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Abstract

Given a multilayer routing area, we consider the global routing problem of selecting & max-
irnum set of nets, such that every net can be routed entirely in one of the given layers without
violating the physical capacity constraints. This problem is motivated by applications in mul-
tilayer IC and multichip module (MCM) layout designs. The contribution of this paper is
threefold, Pirst, we formulate the problem as an integer linear program (ILP). Second, we
modify an algorithm by Garg and Kénemann for packing linear programs to obtain an approx-
imation algorithin for the global routing problem. Our algorithin provides solutions guarentesd
to be within a certain range of the global optimal solution, and runs in polynomial-time even
if all, possibly exponentially many, Steiner trees are considered in the formulation. Finally, we
demonstrate that the complexity of our algorithm can be significantly reduced in the case of
identical routing layers.

1 Introduction

Traditionally, the VLSI routing process is divided into two phases: global routing and detailed
routing. Global routing is to find a routing tree for each net, and detailed routing assigns the
actual tracks and vias. Advances in VLSI fabrication technology have made it possible to use
multiple routing layers for interconnections. A significant amount of research exists on handling

multiple routing layers in the detailed routing phase. However, only limited research exists on

*Department of Electrical and Computer Engineering, University of Sharjah, Sharjah, UAE. Email:
msaad@sharjah.ac.ae.

1School of Computationat Engineering and Science, Department of Computing and Software, McMaster University,
Hamilton, ON, Canada. Email: terlaky@mncraster.ca.

{College of Physical and Engineering Sciences, University of Guelph, Guelph, ON, Canada. PEmaik
vannelli@uoguelph.ca.

$Canadian Imperial Bank of Commerce, Toronto, ON, Canada. Email: hu.zhang@cibe.ca.



multilayer global routing {13]. In other words, multiple routing layers have been dealt with in the
detailed routing phase rather than in the global routing phase [13].

Given a multilayer routing area and a set of nets, we consider the global routing problem of
selecting a maximum (weighted) subset of nets, such that every net can be routed entirely in one
of the given layers without violating the physical capacity constraints. This problem is motivated

by the following.

¢ Routing the majority of nets each in a single layer significantly reduces the number of required
vias in the final layout. It is known that vias increase fabrication cost and degrade system

performance [7].

» Routing the majority of nets each in a single layer greatly simplifies the detailed routing

problem in multilayer IC design [7].

A similar multilayer topological planar routing problem was addressed in [8] and [7]. Given a
number of routing layers, these studies addressed problem of choosing the maximum (weighted}
subset of nets such that each net can be topologically routed entirely in one of the given layers.
In particular, Cong and Liu proved in [8] that the problem is NP-hard. A provably good greedy
algorithm for the problem was presented by Cong, Hosssin and Sherwany {7]. A limitation of
these studies is that they considered only planar routing, i.e., physical capacity constraints were
not considered [7]. Moreover, planar routing graphs cannot handle state-of-the-art technologies
properly [13].

The contribution of this paper is threefold.

¢ We formulate the multilayer global routing problem of selecting the maximum subset of nets
such that every net can be routed entirely in one of the given layers without violating the

physical capacity constraints, as an integer linear program {ILP).

e We modify an algorithm by Garg and Konemann for packing linear programs to obtain an
approximation algorithm for the global routing problem. Our algorithm provides solutions
guaranteed to be within a certain range of the global optimal solution, and runs in polynomial-

time even if all, possibly exponentially many, Steiner trees are considered in the formulation.



» We demonstrate that the complexity of our algorithm can be significantly reduced in the case

of identical routing layers.

The remainder of this paper is organized as follows. In Section 2, we model the global routing
problem as an ILP. In Section 3, we present a polynomial-time approximation algorithm for the
linear programming (LP-) relaxation of the problem (i.e., for the fractional global routing problem),
and establish its performance guarantee and computational complexity. A reduced complexity
algorithm is introduced, in Section 4, for the case of identical routing layers. In Section 5, we
derive our overall approximation guarantee for solving the integer global routing problem. Section

6 concludes the paper.

2 Mathematical Model

In this section we introduce an ILP formulation for the global routing problem. Following [1], an
undirected grid graph G = (V, E) is constructed. In other words, & two-dimensional grid is placed
over the chip. For each tile, there is a vertex v € V, and two vertices corresponding to adjacent tiles
are connected by an edge. In other words, each edge ¢ € E represents a routing area between two
adjacent tiles. In multilayer designs, an edge may consist of more than one layer [19]. In particular,

the following are given as inputs to the problem.
s V: the set of vertices in the routing graph, |V| = N.
e E: the set of edges in the routing graph, || = M.

L£=1{1,2,...,L}: the set of available routing layers™,

e c.;: the capacity of edge e € E on layer | € L.

e T: the set of nets. Each net i € T is defined by a subset of vertices V; C V that need to be
connected. In particular, a net ¢ € T is realized by finding a Steiner tree that connects all

vertices in V;.

1A routing layer considered in this paper may, in practice, be implemented as a pair of layers: one for wiring in
the % direction, and the other for wiring in the y direction. The problem formulation and aigorithm presented in this
paper avoids the use of stacked vias between different pairs of layers. However, vias used to connect wires within any
pair of layers may be required. These vias are less expensive, and may be minimized in the detailed routing phase.
In the sequel, pairs of layers are simply termed “layers”.



e 7;: the set of all Steiner trees in G that can be used to realize net i € 7. In other words,
every tree T € T; connects the vertices in V;. Tt is worth noting that 7; can be exponentially

sized. our algorithm, however, do not require that the sets 7; are explicitly given.

A net i € 7 is realized by finding a Steiner tree T' € 7; that is routed entirely in one of the given
layers | € £. The objective is to maximize the number of nets successfully realized. The design

variables are {z;(T,1): 4 € I,T € 7;,1 € L}, where for some 1 € I:

w(T, 1) = 1, T € 7T, is selected to route net i on layer | € £;
BT 0, otherwise.

The global routing problem can be cast as ILP as follows:

max ZZ E zi(T, 1)

lef ied TeT;

s.t. Z Z z;(T,0) < cey, Ve,l (1a)

6L TeT;eel

(D) < 1, Vi (1b)
D

leL TeT;
(T, 1} e {0,1}, ¥4, T, 1. (1c}
Equation (1a) represents the capacity constraints. It ensures that the number of nets routed
over any edge e and assigned to the same layer [ does not exceed the capacity ¢ of that edge.
Equation {1b) ensures that at most one tree is chosen for every net i. Equation (lc) represents
the non-negativity and integrality constraints of the variables. The objective is to maximize the
number of nets successfully routed.
It is straightforward to see that the global routing problem as formulated by (1) is NP-hard.
In fact, it contains the unsplittable maximum multicommodity flow problem as a special case. In
particular, let £ contain only one layer. Also, let every net i € 7 contain only two vertices, ie.,
for every net i € T let V; = {s;,d;} where s;,d; € V. In this case 7; will contain only simple paths
that join s; and d;. Under these restrictions ILP (1) will be equivalent to the following problem:
Given a graph G = (V, B}, a capacity associated with every edge, and a set of commeodities {each
defined by a pair of vertices and associated with a unit demand), we seek to route a subset of the
commodities of maximum total demand, such that every demand is routed along a single path and
that total flow routed across any edge is bounded by its capacity. This is precisely the unsplittable

maximum multicommodity flow problem, which is known to be NP-hard [12].



The NP-hardness of the global routing problem as given by (1) justifies the use of heuristics.
In this paper, however, we are interested in polynomial-time approximation algorithms that have
a theoretically proven worst-case performance guarantee. We start by giving an efficient algorithm

to solve the linear programming (LP-) relaxation of ILP {1).

3 A Provably Good Algorithm for Fractional Global Routing

We briefly digress from the global routing problem to a more general packing problem, which is a
special kind of LPs. In fact the LP-relaxation of (1) is a packing problem. In this section we will
design a fast approximation algorithm for the LP-relaxation of (1) based on the method in [18].

‘We consider the following fractional packing problem:

max clx
s.t. Az <b (2)
x> 0.

Here A is a m x n positive matrix, and » € R™ and ¢ € IR™ are positive vectors. Since in (1},
there are exponentiaily many variables, which can not be solved by many exact algorithms for LPs,
e.g., standard interior point methods. The volumetric cutting plane method [2] or the ellipsoid
method with separation oracle [10] may be employed, but in general they lead to large complexity.
Therefore, we are interested in approximation algorithms.

The approximation algorithms for fractional packing problems {refpacking) are well studied
in {9, 14, 18, 20]. Ali these algorithms are based on the duality relation for LPs. However, the
algorithms in [14, 20] run in a time depending on the input data, and therefore only lead to
polynomial time algorithms. The algorithm in [9] is the first with a strictly polynomial time but
the block problem (subproblem) is required to be polynomial time solveble. Unfortunately it is not
the case as we shall show later that the block problem of LP-relaxation for (1) is AP-hard. Hence,
we will apply the algorithm proposed in [18}.

The approximation algorithm in [18] is an iterative approach. It maintains a sequence of a pair
of the primal solution z and the dual solution y. At each iteration, for a pre-computed y € IR™,

an approximate block solver ABS(y) is called once that finds a column index ¢ that:

(A9 yfeg S r rr;,iﬂ(/lj)’”y/ ¢,



 where r > 1 is the approximation ratio of the block solver, which plays a role similar to the
separation oracle in [10]. It is shown in [18] that their algorithm can find a (1 — ¢) /r-approximate
solution within coordination complexity (bounds on the number of iterations) of O(me™?Inm).

The approximation algorithm for fractional packing problem (2) is in Table 1.

S=1—-vI—gu=(1+8)(1+8m)" ¥ f=0,y =u/b, D=um;
while D < 1 do {iteration}
call ABS(y) to find a column index g;
p = argmin; b;/A; g;
Tq = Tq +by/Apg;
e { bifAig
T
D=3 b
i=1
end do

Table 1: Approximation algorithm for fractional packing problems.

In the algorithm the parameters f and D are in fact the objective values of the primal and dual
programs for current pair x and y. It is showed in [18] that the scaled solution z/logy 5{(1+6)/u)
st the fnal iteration is a feasible solution and the corresponding objective value is at least (1 —

€)OPT/r, where OPT is the optimum value of {2). For the complexity, the following result holds:

Proposition 1 [18] There exists a (1 — ¢)/r-approzimation algorithm for the packing problem (2)

running tn O(me~?Inm) iterations, each iteration calling an r-approzimate block solver once.

Tt is worth noting that the complexity of the algorithm in [18] is independent of the input data or
the approximation ratio r, which is sirnilar to the result in [11] for convex min-max resource-sharing
problems.

Applying the approximation algorithm for fractional packing problems to the LP-relaxation of

(1) yields the following result:

Theorem 1 There is a (1 — ¢)/r-approzimation algorithm for the LP-relaration of (1} with a
running time O((ML+|I) L|Z|e 8 1In{ML+|Z|)), wherer and 8 are the ratio and the running time

of the approzimate minimum Steiner iree solver called as the approzimate block solver, respectively.

Proof. We just need to consider the block problem. There are two types of components in the

dual vector y. The first type of components corresponding to the first set of constraints (capacity



constraints) in (1) are yi,..., UM, YM41: - Y2Ms - > YM(L—1)+1s - - - » YML, Which corresponds to
edge e; € F and the layer [. The remaining components yrrz+1,. .., Ymr+jz| corresponds to the
second set of constraints in (1). It is easy to verify that the block problem of the LP-relaxation of

(1) is to find a tree T such that

min min Qrpé% (; Yive T YrL+idiT), 3)

where the indicator variable §;7 = 1 if T € 7;, and otherwise §;r = 0. To find the minimum, we

can just search a number of L|Z| trees to attain the following minima:

g}:}g zé;yMu-e,

forallé==1,...,|7} and I = 1,...,L. Then we can find the minimal objective value of (3) over all
these L|T| trees. If we regard the first M L components of the dual vector y1,..., ¥ as the length
associated to all edges in the given graph for all layers, then minrer; Y o7 YMite 18 equivalent to
finding a tree on the [-th layer for net i with a minimum total length. Now the block problem is in
fact the minimum Steiner tree problem in graphs. With an r-approximate minimum Steiner tree
solver and using the approximation algorithm for fractional packing problems in [18], we can prove
the theorem. [ |

Unfortunately, the minimum Steiner tree problem is APA-hard [3, 4. The best known lower
and upper bounds on the approximation ratio are 96/95 =~ 1.0105 [6] and 1 -+ {In3)/2 ~ 1.550
[17], respectively. Thus, we can only use the approximation algorithm in [18] with an approximate
minimum Steiner tree solve to obtain a feasible solution to the LP-relaxation of (1} to obtain an

approximation algorithm with theoretical performance bounds.
4 A Reduced Complexity Algorithm for Identical Layers

In this section we consider the special case of the global routing problem where for every edge
eg

Cel = Ce2 = ... = Co, L = Ce¢



This corresponds to the situation of all routing layers being identical. In this case, the LP-relaxation
of the global routing problem will be given as follows.

max ZZ Z (T, 1)

lef 1T Teh;

st D > w@(T) <ce, Vel (4a)

el TeTeeT

SN @(T )< 1, Vi (4b)
lel Teh;
0 <o <1, Ve, T, L. {4c)

Now, consider another special case of the global routing problem as given by (1), where the
number of routing layers is reduced to one and the capacity of every edge e is set to ¢, L. Let this
problem be termed single-layer problem. It is straightforward to see that the LP-relaxation for the

single-layer problem is given as follows.

max Z Z yi{T)

i€T TeT;

s.t. Z Z y(T) < e L, Ve (5a)
i€Z TeTieeT
> w(T) <1, Vi (5b)
TeT
0<y{T) <1, Vi, T. (5¢)

Recall that M and L denotes the nmumber of edges in the routing graph and the number of
routing layers, respectively. Moreover, let |7 and |Z] denote the total number of Steiner trees in
the graph and the total number of nets, respectively. The number of constraints in the multilayer
LP (4) is M- L+|T}, while the number of constraints in the single-layer LP (5) is M +|Z|. Moreover,
the number of variables in (4) is |7 - L, while the number of variables in (5) is |7]. To give more
insight, note that, in the case of ten routing layers, the single-layer LP as given by (5) has an order
of magnitude less constrai.nts and variables than the multilayer LP as given by (4). In the following
theorem we establish the fact that solving LP {5) provides the same solution and objective function

value as solving LP (4).

Theorem 2 Let OPTy, denote the optimal objective function value of the mulllayer LF given by
(4). Also, let OPT, denote the optimal objective function value of the single-layer LP given by (5).
Then, OPT,, = OPT;.



Proof. We establish the proof by showing that OPT,, < OFT; and OPT,, > OFPT,.

Let {z}(T,1) : i € Z,T € T;,l € L} be an optimal solution to LP (4). Define y{(T) =
Yier i (T,1) for every i € T and T € 7. By (4b) and (4c), for every i € T and T € T;, we have
0<yiT) = Yjepai(T,1) < 1. Also, by (4a), for every e € E, we have 35,07 rerieer V(L) =
Sorer Soier Soretieer T(To 1) € 3ier €e = ce - L. Furthermore, by {4b), for every i € T, we have
Yren¥i(T) = Zleﬁszi sty <= L. In other words, {y}(T) : ¢ € Z,T ¢ T;} is a feasible
solution for LP (5). Consequently,

> yHT) < OPT.. (6)
i€T TET;

By replacing yf (T') by its definition in terms of 7 (T, 1} in (6), we conclude that

OPT,, < OPTs. (1)

Conversely, let {yf(T") : i € Z,T € T;} be an optimal solution to LP (5). Define z}{T,1) =
%; (T for every for every i € I, T € Ty and I € L. By (5¢), for every 1 € Z, T ¢ T;
and [ € £, we have 0 < zF(T,[) < 1. Also by (5a), for every e € F and I € L, we have
PoieT SoreTieer TilLs1) = + Yier Yorerneer ¥i (1) < 1.¢e+ L = c.. Furthermore by (5b), for
every ¢ € I, we have 3 ;cr > ey T3 (T,1) = $Soter Lren Yi(T) = Trer yi(1) £ 1. In other
words, {z}(T,1):i € Z,T € T;,1 € L} is a feasible solution for LP (4). Consequently,
DN &l (T. ) < OPTy. (8)
leL i€l TET;

By replacing z} (T,1) by its definition in terms of yf (T") in (8), we conclude that
OPT, < OPTp,. (9)

Combining (7) and (9) completes the proof. [ |

Moreover, we have the following result.

Corollary 1 Let {}(T) : i € Z,T € T} be an optimal solution to LP (5). Then, {x}(T\1) i €
I,T € T;,l € L}, where zf(T,1) = %~y§“(T) for every for everyi € I, T € T; and [ € L, is an
optimal solution to LP (4).

Proof. Follows directly from the proof of Theorem 2. |



Furthermore, using the same argument we can show that if yf(7T) is 2 p-approximate solution
to LP (5), then zf(T,1) = %y:‘ (T) is a p-approximate solution to LP {4). Therefore, the algorithm
presented in Section 3 can be used at reduced complexity to obtain a provably good solution to the
single-layer LP as given by (5). This solution can then be used to obtain a soiution of precisely the

same quality to the multilayer LP as given by {4).
5 The Approximation Algorithm

As usual, our approximation algorithm for the global routing problem in multilayer VLSI design is
as follows: We first solve the LP-relaxation of (1) to obtain a fractional solution; Then we round
the fractional solution to obtain feasible solution to (1).

By the algorithm in [18], we are able to obtain a (1 — €)/r-approximate solution for the LP-
relaxation of (1). Then we apply the randomized rounding in {13, 16] to generate the integer
solution. Based on the scaling technique in [15, 16], for any real number v satisfying (vel ¥} <
1/{m + 1), where ¢ = ming;ce; is the minimal capacity, we can obtain a bound for the integer

solution by randomized rounding:

Theorem 3 There is an approzimation algorithms for the global routing problem in multilayer

VLSI design such that the objective value is no less than

(1 —e)vOPT[r — (exp(1) ~ 1)(1 - e)v\/Ol)DT In{M + 1}/, i OPT >rin(M +1);
exp(1}(1 ~ evin(M + 1
(1= ewOPT/r = o i + 1)) OPT)’

where OPT is the optimal integer solution to (1).

otherwise,

Another strategy to obtain an approximate solution to (1) is to directly apply the approach to
find {1—¢)/r-approximate solution for integer packing problems in [18]. Thus we have the following

resuls:

Theorem 4 If all edge capacities are not less than (1 + logy (ML + |Z|})/8, then there exists
an elgorithm that finds a {1 — €)/r-approzimate integer solution to the global routing pmb.l;em in
multilayer VLS design (1) within O{(ML + |Z)) LiZle % cmax B In{M L + |I)) time, where r and 3
are the ratio and the running time of the approzimate minimum Steiner tree solver called as the

oracle, and cmax 18 the mazitnum edge capactly.

10



Though this approach has complexity depending on the input data, i.e., it is only a pseudo
polynomial time approximation algorithm, it is worth using this method for some instances as the
rounding stage is avoided.

In addition, at each iteration there are only L|Z} Steiner trees generated. Thus, there are only a
polynomial number of Steiner trees generated by using the approximation algorithm for fractional
packing problem in [18], though there are exponentially many variables. This is similar to the

column generation technique for LPs.

Corollary 2 The approzimation algorithms for the global routing problem in multilayer VLST de-
sign only generates at most O{(ML 4 |Z)L|T|e™? In{M L -+ |Z|)) Steiner trees.

6 Concluding Remarks

Given a multilayer routing area, this paper has addressed the problem of selecting the maximum
(weighted) set of nets, such that every net can be routed entirely in one of the given routing layers

without violating the physical capacity constraints. This problem is motivated by the following.

s Routing the majority of nets each in a single layer significantly reduces the number of required
vias in the final layout. It is known that vias increase fabrication cost and degrade system

performance [7].

* Routing the majority of nets each in a single layer greatly simplifies the detailed routing

problem in multilayer IC design [7].

First, we have formulated the problem as an integer linear program (ILP). Second, we have mod-
ified an algorithm by Garg and Konemann {9] for packing linear programs to obtain a {1 —¢)/r
approximation algorithm for the LP-relaxation of the global routing problem, where r is the ap-
proximation ratio of solving the minimum Steiner tree problem?. This has led also to an algorithm
for the integer global routing problem that provides solutions guaranteed to be within a certain
range of the optimal solution, and runs in polynomial-time even if all, possibly exponentially many,
Steiner trees are considered in the formulation. Finally, we have demonstrated that the complexity

of our algorithm can be significantly reduced in the case of identical routing layers.

*The best known apoproximation guarantee for the minimum Steiner tree problem is 1.55 [17]

11
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