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1. Introduction Given a linear semi-infinite programming (LSIP) problem, we give conditions guar-
anteeing the linearity of the optimal value funetion with respect to perturbations provided they are
sufficiently small and invoive either the cost coefficients or the right-hand-side function or both. The
preceding works are, first, a stream of papers on sensitivity analysis in ordinary and parametric linear
programming (LP) from an optimal partition perspective ([1], [2], [6], [8], [9], [18], [14], {15], [16}, [18],
(19}, [20], [22], [23]) and, second, the recent paper [10], where conditions are given for the linearity (not
only on segments) of the optimal value function of a LSIP problem with respect to (non-simuitaneous)
perturbations of the cost vector or the RHS function from a duality perspective.

Given a vector ¢ € R, we consider two (possibly infinite) sets of indices, U and V', such that UnV = §
and U # @, and two functions ¢ - T — R™ and b: T' — R, where T' :== U UV, We associate with the
triple (a,b,¢) € (R“)T » BT x R™ {the data) a primal nominal problem,

P: Infrepr cz
s.t. apx = by, t€ U,
CL;:L' = by, t €V,

which is assured to be consistent, and its corresponding dual nominal problem in R(T) (the linear space
of gencralized finite sequences, ie., the functions A : T - R such that Ay = 0 for all ¢ € T" except maybe
for & finite number of indices),

D: Supjepm Ztei‘ Aehy

5.1 Zteﬁﬂ Asdy = C,

M0, tell
These problems are calied bounded when their optimal values are finite. In contrast with LP, in LSIF the
boundedness of both problems does not imply their solvability and zero duality gap. We denote by F
and F* {by A and A"} the feasible and the optimal seis of P (of D), respectively). We assume throughout
that 0 # F s R™. In many practical applications T is a compact Hausdorff space and the functions a.
and b. are continuous on T, in which case P is calied coniéinuous.
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If we replace ¢ by z € R™ in P and D we get parametric LSIP problems whose optimal value depends
on z, namely

P(z): Infyep~ 2w
s.t. ax = by, te U,
apr =by, teV,

and
D (Z) . SUPAGR(T) z '\tbt
teT
8.5, Z ')\ta't- w2y
teT
M20,tel.

We denote the optimal values of P (#) and D (z) by ¥ (z) and v¥ (z), respectively. Since Sections 4-6
deal with optimal value functions of different parameters, in order to avoid confusion, our notation makes
explicit the corresponding argument, i.e., we represent the optimal value functions by v (2) and ©P (2),
instead of just v¥ and v¥, which denote the optimal value of the nominal problems P and IJ, respectively.
With this notation, we have v* (¢) = v¥ and vP (¢) = vP, respectively. In {10, Section 2], using duality
theory, it is shown that v¥ () is linear on a certain neighborhood of ¢ if and only if P has a strongly
unique optimal solution. It is also proved there, that v¥ (2) is linear on a segment emanating from ¢ in
the direction of d € R™\ {0,} if P and D are solvable, with v = v*, and the following problem is also
solvable and has zero duality gap:

Da: Supyer per E_;)\tbf, + unt (c)
te
s.t. Z Aty 4 pe = d,

el
N0, te U

Alternatively, if we replace b by w € RY in P and D we get parametric LSIP problems whose optimal
value depends on w. These perturbed problems are

P{w): Infpegn 'z
s.t. apr > owy, t €U,
agx =y, tEV,

and

D(w): Suppepm t%ﬂ Aty

8.t :}:: )\tat ==,
teT
At 2 0, te U,

with respective optimal values v* (w) and v {w). Consequently, the optimal values of the nominal prob-
lera P and its dual D are ¥ (b) = v¥ and vP (b) = w7, respectively. Concerning the perturbations of b
T — R, we consider the linear space R” equipped with the pseudometric & (f, g) 1= supser |f (£) — g (¢)],
for f, g € RT (we may have 6 (f,g) = +0o). The zero-vector in R” is denoted by Or. In [10, Section 2
], using also duality theory, it is shown that, if v¥ (w) is linear on a certain neighborhood of b (in the
pseudometric space (RT,8)), then D has at most one optimal solution (the converse Is true under strong
assumptions). Moreover, v (w) is linear on a segment emanating from b in the direction of a bounded
function f € RT\ {0} if P and D are solvable with the same optimal value, the problem

Ps: Infaepryer ¢z -+ vF (b)y
3.t. ax by = fi, t €U,
aim-{-btymft, teV

is also solvable and has zero duality gap, and P satisfles certain additional condition.

The duality approach used in [10] does not provide conditions for the affinity of the optimal value
functions for simultaneous perturbations of ¢ and b. In this paper we exploit a suitable extension (from
LP to LSIP) of the concept of optimal partition in order to obtain counterparts of the mentioned results
about separate perturbations of ¢ and b, as well as conditions guaranteeing the affinity of the optimal value
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functions under simultaneous perturbations of ¢ and b, The authors of [12] and {25] have extended the
notion of optimal partition from LP to semidefinite programming (SDP} and conic linear programming
(CLP), respectively, obtaining sensitivity results for both types of optimization problems. Any SDP
problem admits a LSIP reformulation, and any LSIP problem admits a CLP reformulation with infinite
dimensional decision space (R™ x RV for our LSIP problem P), whereas the converse reformulations
are generally impossible. Since the decision spaces of the CLP problems corsidered in [25] are finite
dimensional, our results cannot be derived from the theories developed in these two papers.

This paper is structured as follows. Section 2 shows that the domain of any convex homogeneous
function can be partitioned into maximal relatively open convex cones where the function is linear,
which are called linearity cones of the given function. This result generalizes the characterization of the
largest open set containing ¢ on which v¥ (2} is linear ([10, Theorem 3]), where P is required to have a
strongly unique optimal solution, to a wide family of extended functions. Section 3 extends and analyzes
the concepts of complementary solution and optimal partition from LP to LSIP. Section 4 examines
the linearity of the optimal value functions associated with perturbations of ¢ on convex sets (e.g., on
segments emanating from ¢ and on maximal relatively open convex cones containing ¢) by means of the
theory developed in Section 2 {as both optimal value functions are concave, proper and homogeneous in
the case of perturbations of ¢} and Section 3. Sections 5 and 6 give sufficient conditions for the optimal
value function to depend linearly on the size of the perturbations when the perturbed date are the RHS
function b or both parameters, vector ¢ and function b, respectively. These conditions are expressed in
terms of optimal partitions. Finally, Section 7 contains the conclusions.

We finish this introduction by summarizing some basic concepts and results of LSIP theory that will
be used throughout. All these results can be easily derived from [11], where V' = . First we introduce
s0me necessary notation.

We consider R equipped with the Euclidean norm in R™, [|-|. The canonical basis, the zero-vector,
and the open unit ball in R™ will be denoted by {e1,...,en}, On, and B (0n; 1), respectively. For any set
X, |X| denotes the cardinality of X.If @ # X C R™, we denote by cl X, int X, rint X, conv X, cone X,
aff X, span X, and X O the closure, the interior, the relative interior, the convexr hull, the conver conical
hull (of XU{0,}), the affine hull, the linear hull, and the positive polar of X, respectively. The dimension
of a convex set X C R™ will be denoted by dimX. A set X < R™ is relatively open if rint X = X. A
vector y € R™ is a feasible direction at x € X if there exists ¢ > 0 such that z +ey € X. The cone of
feasible directions at z will be denoted by D (X, z).

The domain of f : B* — R = RU{zoc} is dom f = {x € R" | f (z) € R}. A function f: R* — R is
called (positively) homogeneous on a cone X C dom f if f(Ax) = Af(x) for all z € X and A > 0. We
say that f : R* — R is affine on a nonempty convex set X C dom f if the graph of f |x is convex and
concave, 1.e., if there exist d € B™ and § € R such that f(z) = d'z + 6 for all z € X. In particular, if X
is a convex cone and f is homogeneous on X, then f is called linear on X (i.e., there exists d € R™ such
that f{z) =d'z for all z € X).

Let problem P be defined by the triple (a,b, ¢). Its characteristic cone is

r— Gt L G . On
K.——cone{( by ),tET, (bt ),tev,( 1 )}

The generalized Farkas lemma establishes that w/z > « for all z € F if and only if (u, @) € ¢l K. Thus
¢l K only depends on F whereas A depends on K (and so on the constraint system of P). Given z € F,
the set of active indices at z is T'(z) = {t € T | alz = bs}. Obviously, V C T (z}. The active cone at =
is

Afz) = cone{as, t € T (2);~as, t €V},
It is easy to see that x € F* i and only if c € D{F; z)® and also that A (z) ¢ D {F; z) for all z € P
Consequently, if ¢ € A(z) (the KKT condition) then z € F*, and the converse staternent holds if K is
closed.

A point z* € F is a strongly unigue optimal solution if there exists o > 0 such that ¢’z > ¢'z* +
wliz — 2* for all z € F (in whick case F* = {z*}). This happens if and only if c € int D (F} z*)°.

The weak duality theorem establishes that v¥ < 0F. The equality holds if either K is closed or
c&rnt M, where M = cone {ag, i € T; —as,t € V} is the so-called first moment cone. Moreover the first
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condition entails A* # @ if A + 0 and the second one F™* 3 .

The set F' is bounded if and only if M = R™ and F* is bounded if and orly if ¢ € int M. Since M is
invariant through the perturbations considered in this paper, if the primal feasible set is bounded, the
same is true under arbitrary perturbations of b and sufficiently smalt perturbations of c. The strong Slater
condition (existence of T € R and £ > 0 such that a{Z > by + e for all t € U, and ajF = b for all t € V),
together with the linear independence of {as,t € V} if V # #, guarantees the consistency of the problem
obtained by replacing b with w € RT provided & (w, b) is sufficiently small. If P is continuous, the strong
Slater condition is equivalent to the Slater one (existence of T € R™ such that a;F > by for all £ € U, and
al® = by for all t € V). In the contimious case, under both assumptions, the perturbed probletns are
solvable and have zerc duality gap for sufficiently small perturbations of the data,

2. Linearity cones of convex homogeneous functions In this section we prove that, if fis
convex and homogeneous, then there exists a partition of (dom f)\ {0x} into maximal relatively open
convex cones on which f is linear.

LEMMA 2.1 Let ¢ and D be two cones in R® such that C' is convez, relatively open and CND # §. Then
CcC+D.

Proof: Let c € CnD. Giver z € C, since ¢,z € C and this is relatively open, there exists u > 1 such
that y = (1 —plc+pr € C. Then o= p g+ (1—p"1)e€ C+ D. Hence C CTC+ D 0

PROPOSITION 2.1 Let f: R™ — R be o convez homogeneous function. Let {Cs, i € I'} be a finile family
of relatively open conver cones containing ¢ € R™\ {0,} on which f is linear. Then f is linear on s Cie

Proof: We prove this result by induction on |I]. First we prove the statement for |/} = 2.

Let [ = {1,2}. €1 + € is a relatively open convex cone {the three properties aze preserved by the
sum) and ¢ = tc+ tc & C1+ Ca.

First we prove that
fla+ Cz) = fler)+ fica), Yoo € Cp,Vep € Ca. {1
Since f is linear on Cy, we can write f (z) = djz for all z € (4, i = 1,2. By homogeneous convexity,

fle+ co) < Flea)+ f {e2) Yer € Ch,Vez € Ch.
In order to prove the converse inequality, observe that
1 1
c=gler +ep)+ 5{0m2€c1)+-2-(c—-2802} Ve € R.

Take £ > 0 50 that ¢ — 2e¢; € 5, 4 = 1,2. Again by homogeneous convexity, we have
fle) <efler+ea)+ 3f(c—2eer)+ 5 f (¢~ 26cs)
=gf (e +cz) + Fle) + 3d (~2ec;) + 1 (~2¢ec)
=ef{cy+cp) + fle)—elf{aa} + fle)],

so that f (1) + f{c2) < flen +e2).

From (1), by the affinity of f on €y and Ca, we conclude that f is affine on Oy + Oy, le,, the statement
holds for |I] = 2. Now assume that it holds for [I|—1 cones. Select an arbitrary k € I and let J=INAk}.

Since Z C; is a relatively open convex cone containing ¢, f is linear on Z C; by the induction
i i€

hypothesis. Then, by the same reason, f is linear on 2o Ci = Cr + Z'@J Cs. 0
k3

Let us illustrate Proposition 2.1 with two simple examples.

ExaMpLe 2.1 Consider the convez comes O = {z€R%|z =0, 23>0} and Cp =
{z€R® |2y =0, z3 > 0}. They are relatively open and e3 € C1 N Cy. Thus, any conves ho-

mogeneous function f R® — R which is linear on both cones, Cy and Cs, is alse linear on
Crﬂcl+02ﬁ{.‘l.‘€ﬂ@3§$3>ﬂ}.
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EXAMPLE 2.2 The function f (&) = || is convex and homogeneous on R, and it is linear on the relatively
open convex cones Oy = Ry and Co = —Cy, bul i is not even linear on its sum Cy + Cqp = R because
C;_ N C'z = @

PROPOSITION 2.2 Let f : R® — R be o convex homogeneous function and let ¢ € R™\ {0,} . Then there
exists o largest relatively open convex cone containing ¢ on which f is linear.

Proof: Let € := {C4,i € I'} be the class of all relatively open convex cones contsining ¢ on which f is
Jinear. We shall prove that C := U;jc7C; € C (ie., C is the maximum of C with respect to the inclusion).

Since f is linear on cone {¢} \ {0r}, this is an element of C so that J # 0.

Let us denote with 7 the family of all nonempty finite subsets of I. For each J € J, the sum
Cy = ;5 Cs is & relatively open convex cone containing ¢ and so C; € C by Proposition 2.1. Since
Ccci{C;,JeJ}cC, wehave C=UsesCr. On the other hand, given IS, H} ¢ J such that J C H,
by Lemma 2.1,

CycCy. (2)

Now we show that C satisfies all the requirernents.

(' is a convex cone: The union of cones is a cone. On the other hand, given z!,2% € C, if 2’ € Cy,,
i=1,2, taking J = J1 U Jp € J, (2) yields z* € Cy, i = 1,2. Since Cy is convex, we have [mi,xz] C
CyccC.

¢ is relatively open: Let @ € ¢ and let y € aff C. Then we can write

m m
wa)\iyi, m e N, Z)\iz L,andy € Cii=1,...,m.

i=i izl

By (2) there exists J € J such that z,y € Cy, ¢ = 1,...,m. Since C; is relatively open, there exists
4> 1 such that pyz + (1 - gy € Cy € C. Thus 2 €rint €.

f is linear on C: Let z',2° € C. Let J € J such that 2',2® € C;. Since [ is linear on ', we have
FUO -2 +22?) = (1~ X f (') + Af (2) for all A€ [0,1]. o

Given & convex (concave) homogeneous function f, we define the linearity cone of f at z €
(dom )\ {0,.} as the largest relatively open convex cone containing z on which f is linear {this defi-
nition is correct by Proposition 2.2}. We denote it by C..

PROPOSITION 2.3 The linearity cones of o convex (concave) homogeneous function f: BR™ — E constitute
a partition of {dom FY\{0n}.

Proof: We denote by C, be the family of all the relatively open convex cones containing z &
(dom £)\ {0:} on which f is linear. Obviously, C. is the maximum of C, with respect to the inclu-
sion.

Let us assume that the statement is not true. Let 21, 2% € (dom f)\ {0,} such that C.1 N C,2 # 0 and
Co1 # C,a. Take an arbitrary z € Cha N Chz. Since Chn, Ch2 € Gy, we have O, Cin C C,, with O ¢ C,
for some 1 = 1,2. Then, C,: cannot be the linearity cone of f at z*. ]

3. Optimal partitions Let us consider the primal LSIP problem P introduced in Section I and
its dual problem D). We associate with each primal-dusl feasible solution, {z,A) € F x A, the support
sets o (x) = {te U |aix >b} and o (A) = {t€ U] X >0} The pair (x,A) € F x A s called &
complementary solution of the primal-dual problem P ~ D if o {z) N o (A) = 0.

The next two results clarify the relationship between optimality and complementary solutions in LSIP,
which is more involved than in case of LP.

PROPOSITION 3.1 The pair (2,A) € F x A is a complementary solution of P - D if and only if it is o
primal-dual eptimael solution and P o= of . In that case, the following statements are true:
(i) If T € F satisfies oiT = by for allt € 0 (\), then T € F™.
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(i) If X € A satisfies Ay = 0 for all £ € o (z), then Xe A

Proof: Observe that (z, A) € F x A implies that

dr = Z )\ta;ﬂ? fd Z Asby + Z At (aix - bt) 3 (3)

el teT teu{x)Ua{X)

so that ¢’z = Z Ay if and only if ¢ (z) Ua (A) =0, ie., {z, ) is a complementary solution of P — D).
€T

Now we assume that (z, A) is a complementary solution of P — D. Then, statements (i} and (ii) also
follow from (3), applied to the pairs (T, A), {x, ) € F x A, which gives v* < ¢'7 = Z Ahy = v and
teT
vF =z = thbt < vP, respectively. !
teT
An immediate consequence of Proposition 3.1 is that, if ¢ € rint M and K is closed, then there exists
a complementary solution of P — D.

COROLLARY 3.1 Given a point T € F, there exists A € A such that (T, A) is a complementary solution of
P — D if and only if T s an optimal solution for some finite subproblem of P.

/
Proof: 1f (ﬁ, X) is a complementary solution of P - D, by Propesition 3.1, (Z"}:tat) F o= F =
€T
thbt, 50 that Z—)“* (@lT ~b) = 0, ie, ¢ € A(F). Thus # is an optimal solution of the problem
€T t&T
obtained by replacing U by o (A) in P. Replacing in that problem {ajz = b, t € V} by an equivalent
finite subsystem, we cbtain an equivalent finite subproblem with optimal solution Z.

Conversely, assume that 7 is an optimal solution of the finite subproblem of P obtained by substituting
U and V with the fnite subsets U and V. Since the KKT condition characterizes optimality in LP, there
exists % € R such that X = 0 for all t € TN (TUV), X > 0 for all t € U, Tyep M (01T~ bi) = 0,
and ¢ € 3 gep Msae. Then it is easy to show that (“m"“, X) is & complementary solution of P — D, again by
Proposition 3.1, 0

A triple (B, N, Z) e (2Y )3 is called an optimal partition if there exists a complementary solution (z, A)
such that B = o (z), N = o (\) and Z = UN{BUN) {for the sake of brevity we omit problems and
couples of problems when they are implicit in the context). Obviously, the nonempty elements of the
tripartition (B, N, Z) give a partition of U (similar tripartitions have been used in {2] and {9] in order to
extend the optimal partition approach to sensitivity analysis from LP to quadratic programming). We

say that a tripartition {B, N, Z) is mazimal if

B= | oelz), W= ) e()) and Z=U\(BUN).
TEF* AEA~

Note that the definition of the maximal partition implies that B € B and N C N for every optimal
partition (B, N, Z). The uniqueness of the maximal partition is a stralghtforward consequence of the
definition. If there exists an optimal solution pair T € F* and X € A* such that o{F) = B and o(X) = N,
then the maximal partition is called the mazimal optimal partition and (%, \) a mazimally complementary
optimal pair. As a consequence of Proposition 3.1, if (B, N, Z) is an optimal partition such that Z =10,
then it is 2 maximal optimal partition. Now, if (%,X) is a complementary solution such that B = o (%)
and N = o (V) then (%, 2) is called a strictly complementary solution. If (z, A} € F” x A", by Proposition

1The existence of an optimal tripartition for linear complementarity problems was introduced by McLinden [21]. He
proved important results concerning such solutions, which was used by Giiler and Ye {17] to show that path-following interior
point methods generate such a solution {in the limit), and Bonnans and Gonzaga {3] proved that the interior poind iterates
may converge to the analytic center of the solution set.
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3.1, (%, ) and (z,X) are complementary solutions, so that BNo(X) =0 and NNo{z) =6, e, o(z) C B
and ¢(A) ¢ N.

Next we characterize the existence of maximal optimal partition in the usual case that V = 0.

PrOPOSITION 3.2 Let P be such that V = 0. Then, the maximal oplimal partition ewists of ond only if
v? = 0F, P and D are solvable, and the sets of exireme points and extreme directions of A* are finite.

Proof: By Proposition 3.1, we can assume that P and ) are solvable, with v” = v. Let {}',i € I}
and {'yj, jed } be the sets of extreme points and extreme directions of A*, respectively. By Theorem

9.6 in [11], applied to A* = {)\ € Rf) 1 ZteT M ( g: ) = ( S )} , We Can express
A* =conv{N,ie I} +cone{yi,j€ J}.
Assume that I and J are finite sets. By the finite dimension of R, rint F™ :;é 0. In this case, any
% € rint F* satisfies o (¢) C o (%) for all z € F*. Concerning A*, X := T« Z'LGI ij'y«" satisfies
c{A) co{X) for he A"
Conversely, let T & F* anlé X € A* be such that o(2) € 0 (%) and ¢ (A) C o (A} for all (z,X) €
F* x A*. Let o (77} = {t eT|v> O} .4 € J. By Theorem 9.4 and Corollary 9.4.1 in [11], applied

to A¥, {( z* ) tE o (/\i)} is linearly indepedent for ali ¢ € I and {( C;t ) e ('yj)} is affinely
i t
independent for all 7 € J, respectively. Since U‘ef G and U fy? ol (_ ) a standard
2

. . q q 5y
algebraic argument yields |7| < ( . ) and |J] < ( at1 ) , where ¢ = max {n+1,|c (\}|}. o

In many practical applications V = @, K is closed (e.g., P is a continuous problem satislying the Slater
condition}, ¢ € rint M, P is solvable, and D has a unique optimal solution. In that case, according to
Proposition 3.2, there exists a maximal optimal partition. The next example illustrates the existence of
maximal optimal partitions (B, N, Z} such that Z # 0.

EXAMPLE 3.1 Consider the problem P in R? such that T = {—2,—1,0,1,..}, the objective function is
the null one, and the constraints are tzy; = —1, for i = 1,2,.., -2 > 0(t=0),2 20 f=~1), and
—p 2 -1 (t=—2). We have F* = {0} x [0,1] and A* = {OT} It is easy to show that (T {0},6,{0})
is the maximal oplimal partition.

The next example shows that the assumption on the finiteness of the sets of extreme points and
extreme directions of A* in Proposition 3.2 is not superfinous.

ExaMPLE 3.2 Consider the Jollowing LSIP problem:

P Infoewe Zg
a.t. —xy x>0, (@E=1)
x1+x2 20, (t=2)
Ty 2 U) fo= 3:47

Obviously, v7 = v¥ =0, with F* = {03}. For v € N we denote by A" : N — R the funclion such that
N =1and ] =0 for all t # 7. Since A* = A = conv{)‘ 127 A3 A4 }, U/\ema"()\) =T and so the
mazimal partition (§,T,0) cannot be optimal.

Concerning the optimality tests based on statements (i) and (ii) of Proposition 3.1, observe that, if

(B, N, Z) is an optimal partition of P and its maximal optimal partition (B,N Z) exists, then
gl ) NN =0=0c{x")NN=0=z2"¢F*, forallz" ¢ F

and

c(WINB=0=cA)NB=0= A €A" forall \* € A.
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4. Perturbing ¢ The perturbed problems of P and D to be considered in this section are P (z} and
D (z) as defined in Section L.

LeMMA 4.1 Let {(¢,X),iel} CR" xRT) ond T € R™ be such that (T, A') is a complementary solution
of P (c!) = D (') for all i € I. Then P {2) and D (z) are solvable and

vF (2) =vP (2) =Fz for all z € conv {c,i e I}. (4)

Proof: Let z € conv {¢',i € I'} . Then there exists y € jor) such that

ZWZMiCi and Z,uz-ml.

il i€l
Since the feasible set is the same for P (z) and for all P (¢f), i € I, T is a feasible solution of P (z).

It is easy to prove that X = 3, uA’ € R, Since o (V) C Uiero (M) and 0 (F) N o (A} = 0 for
all i € I, we have ¢ (T) Mo (X*) = B, i.e., (F,\7) is a complementary solution of P (z). Then, applying
Proposition 3.1 to P (z), we conclude that v7 (z) = vP () = 2'F. |

ProposiTION 4.1 Let {cf,i € I} C R™ be such thal there exists ¢ common optimal partition for the
family of problems {P (¢!) i € I}. Then v¥ (z) = vP (2) is linear on conv {¢',i & I}.

Proof: Let (B,N,Z) be an optimal partition for P (¢!}, for all i € I. Let (z%,A') be a primal-dual
optimal solution of P (¢!) — D (&), i € I. Select j € I arbitrarily and let T = 7. Then, by Proposition
3.1, {Z, \') is a complementary solution of P {¢*) — D (¢}, for sl i € I. Applying Lemma 4.1, P (z) and
D (%) are solvable and vF (2) = vP (2) = 2'F for all z € conv {c’,i € I}. |

Under the assumption of Proposition 4.1, if ¢ € intconv {c?,i € I} (e.g., if all the problems P {c)
have the same maximal optimal partition), then P has a strongly unique optimal selution. This is the
case if there exists a common optimal partition for all the problems P (z), such that z belongs to a
certain neighborhood of ¢. In fact, the next example shows that the linearity of vF(z) = vP (2) on a
neighborhood of ¢ does not entail the existence of a set {c*,i € I'} as in Proposition 4.1.

EXAMPLE 4.1 Let us consider the LSIP problem with index set Z

P Infrepr T+ 22
s.t. txy

Since the characteristic cone is K = {z € R® | 21 > 0,22 > 0,23 <0} U {03}, F = R2, 0a s the strongly
unigque solution of P and v¥ (z) = 0 for all z € B2 (the effective domain of v¥ (2)). Given z € RY, since

vP (2) < 0F (2) = 0 and the sequence {X"} C ng} such that

2, t=n
M= &2, fw=-r
0, otherwise,
is feasible for D (z) and satisfies S ,ep Mby = —3F2 s 0 as 7 — 00, we have also v” (2) = 0 for all

z € RY although D (z) is only solvable when z = Og. Thus no complementary solution exists for I (z) if
z 5 0p. It s easy to see that the maximal optimal partition of P (02) is (Z,9,0).

COROLLARY 4.1 Given d € R", if there ewists &€ > 0 such that P {c + ed) and P have o common optimal
partition, then vF (2) = vP (2) is linear on [c,c+ ed].

Proof: Apply Proposition 4.1 to {c!,¢?}, where ¢! :=c and ¢? = ¢+ ed. £
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ExaMPLE 4.2 Consider the primel LSIP problem
P: Infmegz 'z
8.t —(cost)zy — (sint) e = ~1, t€ [0,%],
zy 20 (E=12), 20 (=3
for thiree different cost vectors:

(o) c=(1,1) . Ifz € R% , there exists a unigue complementary solution of P(z) — D (z) (G2, A,

where
2, t= 2,

Ay = zp, t= 3,
0, otherwise.
Since {[0, E} {2,3},0) is o common optimal (actually mazimal) par’tztwn for {P(z),z € B2 +}
vF (z) = v* (2) is linear on RE . by Propesition 4.1. In fact, v* (2) =P (2) = 0 for Wil 2 e R2
(Figure 1 represents the graph of v¥ (z) = o7 (2)).

(b) c=(1,0Y. P(c) has o mazimal optimal partition ([0,%]u{3},{2},9), and two other optimal
partitions. If d f cone{c} end ¢ > 0 is sufficiently small, 2 === ¢ 4 ed satisfies z; > 0 and either
z > 0 (in which case the maximal partition of P (z) is ([0,%],{2,3},8), esin (o)) or or 22 < 0.
In this case the wnique complementary solution is ((0,1),X), where

= =22, t == %1
At =4 21, i= 27
0, otheruise.

Thus the mazimal optimal partition of P (2) is ([0,Z[U{3},{5.2},0). This implies that, for
any d € B2, there exists £ > 0 such that v¥ (2) = vD ( ) is linear on [, ¢+ ed].

¢) c={~1,—1) . The unique complementary solution is (2%, \°) such that 2° = % (1,1) and
VE

/\G - \[Q: t == %a
t 0, otherwise,

so that the mazimal optimal partition of P(~1,~1} is (B, N, @) where B = {[0,Z]\{F}} U

{2,3} and N = { } Given an erbitrary d € Rg, c+ pd € R2_ if p is sufficiently sma?l For
such a p, the optimal set of P (¢ + pd) is F* (¢ + pd) = {af}, where 2f = Ilgi pgll € R2 . There
cos &
sin &
{10, 2]\ {a}} v {2,3}. Similerly, the optimal set of D} {c+ pd) is A" (c+ pd) = {A"}, where

)\f={ le+pd], t=a,

0, otherwise.

exists o unique @ € ] [ {depending on p) such that zP = ( ) . Obviously, & {z”) =

Thus o (z°) = B and o (z°) = N if and only if d € span{c}. Observe that, given d € R?, there
exists € > 0 such that v¥ (z) = vP {2) is linear on {c,c+ ed] if and only if d € span {c} .

Figure 1 shows the existence of a partition of (dom v¥ (2)) \ {02} = R?\ {0} in relatively open convex
cones on which v {z) is linear. In fact, since the hypograph of v¥ (z) is the convex core cl K ([11,
Theorem 8.1}, v¥ (2) is a concave, proper, upper semi-continuous homogeneous function ard, according
to Proposition 2.3, {CF,z € (dorrw (2))\ {0n}}, where Cf denotes the linearity cone of v¥ (2) at 2, is
a partition of (dom vF (2))\ {05} in maximal regions of linearity.

In the particular case of Example 4.2, the partition associated with v¥ {z) has infinitely many elements,
ie.,
0(1 1y = RZ ., O{ 1,13 = cone {{(=1, —1)}\ {0z}, C(1 oy = cone {(1,0)}\ {0.}.
Observe that {OF, 2z € R®\ {02}] is a partition of R?\ {02}, such that

dimCF = { Lz [R2URy x {0} U {0} x R+ )]\,
2, otherwise.

Concerning vP (z), it is also concave, proper and homogeneous. We denote by {CP,z € M\ {0,}}
the corresponding partition. In Example 4.2, v” () = v¥ (), so that both functions have the same
partition. This is not tzrue in general, as the following example shows.
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Figure 1: Graph of the primal optimal value function.

BxAMPLE 4.3 Token = 3, T = {t € R® |ty +ta+ 3= 1,4 > 0,4 = 1,2,3} U {{1,1,0)}, and the con-
straints t1z1 +tozo +iazs = 0 for all £ 52 (1,1,0) and 21 +xo > —1 otherwise. Then the linearity cones of
vF (2) are the seven faces of domwv® () = RS, different from {03} whereas v® (2) has only two lineority
cones, RY, and cone {(1,1,0)}\ {0s}.

PROPOSITION 4.2 Let ¢ # On. If d € spanCE (d € spanCP), then there ezists ¢ > 0 sueh that v¥ (2)
WP (2), respectively) is lnear on [c,c + &d} .

Proof: If d € span CF, then there exists € > 0 such that [c, ¢ + &d] € CF. Since v¥ (2) is linear on CF
the conclusion is immediate (the proof is the same for v” (2)). 0

5. Perturbing b The perturbed problems in this section sre the parametric problems P (w) and
D {w) defined in Section 1. Observe that now v* (w),v” (w) : RT — R, so that we carnot expect simple
counterparts for the results in Section 4 unless |T'] < co. In fact, in LP, v (w),v? (w) : RN — ] are
ordinary homogeneous convex functions, so that Proposition 4.2 applies (observe that the parameter is
now the gradient of the objective function of I2, as in Section 4, but exchanging the roles of the problems).
In such a case, if there exists 2* € F* such that {a¢,t € T (z*)} is a basis of R", then v* (w) = ¢z (w) in
a certain neighborhood of b, where z {w) is the unique solution of the system {ajx = wq,t € T (z*)} {by
Cramer’s rule). Then dim C{ = [T} and v (w) is linear on a certain neighborhood of b.

If T is infinite, then the first difficulty comes from the fact that the perturbations of w affect the
feasible set of the primal problem and possibly its consistency and the second from the infinite dimension
of B7 which does not allow us to use Proposition 2.3.

LEMMA 5.1 Let {(b',2),ieI} C RT x R™ and X € R be such that (z%,}) is a complementary
solution of P (b*) ~ D (b%) for all i € I. Then P (w) and D (w) are solvable and

vP (w) = vP (w) =Y Jwy for all w € conv {b,i € I} {5)
teT
Proof: Let w = 3,7 ;0% with Y .. u; =l and p € Rf).

It is easy to prove that ™ = 3., p* is a feasible solution of P {w). On the other hand, if t € U
satisfies ajz® > we, i€, Yoy i (ajat — b}) > 0, then there exists j € I such that p; (aimj - bf) >0



Goberna, Terlaky, Todorov: Sensitivity analysis in LSIP wia portitions 11
Mathematics of Operations Research xx(x), pp. xxx—xxx, €200x INFORMS

so that alz? — b) > 0. Since (27,}) is a complementary solution of P (b7), we must have A, = 0. We
have shown that the primal-dual feasible solution (mw,X) of P{w) is a complementary solution of that
problem. Applying Proposition 3.1 we get the aimed conclusion. |

PROPOSITION 5.1 Let conv {§%,i € I'} be such that all the problems P (') , i € I, have the same optimal
partition. Then v¥ (w) = vP (w) is linear on conv {b',i € I}.

Proof: It is a straightforward consequence of Lemma 3.1. (]

In particular, if b € intconv {b*,4 € I'} (e.g., the maximal partition is the same for all the problems
P (w) such that w belongs to a certain neighborhood of b}, then D has a unique optimal solution. We
can have v¥ (w) = v {w) linear (or even constant) on a certain neighborhood of b such that no optimal
partition exists on that neighborhood.

EXAMPLE 5.1 (Bzample 4.1 revisited) Let w € BT be such that
d{w,b) =sup |w, + 1| < 1.
teT

It is easy to see that —2 < wy < 0 for all t € T. Thus P {w) and P have the same characteristic cone
K={zeR®|2, 20,3 2> 0,23 <0}U {03},

in which case

vF (w) =sup{y e R}{1,},7) €clK} =0

and
I’:)D(w} ﬂSup{"{ERl(},l,’y} EK} = 4.

Since 0 ¢ {y€ R|(1,1,7) € K}, D{w) is not solvable and so P (w) has no complementary solution.

COROLLARY 5.1 Given d € RY, if there exists & > O such that P (b+ ed) has the same optimal partition
as P, then v (w) = vP (w) is linear on [b,b+ d].

Proof: It follows from Lemma 5.1. 0

Let us mention that the recent paper [5] provides an upper bound for v© (b) ~ v% (w) when D (b) is
consistent and P (w) is also consistent in some neighborhood of b.

6. Perturbing ¢ and b The main advantage of the optimal partition approach is that it allows
to study the simultaneous perturbation of cost and RHS coefficients. We denote by (z,w) the result
of perturbing the vector (¢, b} (called rim date in the LP literature [16]). To do this we consider the
parametric problem

Pz,w): Infremn 2z
5.1 aiz > wi, t €U,
alr = 1wy, t €V,

and its corresponding dual

Dz, w): Suprerm Zte’r pIIIN

8.5, ZtGT Arag = 7,
Y >0, teU.

In order to describe the behavior of the value functions of these problems, we define a class of functions
after giving a brief motivation. Let L be a linear space and let o : I? — R be a bilinear form on L. Let
C = conv {v;,1 € I} C L and let gij = (vi,v;), (4,7} € I*. Then any v € C can be expressed as

’U=Z,U:{Ui, Z,uiml, ,LLG!R,{;T). (8)

il it
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Then we have

(v,v) = Z Hipi;Qis- (7)

ijel

Accordingly, given g : € — R, where C' = conv {v;,1 € I'} C L, we say that ¢ is guadretic on ' if there
exist real numbers g5, 4,7 € I, such that (7) holds for all v € C satisfying (6).

PROPOSITION 6.1 Let {{c',b"),ie ] } c R x BT be such that there exists a common optimal partztaon
for the family of problems P( * b‘) i € 1. Then P{z,w) end D (z,w) are solvable, v¥ (z,w) = v7 (z,w)
on conv {c,i € I} x conv {b*,i € I} and v¥ {z,w) is quedratic on conv {{(d, b)), ie I}.

Moreover, if (¢,b) € conv {c i €I} x conv{b,i€I}, then v¥(2,b) and v¥ (c,w) are linear on
conv {¢*,1 € I'} and conv {¥,i € I}, respectively.

Proof: Let (B,N,Z) be a common optimal partition of P (c!,b*) for all i € I. Let (z,w) €
conv {¢!,i € [} x conv {¥*,i € I'}. Then we can write

ZWZfSC,wa’)’;bz Zﬁmz%wl 57ER(T) (8)

el el igl el

Let (2%, ') € R™ x RT) be a complementary solution of P (c*,b‘) ~ D ('), i € I, corresponding
to (B,N,Z). We prove that % = 3, v,&* and X := 3, §:A" constitute a complementary solution of
P(z,uw).

Since ajx® > b for all £ € U and ajz’ = b} for allt € V, we have a{T > w; for allt € U and a{T = wy for
allt € V, ie., T is a feasible solution of P (z,w).

On the other hand, A} > 0 for all t € U/ and all i € I entails % > 0for all t € U, whereas 3 Aa; = ¢
te'l”

for ali ¢ € T implies 3 Apas = 2.
el

We have shown that ('m‘,X) is a primal-dual feasible solution. Moreover, if t € U satisfies alZ > wy, L.e.,
ierYi (atx® — bE) > 0, then there exists j € I such that afa? > bl. Thus, by the assumption on the
optimal partition of the family of problems, t € B and so A = 0 for alii € I. Hence A, = 0 and (7, )}
turns out to be a complementary solution of P {z,w). Then, by applying Propesition 3.1 to P (z,w},
we have that P (z,w) and D (z,w) are solvable and »* (z,w) = v¥ (z,w). Since (7, %) is a primai-dual
optimal solution, we have

vF (z,0) =Tz = ZX{{Ut =P (z,w). {9)
teT

Let gij = (¢!) @7, 4,5 € I and let C = conv { (¢!, b*) ,i € I}. Let (2,w) = Toyeq s € 0), Tiers = 1

and p & Rf). Then, since we can take §; = v, = g in (8), (9) yields

I
(z,w) = Z#J@"J (Z#ici) = Z MifeyGis-

jel i€l igel
Now assume that (¢, b) € conv {c’,i € I} x conv {V*,i € I}.

Let b = 3, .; vt with 3, ;v = 1, v € Rf}. Then & := 3 ;4;7v:2" is constant and (9) yields
P (2,b) = 2'T for all z € conv {c!,i € I'}. Similarly, v¥ (c,w) = ¥ Avwy if w € conv {b%,{ € I'}, with X
2T

fixed, and this is an affine function of w. 0

Obviously, if (c,b) € intconv {(c},b") ,i € I'}, then v¥ (2,w) = v” (z,w) is quadratic on & neighbor-
hood of (¢,b). In particular, if problems P (z, w) have a common optimal partiticn when (z, w) ranges
on & cerfain neighborhood of (¢, b}, then we can assert that F has a strongly unique solution and I has
a unique solution. In Example 4.1, v¥ {c,w) = v {c,w) = 0 for all {c,w) such that é (w,b} < 1 and
lz — ¢l < 1. Nevertheless, the only perturbed problems which have optimal partition are of the form
P (D,,w), so that the condition in Proposition 6.1 fails to hold.
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COROLLARY 6.1 Given (d, f) € B™ x RT, if there exists ¢ > 0 such that the problem P {((c,b) +¢{d, )
khas the same mazimal optimol partition as P, then v* (z,w) = v” (z,w) is quadratic on the interval
[(e, b}, (e, b) + e (d, /)] . Moreover, v* (2,b) (vF (c,w)) is an affine function of z on [¢,c+ed] (of w on
[b, b+ & f], respectively).

Proof: It is an immediate consequence of Proposition 6.1. (]

7. Conclusions In this paper we examine the linearity of the primal and the dual optimal value
functions, which can be different in LSIP, relative to perturbations of the cost vector, the RHS vector or
both, on convex subsets of their domain. The new results on sensitivity analysis in LSIP in Sections 4-6
have been obtained by means of two different partition approaches whose fundamentals are developed in
Sections 2 and 3:

(i} Partition of the domain of the optimal value functions in maximal relatively open convex cones,
where they are linear (the so-called Hnearity cones). The partition corresponding to the primal
optimal value function only depends on the primal feasible set, whereas the one corresponding
to the dual optimal value function depends on the constraints. The advantage of this approach
is that it provides a significant insight into the behavior of the optimal value functions. The
inconveniences are: first, that this approach only applies to perturbations of ¢; and second, that
computing linearity cones may be a difficult task in practice.

(i) Optimal partitions of the index set of the inequality constraints. The advantage of this approach
is that it yields sufficient conditions for the linearity of the optimal value functions for a variety
of convex sets for the three types of perturbations considered in this paper. The multiplicity of
optimal partitions and the possible lack of & maximal partition in LSIP is the main diffculty
when checking these sufficient conditions in practice (at least in comparison with LP).

Duslity theory provides a third approach to sensitivity analysis in LSIP, as skeiched at the beginning
of Section 1, which is valid for perturbation of b or ¢, but not both. The main inconvenience of this
approach is that i only provides affinity tests for the optimal value functions on segments, and its main
advantage consists of the fact that these tests also provide directional derivatives in the direction of the
corresponding segment extending Gauvin’s formulae [7].

Sensitivity analysis in LSIP can also be approached from a nonlinear perspective, obtaining bounds for
either the optimal value functions or their directional derivatives in terms of the admissible perturbations.
For instance, a lower bound for the dual optimal value under perturbations of b, and an upper bound
for the directional derivative of the primal optimal value function under arbitrary perturbation can be
found in [5] and [4], respectively. The main inconvenience of this approach is that it provides inaccurate
information on the variation of the optimal value functions, and its main advantage is that, in general,
this type of results can be applied under weaker conditions on .
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