 shows
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Table 6: Extreme cases near the basic settings, percentage cost savings from ZSD-SSA policy

Basic K=1 p=5l f=12 r=1 RAg=0.9
ZSDnt 0.0 0.1 0.0 62 00 04
ZSD-PSA 1.7 24 2.1 29 -1l1 9.0
7SD-PSA-f 2.9 49 146 124 6.5 2.6
ZSD-PSA-ph | 2.2 47 147 123 50 2.5
%8D-t 4.9 49 147 132 83 145
sSD-35A 0.0 122 100 186 188 04
sSD-nt 0.0 123 100 136 195 0.7
sSD-PSA 01 179 124 150 170 5.4
sSD-PSA-phl | 05 179 124 150 194 2.1
sSD-PSA-ph2 | 13 180 125 152 206 13.6

that the difference can climb toward 15 percent when the demand rate has a large relative amplitude.

The ZSD-PSA and ZSD-PSA-f curves are close in many cases; this shows that the exact shape of
the curve {the near-sinusoid PSA versus a pure sinuscid) is not so important. The exception is when
the demand phase is not synchroncus with the failure rate phase. Then, the ZSD-PSA is not nearly a
sinusoid, and so there are larger differences in cost between it and the ZSD-PSA-f policy. One surprise is
that these time-dependent ZSD-PSA and ZSD-PSA-f policies are actually substantially worse than the
constant-order-quantity policies ZSD-nt and ZSD-83A {and even EOQ-3SA) in many cases. This reflects
the importance of accounting for the system lag.

The constant-order-quantity policies ZSD-8SA and Z8D-nt are very close in almost all cases. Thus,
there is little benefit to be obtained by optimizing a constant order guantity instead of simply using the
ZSD-SSA policy. The EOQ-3SA is even close to (but always worse than) the ZSD-SSA in some cases. A
phenomenon of minor interest is shown in Figure 17: policies with constant order guantities are almost
entirely insensitive to changes in B4y, as long as the demand level does not fluctuate at all.

When the failure rate amplitude increases (Figure 17), we are met with another surprise: the costs
for ZED-¢ and ZSD-PSA-ph go down rather than up. Inspection of the optimal policies reveals that they
tend to concentrate their orders during the time of low failure rate, and avoid the pesk failure rate. This
illustrates the benefits of a real-time ordering policy, as cpposed to a constant order quantity.

When the demand amplitude increases rather than the failure rate amplitude (Figure 18), the ZSD-t
policy still saves more money. This is also surprising, becanse in many fields and models (call centers,
electric power generation, ete.) it costs more to meet non-constant demand than steady demand, The
optimal Z8D-t policies in these cases tend to place their orders as the demand curve is increasing, so
helding costs are reduced.

Next, we look at the effects of the non-ZIO policies in some of the extreme cases of the above figures.
These cases are chosen to make failures even more of a factor than they are in the central case. For
example, we have (individually) increased the stockout cost, increased the failure rate, and decreased
the repair rate. Since in these cases it is more important to avoid stockouts, we should see more of a
benefit from the non-ZIQ policies. The resulting Table 6 is similar to Table 5 it shows percent cost
increases compared to the Z8D-8SA policy for some parameter settings. Just as in Table b, we see that
the non-ZI0O policies are not aniformly better than ZSD-t. In the basic case, the increased stockout cost
case, and the KAy = 0.9 case the ZSD-t policy is betfer than all of the non-ZIO policies. Also, when
RAy = 0.9 the phase shift aliowed by sSD-PSA-phl substantially improves the cost compared to the
plain PSA, but in the other cases it is not so important.

6.4 Robustness

In most cases, the overall probability of disruption is low, which makes it difficult o estimate the rates
needed for the CTMC. Also, using an exponential distribution to approximate the repair process may
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not be accurate, as an exponential distéribution has an unchangeable variability relative to its mean. One
might expect variability to be larger if disruptions vary widely in severity, or smaller if the supplier is
equipped to handle a small number of foreseeable disruptions. In this section we concentrate on the ZIO
policies for simplicity.

Suppose we obtain the optimal ZSD-t policy using the assumptions introduced earlier. We would like
to evaluate its performance under “real” settings as compared to the optimal ZSD-nt policy for those
settings. Therefore, we study the tradeoff between the savings by employing a time-dependent control
system and the robustness obtained by using a time-independent control rule.

6.4.1 Supplier Parameters

We start by investigating the effect of exvors in the relative amplitude and phase of the failure rate.
Starting with our basic settings from Table 1 as the “true” parameters, we consider the optimal Z8D-t
policy and its cost, as was done in Section 6.1. Then, we suppose that the firm has mis-estimated KAy
and ¢y, and compute the ZSD-t and Z3D-nt policies they would have found. We then take these policies
and evaluate them using the true parameters, to determine the resulting cost increase.

We are using both Z8D-t and ZSD-nt because one might think that it could be better to use a
constant-order-quantity policy in the presence of uncertainty about the behavior of the failure rate. If
the failure rate is the only fluctuating rate (as it is in our basic settings), then the ZSD-nt policy is
entirely insensitive to ¢y because it amounts only to a change of time origin.

In our experiment, we let the firm's estimates of RAy and ¢y vary as follows: B4y = ,0.1,...,1
and ¢y = 0,0.1,...,1. This would result in 11 -11 = 121 data points, with the exception that some
data points with BAy = 1.0 result in numeric difficulties because the failure rate hits zero, and thus are
excluded (this is also common in queueing models). Each of these has a cost for the misguided Z8D-¢
used in the true-parameter model, and for the misguided ZSD-nt used in the true-parameter model.
From these roughly 121 cost increases for the two policy types, we examine the maximum, minimum,
and average (with all combinations giver equal weight). Note that, as we saw in Figure 17, the Z5D-nt
policy experiences almost exactly the same cost regardless of the value of RAy when EAy = 0; thus, its
average, minimum, and maximum are essentially the same.

Intuition: would predict that the worst-case cost increase occurs when the failure rate's relative am-
plitude, RAy, is large and the phase, ¢y, is mis-estimated by half a yearly cycle. This is indeed the
case. However, when the relative amplitude is lafge, more data will be available concerning when the
peak occurs, because failures will be more concentrated there. Thus, the worst case of mis-estimation is
unlikely to cccur. In that sense, giving equal weight to all possibilities of mis-estimation in taking the
average is being conservative.

Figure 20 shows the resulting total costs as various system parameters change. In these plots, the
demand rate is constant. We only plot the average cost for the Z3D-1t policy, because its minimom and
maximumg are negligibly different, as previously noted. The figure shows that there are some cases where
using the ZSD-nt policy guards against the worst case of mis-estimation when using Z8D-t. However,
even in those cases, it is still better on average to use the ZSD-t policy. In other cases, the ZSD-t policy
calculated based on the most-wrong estimates is still better than the corresponding Z8D-nt policy.

Next, we turn to the case where the demand rate varies in time, shown in Figure 21. We are supposing
that the demand rate function is certain; it is the failure rate function that is uncertain, as before. This
is reasonable, because the firm should have plenty of data on demand rates, since demand is nowhere
near as rare as failures. In the fluctuating-demand scenario, the Z8D-ut policy costs are not essentially
constant as they were in the previous figure. We see that the ZSD-nt policy is, on average, worse than
the worst-case scenario for the ZSD-t pelicy. Thus, it is better to use the ZS8D-t policy rather than the
£SD-nt policy.

6.4.2 Repair Distribution

Because failures and their subsequent repairs are not particularly common, if is difficult to estimate the
distribution of the time it takes to repair the system. Estimates of anything beyond the mean {variance,
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Figure 20: Robustness plot when the demand rate is constant over time
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skewness, etc.) would be rough at best. Thus, we shouid investigate the effects of assuming a simple (i.e.
exponential) distribution when the true distribution is different.

As mentioned in Section 1.2, we will use phase-type distributions. For a distribution that is less
variable than exponential, we will use an Erlang distribution with 2 phases, abbreviated E2. Its coefficient
of variation {standard deviation divided by mean) is 1/+v/2 ~ 0.707. For a distribution that is more variable
than exponential, we will use a hyperexponential with two phases (abbreviated H2). We have chosen its
coefficient of variation to be 2. We have used a balanced-means hyperexponential, which is a common
choice {see Allen [1]).

From our basic setiings, we change the exponentially distributed repair time to an E2 distribution to
make repalr times less variable. We find numerically that the optimal ZSD-t policy changes only by an
insignificant amount. Thus, there is practically no harm in using an exponential distribution for repair
times if the true distribution is E2. We conjecture that higher-order Erlang distributions (Erlang-3, etc.),
which become less and less variable, may induce somewhat larger differences. The number of states in
our CTMC, and thus the run-time of cur solution procedures, goes up approximately linearly with the
number of stages in the repair distribution. Thus, there is a disincentive to use Erlang distributions with
a large number of stages.

If we change the exponentially distributed repair time to the H2 distribution that we have chosen,
and find the new optimal ZSD-t policy (knowing that the H2 distribution holds), its true cost is 90.82. If
we apply the old Z8D-t policy determined under the exponential repair time assumption, but evaluate it
using H2 repair times, its cost is 90.88, a very small increase. The policies are mildly different: the new
(H2-optimal} policy has an average order gquantity 5.7 percent higher than the old (exponential-optimal)
policy, and the phase shift increases by 0.05 to 0.75.

7 Conclusions

We said in Section 2.2 that we would explore the middle ground between PSA and SSA applicability.
We have seen that the plain PSA-type policies (ZSD-PSA and ZSD-PSA-f) are worse than the SSA-type
policies (Z8D-SSA, ZSD-nt) in most of the cases we evaluated. So, it would seem that our parameter
choices have tended toward the SSA side of the middie ground. However, we have also seen that the Z8D-t
policy (which is decidedly not an SSA) is much better than the 3SA policies. Also, the ZSD-PSA-ph
policy is second best, and it is also neither a true PSA nor an SSA. Thas, we conclude that our parameter
choices have indeed established an interesting middle ground.

The effect of lag in the system is important, and in many cases it is better to use a plain stationary
policy (such as ZSD-SSA or ZSD-nt) than to use a nonstationary policy that ignores lag effects (such as
ZSD-PSA).

Overall, we see that the ZSD-PSA-ph policy balances cost savings with ease of computasion, since
only one parameter must be optimized, as opposed to 3 parameters for the Z8D-t policy. However, if the
demand fluctuations are medium-large, only the ZSD-t policy can take better advantage of them and is
probably worth the extra effort.

The non-ZIO policies, in aliowing a positive reorder point, sometimes offer extra cost savings but not
always.

When we iocked at the effects of mis-estimating the failure rate phase and relative amplitude, we
found that the henefits of using a time-dependent policy outweigh the virtual insensitivity of a non-real-
time policy in almost every case. Thus, we conclude that our time-dependent policy is robust in the
face of uncertainty about these parameters. While it may suffer some cost increase, that cost increase is
preferable to what the firm would suffer if a too-simple policy was used. We also found that the system
was robust against the changes in the repair-time distribution that we tested. This is important because
little data are available on the distribution of repair times.

It would be straightforward to include & variety of other features in the model and still be able to
formulate it as a CTMC. Such features include phase-type demand arrivals (to model smooth or bursty
demand), phase-type random lead times even when the supplier is up, backordered demand, batch demand

26



arrivals of randor: sizes, and random yield.
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