L3 & & -4 £ &
Inchusteiat andg
Sustonis Engiriearing

An interior point constraint generation method for semi-infinite
linear programming

Mohammad R. Oskoorouchi
California State University San Marcos

Hamid Ghaffari
McMaster University

Tamas Teflaky
Lehigh University

Report: 08T-005

An interior point constraint generation
method for semi-infinite linear
programming”

Mohammad R. Oskoorouchi |
College of Business Administration
California State University San Marcos
San Marcos, California 92096, USA
Email: moskooro@csusm.edu

Hamid R. Ghaffari
School of Computational Engineering and Science
McMaster University
Hamilton ON, L8P4K1, Canada
Email: ghaffar@univmail.cis.memaster.ca

Tamés Terlaky?*
School of Computational Engineering and Science
McMaster University
Hamilton ON, L8P4K1, Canada
Email: terlaky@memaster.ca

July 2008

*This research has been completed when the first author was visiting McMaster Uni-
versity

TThe research of this author has been suppors by a research grant from the College
of Business Administration, California State University San Marcos, and the University
Professional Development Grant.

YThe research of this author has been support by NSERC, CRC, and MITACSE,

Abstract

We propose an interior point constraint generation algorithm for
semi-infinite linear optimization (SILP) and prove that the algorithm
converges to an e-sotution of SILP after a finite number of constraints
is generated. We derive a complexity bound on the number of Newton
steps needed o approach the updated u~ center after adding multiple
violating constraints, and a complexity bound on the total number of
constraints that is required for the overall algorithm to converge.

We implement our algorithm to solve second-order cone optimiza-
tion {(SOCO) problems and compare our numerical results with that
of SeDuMi. We show that our interior point constraint generation
method outperforms classical primal-dual interior point methods on a
class of large-scale SOCQ problems.

Keywords: Semi-infinite programming, conic optimization, central path,
constraint generation method.

1 Introduction

In this paper we present a constraint generation algorithm for problems
with linear objective function and exponentially large, or infinitely many,
constraints. This class of problems essentially contains semi-infinite linear
programming (SILP) and convex optimization (CO); in particular, semidef-
inite optimization (SDO) and second-order cone optimization (SOCO).

Although there exist many efficient software packages based on polyno-
mial interior point methods for convex conic optimization (such as SDPT3
(22]), SeDuMi [21], and CSDP {5]), and based on low-rank factorization
(such as SDPLR. [6]), but we would still like to keep this class of problems
within our domain as we develop this algorithm. There are two main reasons
for this. First, while today’s software packages perform extremely well on
small to moderate size convex conic problems, they can’t efficiently handle
large-scale problems. For example a problem with a few thousand conic
constraints of large size, say 10%, especially when it is dense would be an
expensive problem for the classical primal-dual interior point methods, and
thus would take a long time to be solved even by today’s state-of-the-art
software packages.

The second reason lies in a potential application of the algorithm that we
develop here. Recently, there has been a growing interest in problems with
conic constraints and integer variables. See for instance Cezik and Iyengar {7}
and Atamturk and Narayanan [2]. Many such problems arise in finance and

2

engineering. Solving the conic relaxation of these problems by the classical
interior point methods might be disadvantageous because there is no clear
strategy for a warm start after an integer cut is introduced in the branch-
and-cut algorithm. The use of outer approximation of conic constraints, on
the other hand, has been proven to be a successful approach to this class of
problems. For instance, Vielma et al. [23] use the polyhedral approximation
of Ben-Tal and Nemirovski [3] to take advantage of the warm start in their
branch-and-bound algorithm. Or, Bonami et al. [4] and Abhishek et al.
[1] use the idea of polyhedral approximation in their integer programming
solvers.

Therefore, solving convex conic optimization problems by outer approx-
imation constraint generation methods is not only beneficial in a class of
large-scale problems as we explore in this paper, it could also be combined
with branch-and-bound, and branch-and-cut methods to develop efficient
algorithms for mixed integer conic programming.

We present our algorithm in the context of SILP and prove its theoretical
convergence and complexity in this general setting. Consider the following
problem:

max {67y : aly < c,,w € O}, (1)

where b €IlR™, a, €™, and ¢, €R!, for w € (1, a compact set. Prob-
lem (1) is called semi-infinite linear programming. This problem has been
well-studied in the literature and has many applications in engineering and
management. See Goberna and Lopez [11] for a theoretical survey and Lopez
and Still [16] for a more recent survey on this topic.

We propose a build-up technique to solve problem (1), and show that a
finite number of iterations are required to obtain an e-optimal solution. Let

J’Qm{yéﬂ%m:azygcw,wéﬂ},

the feasible region of problem (1) be compact. Consider a discretization of
problem (1), where the feasible region is an outer approximation of Fo, and
is defined by a finite number of constraints:

max {bTy : ATy < c}, 2)

where A € JR™*™ is a full row rank matrix composed of column vectors a;’s
and ¢ €JR" is composed of scalars ¢;’s. Problem (2) is a relaxation of the

original problem. Let us call it the dual problem. The corresponding primal
problem reads
min {ch : Az =b,z 2 0}. (3)

The main idea of our algorithm is as follows: We start from problem (2)
with only an artificial box constraint whose bounds (RHS) is dynamically
updated. Using a point in the vicinity of the central path of problem (2),
multiple violated (deep) constraints from Fq are identified. The feasible
region of the dual problem is updated by adding the violated constraints
and the barrier function is simultaneously updated by reducing the barrier
parameter. This is equivalent to adding columns to primal problem (3).
Then the strict feasibility for the new feasible region is recovered and the
central path is updated. This process continues until the barrier parameter
is small enough, i.e., the duality gap approaches to zero.

There are many algorithms in the literature based on cutting plane meth-
ods for SILP. See for instance Ferris and Philpott (9], Wu et al. [26], Li et
al. [15], and Luo et al. [17].

The method that we describe in this paper is a variant of Luo et al. [17]
with main differences both from the theoretical and implementation view-
points. There are three main theoretical enhancements: first, our algorithm
adds violating constraints with no changes to the right hand side. In [17]
when a violating constraints is identified, it is relaxed by changing its right
hand side to make the current u—center strictly feasible, which of course
results in loss of information. We keep the violated constraints as deep as
they are. Second, we extend the analysis to the case where multiple violat-
ing constraints are added simultaneously instead of adding one constraint at
a time. Finally, at each iteration we update the barrier parameter together
with updating the feasible region in the same step. All of these modifications
contribute to the efficiency of the method as documented in the implemen-
tation section of this paper. We implement our algorithm to solve SOCO
problems and show that our method outperforms primal-dual interior point
methods on a class of large-scale problems.

We derive two theoretical complexity results. After adding p violated
constraints and simultaneously updating the centering parameter u by u™ =
(1 — n}p where 1 = m, we show that only O(plog(p + 1)) Newton steps
are required to obtain a point in the vicinity of the new wh-center. We also
show that the constraint generation algorithm stops with an e-solution to

the SILP problem after adding at most

2,52
mep® 4
O(=5=¢™™")
constraints, where ¢ is the radius of the largest full dimensional ball con-
tained in Fq, and $ is the maximum number of constraints added siroulte-
neousty.

We test our algorithm by implementing it on two classes of problems:
classical SILP and SOCO problems. The classical SILP problems, selected
from the literature, are used to illustrate the convergence behavior of our
algorithm in terms of the number of iterations that it takes for the upper
and lower bounds to approach the optimal value line with a high precision.

On second-order cone optimization we use randomly generated problems
and compare our results with that of SeDuMi to show that our constraint
generation algorithm outperforms the classical primal-dual interior point
methods on a certain class of large scale optimization problems. These re-
sults, together with the computational results of Glineur [10] that shows that
the primal-dual interior point methods outperform Ben-Tal and Nemirovski
[3] approximation on SOCO, suggest that our constraint generation method
couid be an alternative to polyhedral approximation in mixed integer conic
programining.

The paper is organized as follows: Section 2 presents preliminaries and
some technical lemmas that are needed throughout this paper. In Section
3 we describe our constraint generation algorithm in detail. Complexity of
recovering the pu—center and complexity and convergence of the algorithm
are given in Sections 4 and 5 respectively. Finally, in Section 6 we present
our numerical results and application of this method in second-order cone
optimization.

2 Preliminaries

We indicate the primal, dual and primal-dual feasible regions of the dis-
cretization problem by F,, Fg, and F respectively:

Fp={zeR": Az = b,z > 0},
fd———{SE}Rn:ATy+S=c,saO},
’Fﬂfprd‘

o

Let ¢t > 0 be the barrier parameter, the corresponding barrier functions read

T
‘Pp(ma ,LL) = 97}’& - 2?:1 10g.7;«5,

-
god(suu‘) = Ty - Z?‘ml]'Og Sy
T
oz, s, p) =55~ o logziss.

Due to the one-to-one correspondence between ¢ and s in Fy, we drop the
argument y from the barrier function. The unique minimizer of ¢(z, s, u)
over F denoted by (z(u), s(u)), is a point on the central path and satisfies
the primal-dual feasibility and the centering condition s = pe, where zs is
the Hadamard product of # and s, i.e., it is an n-vector composed of x;s;,
and e € R is the vector with all its components equal to 1. We also call
this point the p-center. For the p-center (z{p), s(jt)), one has

pla(p), s(p), p) =n—nlogpu.

A 8-spproximate p-center (F, 3) is a point in the vicinity of the central path
that satisfies

Ts

— —e
73

<@g <l (4)

We now state some technical lemmas that are needed throughout this
paper. The proofs of those lemmas that are not given here can be found
in interior point methods books, such as Roos et al. (20}, Ye [24], and den
Hertog [14].

Lemma 1 Let z €R™, and ||z|] < 1. Then
olll21) < ¥(z) < (|2l
where ¥(z) = Tz — E?ml log{1 + 2;), and ¢{er) = 0~ log(l + o).

Lemma 2 If z €R™ and ||z]|oc < 1, then

2 n
e _ =l < Zlog(l +2) etz

ST A Telleo) T

Lemma 3 Let (%,8) be a 6-approzimate p-center. Then
z's
n—0yn < — <n+6/n.
L

Moreover if pt = (1 — n)u with 0 < n <1, then

Z&
— -
},L‘i

< 1%5(9 +mvn).

Corollary 4 Fornz> 2, n= A= and arbitrary 0 < 1/4, one has
ENE

z§
— —e
M+

< 0.40.

3 Constraint generation algorithm

In this section we present our constraint generation algorithm for solving
problem {1). We make the following assumptions:

Assumption 1 The indez set §) is compact and the mappings t — oy and
t — ¢ are continuous in t.

Assumption 2 The feasible region Fo contains an &-radius full dimen-
gional ball.

Assumption 3 Fq is contained in the unit cube [0,1]™, and all m-vectors
b and a; are normalized.

Assumption 1 is made to ensure that the optimal solution of the con-
straint generation algorithm coincides with that of problem (1) (see Lemma
6). Assumption 2 is needed to establish a bound on the number of con-
straints, and Assumption 3 is a scaling assumption that will help to keep
the complexity bound simple.

We now describe the algorithm. Let § be a point in the vicinity of the
central path of Fy (see (4)) and &::,Fy < g, for j = 1,...,p be p constraints
in Fq such that &; < &l j. The feasible region of the updated discretization
therefore reads

FIZ{SGRQ,TERi:ATy+smc},§Ty+T=5}

where A € R™*? is composed of the p column vectors @;’s and € = (&1;...; &)
Let 4t = (1 — n)u be the updated barrier parameter for a later-specified
value 0 < 5 < 1. The task is now to find a point in the vicinity of the central
path of the updated discretization, close to the ut-center of .7-'3’ . However,
gince & < ATg, then ATy < & are deep constraints for Fy, and thus the
current point ¥ is not a feasible point of f;’. Therefore we first need to
derive a strictly feasible point for .7-';' . Let

P
f = arg min{gtTVt - Zlog t:}, (5)
=1

where V = AT (AX?AT)~1A, where X is a diagonal n X n matrix made up
of vector z. Define ~ ~

d = p{ATg ~ B)E. (6)
Notice that since A7 —& > 0, and £ > 0, then d > 0. Let o < 1 — 8 is fixed.
We consider two cases:

1. Moderately deep constraints: d < oe. In this case we show that all
violating constraints cross the Dikin’s ellipsoid around % and the dual
feasibility can be recovered using the current point §.

2. Very deep constraints: There exists a constraint for which (fi > o In
this case the dual feasibility cannot be recovered. We show that one
can recover feasibility in the primal space

Ff ={z € R%,te R : Az + At = b}
and obtain the new p*-center using the primal barrier function.

Lemma 5 Let Fp, and Fy be the primal and dual feasible regions of the
discretization problem respectively, u be the barrier parameter, and (%,5) be
a point in the vicinity of the central path that satisfied (4). Let p violating
constraints ATy < & are added to Fy. Then ford; <a <1-46

zt = (T + alz; of)
where Az = ~ X2 AT (AX?AT) "1 AT, is strictly feasible for Fb; and
s = (5 + alds;F)
where As = AT(AX? ATV AL, and

F= }%(ae - d)tt, (7

where the p-vector i1 is the component-wise inverse of vector 1, is strictly
feasible for .}’-';“ .

Proof. Goffin and Vial {13] prove a similar lemma for their cutting plane
algorithm where i = 1 and d = 0. The directions Az and As defined in this
lemma are similar to those of [13]. Therefore their proof, to some extend,
remains valid here. In particular A(Az) + Af = 0 which is obtained by
construction. Also the strict feasibility of the updating directions T+oAx >
0 and 4+ aAs > 0 are obtained by Lemma 7 below and the fact that
a<l-46.

We prove that ATyt +7 = Zand 7 > 0. Notice that AT (F+Ay)+5+As =
¢. Thus ATAy = —As and Ay = —(AX?AT)"1 A%, Therefore

ATyt 7= AT+ adTAy +7= AT~ aVi+T
and from the KKT optimality conditions of problem (5), we have

- - - 1
ATyt +7 = ATy %t'l + j—j(ae —)t

o ﬁng . _];szwl
_ p
= F
On the other hand since d < ae, thus 7 > 0. =
Lemma 5 shows that if the violating constraints are moderately deep
then the Newton’s method can be initiated from z* and s to obtain a
point in the vicinity of the new central path. In the next section we derive
s bound on the number of Newton steps required to update the p-center.
In case 2, when there is at least one very deep inequality, the dual fea-
sibility cannot be recovered because it is not clear how far the constraint is
away from the Dikin’s ellipsoid. In this situation one can still recover the
primal feasibility using " and the Newton'’s method can be applied to the
primal space to update the pT-center. This procedure is repeated until the
barrier parameter p falls within the desired accuracy rate.
The next lemma due to Luo, et al. [17] shows that the constrain gener-
ation algorithm reaches the optimal solution of problem (1).

Lemma 6 Let £ > 0 be given. Under Assumption 1, if § € Fq is in the
vicinity of p < R“f?“ﬁ” then §f is an e-mazimizer of problem (1).

We now formally present our algorithm.

Algorithm 1 Initiate F = [0,1]™, po =1, 1° = le, 5% = je, no = 2m,
and ng = 9—;/-1——5;1, g = 0.25 and k =1,

While (ny + /fig) i = € do

Step 1. Identify pe deep constraints (A¥)Ty < &, in Fq such that

Step 2. Update ny = ng—1 -+ pr, Mk = W, e = (1 = 1k) ktk—1
AF = AL AR, and F = (P &)

Step 3. Compute £ from (5) and d from (6). Ifd < e, then use s™
to start o dual Newton procedure to obtain s* and z* = x(s¥) in the
vicinity of the ug-center of F¥.

Step 3. Otherwise use = to start a primal Newton procedure to obtain
z* and s* 1= s(z*) in the vicinity of the ug-center of .7-';,".

Step 4. k=k+1.
End

4 Complexity of recovering the p-center

In this section we derive a bound on the number of Newton steps that is
required to obtain a point in the vicinity of the ut-center when all violating
constraints are moderately deep.

First this lemma from Goffin and Vial [13].

Lemma 7 For directions Az and As in Lemma 5, we have

- 1 = 1
-1 L — —1 L
X Azl < TTE and ST As] < 7
We also need the following technical lemma:
Lemma & Let (Z,5) be a 0-approzimate p-center. Then

1. o(8,5,1) < e(a(i), s(w), 1) + sri=gy.

2. o(z,5,pt) + nlog(l —) < wla(w), sl), 1) +v(n,n,0)

10

2 (2,5, uh) < plz(ph), s(wh),w™) +v(n,n,0)

where
Lm0V 62
1—-9 2(1 ~8)

v{n,n,0) = nlog(l —)

Proof. In view of Lemma, 2, the first inequalify is straightforward. Let us
prove the second inequality. Since (Z,3) is in the vicinity of the u-center,
from Lemma 2

ST n —
o(E,50T) = 2 —nlogp— Y log =t
I a0
f—% fﬂ--so~~!~ﬁ~—'rzlo + i
ptop ST —6)

The second inequality follows from Corollary 4 and

Wt A=meT i-m

#Ts zTs 03’z < n(n -+ 8v/n)

The third inequality implies from the second one. =

Notice that the bounds on the primal-dual barrier function in Lemma. 8
are also valid for the primal and the dual barrier functions. The following
corollary simplifies these bounds for some given values.

Corollary 9 Forn =2, n= Wl/ﬁ’ and arbitrary @ < 1/4

1. (%8 1) < plz(p), s(p), p) +0.05.

2. p(z,5,u") +nlog(l —n) < (a(p), s(u), 1) + 0.10,
3. (7,5 ut) < pla(u?),s(ur),ut) + 0.10.

Proof. Since 0 <n < 1

nn+0vn) 6
1=7 201~ 0)

On/M -+ n? N 6°

V(“,Tf,g) S —nrp +

1—-7 2{(1-6)
Fornmﬁandnk?
12 4?
< — e |
v(in,n,8) < 99(9+ 1/9) + 5=0)

51

The proof follows from § <0.25. =

Now we establish an upper bound on the primal barrier function at
(@*, 1)

Lemma 10 Let (%,3) be o §-approzimate p-center, p* = {1~ ?%);x, and

all violating constraints are moderately deep, i.e., d < ae. Then fora < 18
and 0 < 8 <1/4

et (@t 07) < @p(& %)~ a—log(l - ——) —efd - Z log ot + 0.40.
F=1

Proof. The primal barrier function at (z, ut) reads

TN
C
ef(zF, ut) = -(-———)--wm - Ziog$3 (1+ @Az, /Z;) - Zlog ot

M Jj=1 F=1
Since | X*Azl| < 1 9 and @ <1 -8, from Lemma 1
+ Pty Lt (C ~S1 g
oy (@t 0y < Z 0g Z; (8)
—aet X7 Az W —log(l - —— glog ot
On the other hand
(C+)T5U+ T 5] 'z IAx &t T i
WW;I——CEGX Ap = 4+ W+F—'6X Az (9)
In view of (6}
. iTDhi-
&t = gL Af - 1; \

where D is a diagonal matrix made up of d. Thus the term in the brackets
in (9) reads

T T3

3 Az T ot etd

;,1,'?‘ X Aw e —T’

ar Tdm
8 Tro—1 €

12

and using the Cauchy-Schwartz Inequality we have

3

(5 o (X7 0) < zlfi ~ | X A,

Now from (10), Corollary 4, Lemma 7 and the assumption that p < 1, we

have
(ct)T zt

ot
The proof now follows from (8). m

T -1 TE
— et X7 &wg—;———e d + 0.40.
@

Notice that since d > 0, the term e?d can be eliminated from the bound
in Lemma 10. We now bound the dual barrier function.

Lemma 11 Let the assumptions of Lemma 10 be satisfied. Then
P
P} (s* 1) S pals, %) — o = log(t = +) —) logTj + 040,
Jel
Proof,

—p Tyt Ay
e st ut) = = > logs}
L

P

~bTg abTAy ¢ P
= +y -—g——quyMZIOgEj(l-%vaAsj/%)——Ziogfj.
H H =1 jranst
Now since o < 1 — 8, in view of Lemma 1 and Lemma 7 we have

(st) <

=T 7
o4y T As pa g @ e N -
wald, ™) + e ag” 57 As =7 log(1 1~6) ;Eogr,.
On the other hand
T As - 75 .
e —ef'§71As < i(F-—e)TS 1A
T8 P
< I?L:""@lllig 'Asl]
0.40
- 1-4

where the last inequality is due to Corollary 4 and Lemma 7 =

We now present the main result of this section.

13

Theorem 12 Let (3,5) be a 9-approzimaie p-cenier, p* = (L — ﬁ)u,
and all violating constraints are moderately deep. Moreover let d < {a/2)e.
Then fora <1 -0 and 0 <8 < 1/4

ot (zt, st) - oM (@(ph), s(uh), ut) <plogp +£(p, 8,),

where

2
£(p,0,0) = 1.0 — 20 — 2log(1 ~ 1—-{?—-@.) —p(1+log 9;—),

Proof. Adding inequalities in Lemma 10 and Lemma 11 gives
ot (zt, s, ut) < w(:'c,E,M+)+

+0.80 ~ 20 — 21og(1l — —mes ZIOg aliF.

Now in view of (7)

P
Ziogafjfj = Zlog o~ dj)
§=1

plog a/p+ Zlog{a —~d;)
> plo EE
= Pplog %

il

where the inequality is valid because cfj <af2 for j=1,...,p. Thus
it st ut) < o@, 8 uh)

o 2p
+0.80 — 2 — 2log(l — T 6) + plog =

and from Lemma 8 and Corollary 9

ot st ut) < elw(t), s(w), uh)+ (11)

o 2p
+1.0 - 2 — 2log(1l — m) + plog pet

On the other hand

plz(u™), s, uh) n —nlog ™
n+p—(n+p)logu™ — (p—plogu™)
e (), s(pt),ut) —p+plogu’

< ot (a(ph),s(wh),u) -

i

I

A

14

The proof follows from (il) now. =

Theorem 12 shows that after adding p moderately deep constraints and
simultaneously updating g, only O{plog(p + 1)), Newton steps are required
to obtain a point in the vicinity of the new y'-center. We remark that the
assumption < 1 has been made only to simplify this bound. If 4 > 1, the
complexity changes to O{plog{up + 1}).

5 Complexity analysis and convergence

The complexity analysis and convergence of Algorithm 1 can be done in
general case. Let ATy < &be the p violating constraints such that € < ATy,
In this section, we do not differentiate between moderate and very deep
constraints. All constraints are deep.

Lemma 13 Fornz> 2, n= ééﬁ, @ = 0.25 and @ = 0.50

P
P (s, 1) = pals(u), u) — plogp —) log u’?, (12)

f=1

where v €RP 45 composed of the diagonal elements of metriz V defined in
Section 3.

Proof. First observe that

e {(s(ut)ut) = nt+p—(n+p)logut —of (@), pt)
> ntp—(nt+p)logut —f (@, ph),
and from Lemma 10
el (s(u), pt) 2 n—nlogp — nlog(l —n) — wp(Z, 4")

P
+p—plog 't + o + log(1l — T«%—a) +ef'd + Ziogafj —0.40
Je=1

Now from Corollary 9
ey (s(u™), 1) = n—nlogu — pplz(p), 1)

P
+p — plogp™ + a +log(l ~ 1—_9_—5) +el'd -+ Zlog at; — 0.50
=1

15

Thus

P
o (s(uh),) 2 pals(i), py+ > log;
=1

+p + o+ log{l — —1%5) + e¥'d + plog o — 0.50.

On the other hand Goffin and Vial [13] prove that
) p L
Ziogfj > —plogp — Zlogvj/)
=1 ' =1
Therefore

r
o (), 1) = pals(), 1) —plogp — Y log !
i=1

+p+ a+ log(l — wwwa) + ef'd + plog o — 0.50.

The proof follows by replacing = 0.25 and ¢ =0.50. m

[0
1 -

Lemma 13 establishes s bound on the optimal value of the updated dual
barrier function after adding p deep constraints and updating u. Notice
that Inequality (12) derived in this lemma is the exact same inequality for
central cuts (see Ye [25] and Goffin and Vial [13]). The reason is that
here we simply ignore ef'd > 0 from the bound because we do not have
any informastion on the depth of the cut. However, in practice having deep
constraints are beneficial in the sense that a feasible solution to the original
problem is reached faster when constraints are added with no changes to
their right hand side.

Lemma 14 Let at the kth iteration of the algorithm, pr < po = 1, ng =
ng +np o= 2m + 30 p;, and

p=max{p;,i=1,...,k}

where p; are the number of deep constraints added af iteration 1. Then

1 =z
"?*nk log § < —k(s(ir), pr) < @-ﬂm log 5+np log(p+1)+Y _ log u/®
& i=1

where § is the radius of the full dimensional ball contained in Fq.

16

Proof. The right hand side inequality follows from Lemma 13

p Np
S (s(an)) = 350} o) — D piloglp+1) = Y logw}’?

=1 gl
and the fact that
0 —bTy 2m
p3(s(uo), o) = ~ Y log 5;(0)
Ho =1
—bT 1
= —"2—3 — 2m IOg §
—\/m 1
> YU omlog -
= T3 08 5

where the inequality is due to Assumption 3 that ||b]] < 1.

To prove the left hand side inequality, let (y° s°) be the center of the
6-ball. Then §¢ = ¢;—aly® > 4, for all ¢ = 1,...,2m + np. Also from
Assumption 2 since Fq is contained in the unit cube, ||y|lco < I. Therefore
at the kth iteration

c

- bTy

HEk

k - Vm
@5(s% pg) = - Z log sf < gl (np + 2m)logé.
=1

The lemma now follows from % (s(ir), i) < ©5(s,). ™
The following lemma is due to Ye [25]:

Lemma 15 Letp < m. Then

Top

, 2 Tp
Z logv; < 2m”log(l + _8—70:?)'

[l

We now present the ‘main result of this paper:

Theorem 16 Let 1 < p; < p < m, for alli. Then the constraint generation
algorithm stops with an e-solution to the semi-infinite linear programming
after adding at most

mzpz
O(5 63\/1%/5)
constroints.

17

Proof. From Lemma 14

Jm /m 12
—- - w‘tz;cwﬂ— ng logd — nyplog(p -+ 1) < 2m10g§+210gv

1/2
i
exl

since p > 1 and ng = 1y

3/ 1 R
- 2y < (2mlog - log v;
2nk“k+iog(p+1) < 2nk(2m og4+; 0gv;)
1, 2+
< el 2 gaml Y
< 210g——-——————m~»nk (13}
1. Za2om?log(l+
< LgErimielian) gy
T

where (13) is due to the Geometric Mean Inequality and (14) is due to
Lemma 15. Notice that Inequality (14) is valid at each iterations of the
constraint generation algorithm. Therefore a feasible solution in the é-ball
is obtained when this inequality is violated. That is

2 7
- 2m® log(1 4 52%) < _3vm +lo
2 Tigfl

).

log g{

p+1
On the other hand from Lemma 6, an e-solution to the original problem is
reached when pp < Wﬁmﬁ Therefore an e-solution is achieved when

" 2 4 2m2log(1 + 52) < _3ym
& o £

]
1 2
g + Og(p + 1}
or N ,
2y 2m?log(l + gky) em3Vm/e 4R
N - (p+1)?

The proof now follows from the above inequality. =

6 Computational results

In this section we test our algorithm on two sets of problems. First we show
the convergence behavior of the algorithm on some classical SILP problems
selected from Coope and Watson [8], and then we show the power of our
algorithm on a class of SOCO problems using randomly generated data.

All the test problems were done on a desktop computer using Intel(R)
Core{TM)2 Quad CPU 2.66 GHz processor with 4 GB RAM.

18

In the following examples we solve an optimization problem of the form
max {07y : gy, w) < 0,w € 2}, (15)

where g(y,w) is a linear function of y for a given w in the compact set 1.

To solve this form of probiems by our constraint generation algorithm,
we need to convert problem (15} to the form of problem (1}. To do this, at
each iteration an oracle is used to discretize §2 and identify multiple violated
constraints using a random search. The violated constraints are then added
to the relaxation problem as new constraints and the u¥ —center is updated.

At each iteration of the algorithm, therefore, we deal with a relaxation
problem (2), and its corresponding primal problem (3}, which is a restricted
form of the primal of the original problem.

Example 1 Let b = {~1,~1/2,-1/3)T, gly,w) = tan{w) — 3% g’
and 2 = [0,1].

Solving this problem using our interior point constraint generation algo-
rithm yields the optimal solution y* = (0.089073; 0.423147;1.0450756}), and
the optimal objective value bTy* = ~0.6490412.

Figure 1 shows the convergence behavior of our algorithm for Example
1. In this figure we plot the objective values of the relaxed dual and re-
stricted primal problems at the current y—center (y-axis) in each iteration
(z-axis). The upper (lower) curve comes from evaluating Tz (8Ty), the
objective function of the restricted primal (relaxed dual) problem, at the
current p—center.

This figure illustrates that Algorithm 1 quickly approaches the optimal
value with a reasonable duality gap. Observe that a good approximation of
the optimal solution is achieved in less than 40 iterations. However, to get
a high precision (1073} we let the algorithm run for about 90 iterations.

Notice that since the feasible region of problem (3} is also feasible for the
primal of the original problem, therefore oLz at the p—center always gives
an upper bound on the optimal objective value, that is, the upper curve
never crosses the optimal value line. But this is not true for the lower curve.
This curve is obtained by evaluating bTy, the objective value of the dual
problem at a feasible point of the relaxation. Therefore this point is not
necessarily feasible for the original problem, which is why the lower curve
may cross the optimal value line in the early iterates.

Example 2 b = (~1,~1/2,~1/2,~1/3,~1/4,~1/3)T, g(y,w) = e“i*} —
(31 + wi yo + wo ya +wf yg + wiwa ¥s + wi yg), and Q= [0,1] x [0,1].

19

Figure 1: Convergence behavior of Algorithm 1 on Example 1 with 10-8

precision

The optimal solution of this problem is

y* = (2.5782999, —~4.106585, —4.0981235, 4.2450596, 4.5222404, 4.2370932)%

and the optimal objective value is ply* = ~2.4338899. The convergence

behavior of this problem is shown in Figure 2.

Example 3 b= (-2, -4, -3)T, gly,w) = 30_1 (1 ~ ws)hi(w1,we) — §, @ =

[~1,4] x [~1,4], end

halwn,wa) = (Lwi)(exp({(=1/w1){1 + (w2 — 1)*)))

ho(w1,wa) = (L/wi)(exp{(~1/w1)(2 + w3 /4))

ha(wr, wa) = (1/ (w1 = 2)(exp((=1/(w1 = 2){1 + (w2 + 1)%)

hyog(wr,wy) =0

The optimal solution for this problem is

wy > 0,
wy >0,
wy > 2,
elsewhere .

y" = (1.5425641, —-2.1014821, 0.93455?9)T

and the optimal objective value is b'y* = 4.3862422. The convergence

behavior of this problem is illustrated in Figure 3.

20

16

144

~2F LML I | aerr s e et s ot oot s a4 e S SRR
¢ O

na :
-4

0 10 20 30 40 50 &0 70 80 90 100

Figure 2: Convergence behavior of Algorithm 1 on Example 2 with 108
precision

Notice that in Figures 1-3 the lower and upper curves are not monotoni-
cally approaching each other when the current iterate is far from the optimal
solution. This phenomenon is due to the fact that these bounds are com-
puted by evaluating the objective functions of the relaxed dual problem and
its corresponding primal problem at the current u—center, When violating
constraints are identified, the feasible region of the relaxed dual is updated
by adding new constraints. Since this problem is not solved to optimality,
but evaluated at the u™—center, the value of the objective function is un-
predictable at this point. However, as we get closer to the optimal solution
of the original problem, these fluctuations reduce and the lower and upper
curves become lower and upper bounds on the optimal objective value and
monotonically approach the optimum value.

As the second, large-scale, test set, we choose to implement our algo-
rithm to solve SOCO problems using randomly generated data. Consider
the following 50CO:

max {by : by Sy Sup (e~ Afy) €LY, j =12, k) (16)
y ™

where b is a non-zero vector in B™, I, < up are real vectors indicating lower

21

Figure 3: Convergence behavior of Algorithm 1 on Example 3 with 1078
precision

and upper bounds of y respectively, and £" is an n—dimensional Lorentz
Cone, defined by:

En“-"—“{SQRnI\/S2+"'+3n551}- (17)

The bound constraints [< y < uy are added to ensure bounded solution.
We use MATLAB function randn.m to generate data for matrices A; and
vectors ¢; from & normal distribution with mean zero and standard deviation
one. We let

g1 =2 6?2‘*‘"”"5"3?725, i=1,...,k

to ensure feasibility, and n; = @ for all j, where n = Z?:mi fij + 2m.

At each iteration of the constraint generation algorithm an oracle is
called to return an outer approximation of the violating second-order cone
constraints. This is obtained by computing the gradient of the constraint
functions at the current u—center. If no violating constraint is detected the
algorithm is continued by updating the centering parameter. Our oracle uses
3 random search for identifying violated constraints. This technique works
well when the number of cones (k) is relatively small. A more efficient

22

Optimum value CPU time (in second)
k i cuts SILP SeDuMi | SILP/Oracle | SeDuMi
3 1E+6 | 30 | 2.9913802 | 2.9913802 19/18 99
9 EE+5 | 31 | 2.9878005 | 2.9878005 26/24 260
27 1E-+5 | 30 | 2.9751433 | 2.9751433 11/10 105
81 5E-+4 | 31 | 2.94982360 | 2.9492360 14/13 147
243 | 1E+4 | 26 | 2.8790904 | 2.8790904 10/9 86
729 | 5EA+3 | 32 | 2.8021491 | 2.8021491 13/11 135
2187 | 1E+3 | 31 | 25023178 | 2.5023178 11/10 168
6561 | BE+2 | 28 | 2.3104156 | 2.3104156 31/27 248
19683 | 1E4+2 | 33 | 1.7423363 | 1.7423363 11¢/101 115
50049 | 8E+1 | 29 | 1.2555162 | 1.2555162 861/854 1120

Table 1: Comparison of CPU time of SeDuMi and SILP implemented on
randomly generated SOCO with m = 3 and different values of # and k.

technique is needed to detect violating constraints for problems with large
number of conic constraints.

Tables 1 and 2 show the numerical resulis of this implementation. Each
row shows a different random problem with characteristics given in the first
two columns: k, the number of second-order cone constraints in problem
(16) and 7, the size of each cone, respectively. The column under “cuts” il-
lustrates the number of gradient inequalities needed to add until the optimal
solution is reached.

The next pair of columns in Table 1 compare the optimal objective val-
ues obtained by solving SOCO by our constraint generation algorithm and
SeDuMi. The corresponding columns in Table 2 illustrate the duality gap
at the final solution. The CPU times taken to achieve these values by SILP
and SeDuMi, rounded to the nearest integer in seconds, are reported in the
last two columns of these tables. For our algorithm we report SILP/Oracle
to report the cpu time of the whole algorithm and the cpu time of the oracle.

A close study of these results reveals that our constraint generation al-
gorithm outperforms the classical interior point methods when we deal with
problems with large number of conic constraints of large size, when m, the
dimension of y is relatively small. Except for the last two instances of Table
2, our algorithm outperforms SeDuMi in terms of cpu time. However, it
should be mentioned that primal-dual interior point methods, and in partic-
ular SeDuMi, is superior to our constraint generation algorithm for problems
with small to moderate values of k, n, and m.

23

gap CPU time in second

k A cuts | SILP SeDuMi | SILP/Oracle | SeDuMi

2 [1E+8 | 44 | 5.74E-G3 - 139/134 -

4 BE+5 | 44 | 5.94E-03 - 91/87 -

8 | 1E+5| 46 | 6.06KE-03 | 6.93E-03 25/19 154
16 | BE+4 | 44 | 5.72E-03 | 8.34E-03 14/7 166
32 | 1E+4 | 46 | 5.83E-03 | 2.06E-03 10/4 87
64 | 5E+3 | 49 | 6.13E-03 | 8.25E-03 9/3 72
128 | 1E+3 | 49 | 5.95E-03 | 4.06E-03 9/3 18
256 | 5E+2 | 53 | 6.17E-03 | 3.30F-03 7/2 15
512 | IE+2 | 59 | 6.26E-03 | L.7IE-03 6/1 8

1024 | 3E+1 1 61 | 6.539E-03 | 2.45E-03 5/1 5
2048 | 1IE+1 | 63 | 6.58E-03 | L.85E-03 5/1 2

Table 2: Comparison of CPU time of SeDuMi and SILP implemented on
randomly generated SOCO with m = 30 and different values of 7 and k.

Table 1 reveals an interesting information. When m is small, a duality
gap of 1078 is achieved quickly in all of the test problems. This is not a
typical behavior of cutting plane methods. These techniques are known to
have difficulties near the optimal solution (see Oskoorouchi and Goffin [19]
and Oskoorouchi and Mitchell [18]). As m increases the algorithm returns
to its traditional performance. This is the reason that in Table 2 we run the
test problems to only three digits of accuracy. In this table, we show that
our algorithm can reach an approximate solution with reasonable precision
faster than SeDuMi.

A disadvantage of our algorithm is that it requires the value of m to be
relatively small. When the dimension of this space is large the constraint
generation algorithm reqguires to add too many constraints before the desired
accuracy is reached. Also SILP/Oracle shows that a substantial portion of
CPU times is consumed by the oracle in the random search. Clearly a
more efficient search could reduce this time and consequently enhance the
performance of our algorithm.

7 Conclusions

We presented an interior point constraint generation algorithm for semi-
infinite linear programming and showed that the algorithm converges to an
e-solution after a finite number of iterations. We derived two theoretical

24

complexity results. The number of Newton steps needed to updated the p—
center after adding p new violating constraints is bounded by O{plog(p-+1)), -
and the overall algorithm stops with an e-solution to the SILP problems after
adding at most

22
O(m&f esﬁ/E)

constraints, where ¢ is the radius of the largest full dimensional ball con-
tained in Fq, and p is the maximum number of constraints added simulta-
neously.

We illustrated the convergence behavior of our algorithm on some clas-
gsical SILP and reported numerical results by implementing it on SOCO
problems. We showed that our interior point constraint generation method
outperforms classical primal-dual interior point methods on problems with
large number of conic constraint of large size, when m, the dimension of y
is small.

The algorithm that we described in this paper has the potentials to be
combined with branch-and-cut algorithms and implemented to solve mixed
integer conic programming problems. An efficient technique for problems
of this hand is the use of outer approximation of the second-order cone
constraints. See for instance Bonami et al. [4] and Abhishek et al. [1]. The
main reason to use polyhedral approximation is the opportunity to have a
warm start in the branch-and-bound salgorithm after adding an infeger cut.
Ben-Tal and Nemirovski [3] develop a polyhedral approximation for second-
order cone optimization that is used by Vielma et al. [23] in their mixed
integer conic programming.

The advantage of this approximation is that it is computed once and
used at every relaxation node. However, this approximation, although tight,
yields an LP with exponentially large number of constraints and many vari-
ables. For example the polyhedral approximation of a single second-order
cone of dimension 4, create an LP with over 10,000 variables and 22,000
constraints. This could be costly for CPLEX, especially when the number
of cones and their dimensions are large. '

We see a potential advantage of our algorithmn in solving a class of mixed
conic integer programming problems. At each node of branch-and-cut algo-
rithm, a conic optimization relaxation is formed. In this paper we showed
that we can efficiently solve a class of SOCQ problems using an outer ap-
proximation. Given that the algorithm works by gradually generating con-
straints, an integer cut could be treated as a new added constraint in the

25

process of algorithm. This could potentially produce an efficient process for
the branch-and-cut algorithm. We intend to explore this in future research.

References

1]

[3]

[4]

7

8

9

[10]

K. ABHISHEK, 8. LEYFFER, AND J. T. LINDEROTH, Fimin{: an
outer-approximation-based solver for nonlinear mized integer programs,
Preprint ANL/MCS-P1374-0906, Argonne National Laboratory, Math-
ematics and Computer Science Division, 2008.

A. ATAMTURK AND V. NARAYANAN, Conic Mized-Integer Rounding
Cuts, BOOL RESEARCH REPORT 06.03, Industrial Engineering and
Operations Research, University of California, Berkeley, CA, 2008.

A. BEnN-TAL AND A. NEMIROVSKL, On polyhedral approzimations of
second-order cone, Mathematics of Operations Research, 26 (2001},
pp. 193-205.

P. Bonawmi, L. T. Biecrer, A. R. Conn, G. CornNUEJOLS, 1. E.
GrossmanN, C. D, Lamp, J. L. Lopi, F. MargoT, N. Sawava,
AND A. WACHTER, An algorithmic framework for conver mived integer
nonlinear programs, Discrete Optimization, 2008, to appear.

B. BorcHERS, CSDP, a C library for semidefinite programming, Op-
timization Methods and Software, 11 (1999), pp. 613-623.

S. Burer AND R.D.C. MONTEIRO, 4 nonlinegr programming ol-
gorithim for selving semidefinite programs wia low-rank foctorization,
Mathematical Programming (series B}, 95(2) {2003), pp. 329-357.

M. T. Cezik aND G. IYENGAR, uis for mized 0-1 conic programming,
Mathematical Programming, 104 (2005), pp. 179-202.

1. D. Coore aND G. A. WATSON, A projected lagranian algorithm for

semi-infinite programming, Mathematical Programming, 32 (1985), pp.
337-356.

M. C. FErRRIS AnD A. B. PaILPOTT, Ann interior point algerithm for
semi-definite programming, Mathematical Programming, 43 (1989), pp.
257-276.

F. GLINEUR, Computational experiments with o linear approzimation
of second-order cone optimization, Technical Report 0001, Service de

26

Mathematique et de Reserche Operationnelle, Faculte Polytechnique de
Mons, Mons, Belgium, 2001.

[11] M. A. GOBERNA AND M. A. LOPgz, Linear semi-infinite programming

theory: an updated survey, Europian Journal of Operations Research,
143 (2002), pp. 390-405.

{12] J.-L. GOFFIN AND J.-P. VIAL, Shellow, deep and very deep cuts in
the analytic center cutting plane method, Mathematical Programming,
84 (1999), pp. 89-103.

[13] J.-L. GoFFIN AND J.-P. V1AL, Multiple cuts in the analytic center cut-
ting plane methods, SIAM Journal on Optimization, 11 (2000}, pp. 266-
288.

[i4] D. pEN HERTOG, Interior Point Approach to Linear, Quadrotic,
and Convex Programming, Kluwer Academic Pu‘z)lishers, Dordrecht,
Boston, London, {1994).

[15] 8. J. L1, S. Y. Wu, X. Q. Yang, anDp K. L. TeO, A relazed cutting
plane method for semi-definite programming, Computational Optimiza-
tion and Applications, 196 (2) (2006), pp. 459-473.

[16] M. Lorez AND G. STILL, Semi-infinite programming, Europian Jour-
nal of Operations Research, 180 (2007), pp. 491-518.

(17} Z.-Q. Luo, C. Roos, anD T. TERLAKY, Complexity analysis of loga-
rithmic barrier decomposition method for semi-infinite linear progrem-
ming, Applied Numerical Mathematics, 29 (1999) pp. 379-394.

[18] M. R. OSKOOROUCHI AND J. . MITCHELL, A second-order cone cut-
ting surface method: complerity and applications, Computational Op-
timization and Applications, forthcoming,

[19] M. R. OskooroUcHI AND J. L. GOFFIN, A matriz generation ap-
proach for eigenvalue optimization, Mathematical Programming, Ser.
A 109 (2007}, pp. 155-179.

[20] C. Roos, T. TERLAKY, AND J.-P. ViaL, Theory and Algorithms for
Linear Optimization, John Wiley and Sons Ltd., Baffing Lane, Chich-
ester, England, (1997).

[21] J. F. STURM, Using SeDuli 1.02, a MATLAB toolbox for optimization
over symmetric cones, Optimization Methods and Software, Vol. 11-12
(1999), pp. 625-653.

27

[22]

(23]

(24]

[25]

[26]

K. C. Tor, M. J. Topp, anDp R. H. TuruNncu, SDPTS~a MATLAB
software package for semidefinite programming, version 2.1, Optimiza-
tion Methods and Software, 11 (1999), pp. 545-581.

J. P. ViELma, 8. AnMeD, AnD G. L. NEMHAUSER, A lifted lin-
ear programming branch-and-bound elgorithm for mized integer conic
quadratic programs, INFORMS Journal of Computing, 20, (2008), pp.
438-450.

Y. Y&, Interior Peint Algorithms, Theory and Analysis John Wiley
Inc., New York, NY, (1997).

Y. YE, Complezity analysis of the analytic center cutting plane method
that uses multiple cuts, Mathematical Programming, 78 (1997}, pp. 85—
104.

S. Y. Wy, 8. C. Fang, anp C. J. Lin, Relared cutting plane method
for solving linear semi-definite programming problems, Computational
Optimization and Applications, 99 {1998), pp. 759-779.

28

