ik steial andg
Svstems Dnginesring

Global Routing in VLSI Design: Algorithms, Theory, and
Computational Practice

Antoine Deza
McMaster University

Chris Dickson
McMaster University

Anthony Vannelli
University of Guelph

Hu Zhang
Canadian Imperial Bank of Commerce

Tamds Terlaky
Lehigh University

Report: 08T-008



Global Routing in VLSI Design:
Algorithms, Theory, and Computational
Practice

Antoine Deza ®* Chris Dickson® Tamés Terlaky ®
Anthony Vannelli ¢ Hu Zhang ¢

& MeMaster University, Department of Computing and Software, Hamilton,
Ontario, L85 {K1, Canada

b Lehigh Undversity, Department of Industrial and Systems Engineering,
Bethlehem, Pennsylvania, USA

¢ University of Guelph, College of Physical and Engineering Science, Guelph,
Ontario, Canada

dCanadian Imperial Bank of Commerce, Toronto. Ontario, Canoda

Abstract

Global routing in VLSI (very large scale integration) design is one of the most

challenging discrete optimization problems in computational theory and practice.

In this paper, we present a polynomial time algorithm for the global routing problem

“based on integer programming formulation with a theoretical approximation bound.

The algorithm ensures that all routing demands are satisfied concurrently, and the
overall cost is approximately minimized.

We provide both a scrial and parallel implementation as well as develop several
heuristics used to improve the quality of the solution and reduce running time. We
provide computational results on a two sets of well-known benchmarks and show
that, with a certain set of heuristics, our new algorithms perform extremely well
compared with other integer-programming models.

Key words: VLSI

* Corresponding author.

Email addresses: deza@mcmaster.ca (Antoine Deza), dicksocr@mcmaster.ca
(Chris Dickson), terlaky@lehigh.edu (Tamas Terlaky), vannelliQuoguelph.ca
{Anthony Vannelli), Hu. Zhang@cibc.ca (Hu Zhang).

Preprint submitted to Journal of Discrete Algorithms 6 October 2008



1 Introduction

VLSI circuit layout is the process by which the physical layout of a circuit
is realized from its functional description and specifications. Due to the ex-
ponential increase in complexity of integrated circuits, computer-aided design
(CAD) tools have been instrumental in this design process. VLSI physical
design is & multi-phase process, where each phase typically falls into one of
the following three classes; Partitioning, placement, and routing. In the par-
titioning phase, we split the chip into smaller, more manageable pieces. The
assumption is that each of these pieces may be designed independently of one
another. In the placement phase, we fix the locations of all blocks within the
chip, as well as produce a list of blocks which need to be connected with wire.
In the routing phase, the goal is to find a realization of the connections pro-
vided from the placement phase. Typically, routing is broken into two distinet
processes; Global routing, and detailed routing. In global routing, we wish to
find the approximate interconnections between the blocks. Detailed routing
takes the output from the global router and produces the exact geometric lay-
out of the wires to connect the blocks. In this paper, we will focus on the global
routing problem and provide a polynomial-time algorithm with an approxi-
mation bound. Additionally, we will provide a set of heuristics which improve
the quality of the approximate solutions, as well as reduce the time taken to
obtain them.

1.1 Global Routing in VLSI Design

In the global routing phase of VLSI design, we assume that the circuits are in
a one-layer frame. We model the chip as a lattice graph, where each channel
in the chip corresponds to an edge in the lattice graph. Pins of the chip
components are found at the intersection of these edges, which correspond
to vertices in the lattice graph. We define a net to be a group of pins which
are to be connected. In an instance, we are given a set of nets, each of which
has pins that must be connected by wire. Additionally, there are constraints
to the number of wires that may pass through any given channel. A solution
is a set of trees in the lattice graph, one for each net, corresponding to the
wires in the chip routing the given nets. In a solution to the global routing
problem, we should produce connections that obey these constraints. The goal
is to minimize some property of these connections (such as wire-length or edge
congestion).

The global routing problem is A'P-hard{15]. Thus, heuristics have been used
to obtain approximate solutions. In general, the solution methodologies may
be split into two classes: (i) sequential routing and (ii) concurrent routing.



In sequential routing, the nets are ordered based on certain criteria and routed
one by one in this sequential order. This idea was first introduced by Lee [14]
and is known as the Maze Runner heuristic. Several enhancements to this idea
have been shown in [8,12]. One disadvantage to sequential routing is that the
nets must be ordered in some artificial way. In general, nets are ordered based
on their importance, bounding-box areas, or numbers of terminals [23]. The
quality of the solution depends heavily on the ordering. As well, there is no
theoretical guarantee on performance.

In concurrent routing, integer programming approaches are often utilized,
which attempt to route all nets at once (concurrently). In a sense, this is
more of a “global” approach to the problem. Generally, we model the prob-
lem as a {0, 1}-integer linear programming (ILP) problem where we select one
tree to route each net. This selection should minimize the desired objective
function, while still enforcing the given edge capacity constralnts.

The choice of the objective function is important to obtain a good solution. In
[26] and [19], the goal is to minimize the total wire-length required for all nets.
These methods do not take into account the number of bends in the trees (vias
in the physical layer). Vias increase the cost of chip manufacturing, as well
as decreasing the performance of the chip by increasing the heat generated.
Other models attempt to minimize the maximum tree length [16], or minimize
the maximum edge congestion. Minimizing the maximurn edge congestion is
essentially equivalent to the multicast congestion problem in communication
networks [10,2]. Another approach for the objective function is to take a linear
combination of the above properties. In this way, we can control many factors
at once [25].

Generally, it is impractical to solve the ILP directly as practical problems in
V18I design are usually too large. Recent approaches to solve these ILPs relax
the ILP to & linear program (LP), and round the solution of this LP to find
an approximate feasible solution. In [24], a linear relaxation of the routing
problem is formulated as a multi-commodity network flow problem. One can
employ randomized rounding [20,21] to obtain an integer solution from the
fractional solution to the LP-relaxation.

Tn this paper, we study the model proposed in [25]. The objective function is
a convex combination of total wire-length and total number of vias of trees
selected for routing the nets. This model covers the impact of wire-length,
vias, and also edge congestion. For the global routing problem, this model
generalizes the previous models developed in [3,4,21,26]. They consider three
important factors: total wire-length, edge congestion, and the number of vias.
The edge capacity is allowed to vary according to local requirements instead
of posing additional edge length for areas of high congestion. For instance, one
may wish to reduce the edge congestion to a relatively small number in and



around potential hot spots. The goal is to minimize a convex combination of
the total wire-length and total number of bends in the trees. This combination
can vary to conform to the user’s actual requirements.

In the approximation algorithms for the routing problem in [25], they first
apply & binary search strategy to reformulate the linear relaxations to conver
min-magz resource-sharing problems (packing problems in the linear case). Then
they use the approximation algorithm in [10] as a subroutine to solve the
packing problem, which generalizes the approximation algorithm for convex
min-max resource-sharing problems by [6] to the case when the sub-problem
is hard to approximate.

We will present the detailed ILP formulation in Section 2 and present an
implementation of the asymptotic approximation algorithm in Section 3. In
Section 4 we propose some heuristics used to improve the quality of the solu-
tion, as well as reduce computation time. In Section 5 and 6 we present the
computational results and conclusions.

1.2 Our Contribution

In this paper, we present the methodology towards a. high-performance se-
rial and parallel implementation of the generalized model for the global rout-
ing problem proposed in [25]. This algorithm approximately soives the LP-
relaxation to obtain approximate solutions to the global routing problem by
applying randomized rounding. A 2-approximate Steiner minimal tree solver
that was first presented by Mehlhorn in [18]. Although there is a theoreti-
cal 2-approximate solution in the worst case, we find that for our application
the bound is closer to 1.10. The serial version of our global routing algorithm
uses a path saving technique to reduce the time in approximating Steiner trees.
This can reduce running time by up to a factor a 10 in our test caes. Since
we must store a significant amount of data to save paths, a parailel version
of the algorithm was developed to lower the memory demand. We generate
trees in parallel which is highly suitable to our algorithm, as this constitutes
the majority of computation. Since the order in which we find trees does not
matter, this part of our algorithm scales perfectly.

Additionally, we have also developed a class of heuristics to reduce running
time as well as improve the solution quality. The idea is to confine a cer-
tain percentage of the total nets to a single tree generated in the first iter-
ation. We investigate two approaches on choosing which nets become fixed;
non-decreasing bounding-box ares, and non-decreasing sum of bounding-box
dimensions. We find that using the heuristic of bounding-box area, we can de-
crease the overflow by up to 25% as well as reducing the wire-length by up to



5%. Fixing based on the sum of bounding-box dimensions is also able to reduce
overflow by up to 20%, while making no sacrifices in terms of wire-length.

2 Mathematical Formulation

o 10 il

Fig. 1. A path with Fig. 2. A path with Fig. 3. A path
a bend on v. a bend on v, without hend on v.

Formally, given an planar edge-weighted lattice graph G = (V, E) (rectangular
holes are allowed) and nets Sy,...,5x CV, the edge set is associated with a
length function [ : E — R* U {0} and a capacity function ¢ : E — R*. We
assume that || is bounded by some constant for all & = 1,..., K. The given
edge capacity can be Jess than the physical channel capacity in order to reduce
the possibility of hot spots in the solution. A feasible solution is a set of K
trees spanning 51, . . ., Sk with respect to the edge capacity constraints. The
overall cost of the solution consists of two parts: (i) the edge cost and (ii) the
total number of bends in the trees called the bend-dependent vertex cost (see
Figures 1, 2, and 3). The goal is to minimize the overall cost defined as a linear
combination adiotas + FUtotal, Where lioga is the sum of edge length of all K trees
and Uisal IS the sum of numbers of bends of all K trees, while o, 3 > 0 are
artificial weights corresponding to the impact of the total wire-length and the
total number of vias whose values are set according to the design requirements
and are given in advance. For simplicity, we denote by ¢; the capacity of edge
¢; € E from now on. In addition, by scaling, we can set o -+ 8 =1, e, the
overall cost is a convex combination of the total edge length and the total
number of bends.

The global routing problem in VLSI design is NP-hard. It is at least as hard
as the minimum Steiner tree problem in graphs because the global routing
problem contains the minimum Steiner tree problem as a special case.

We now develop the ILP formulation of our generalized model. Denote by 7
the set of all trees in G connecting the vertices in Sy. It is worth noting that
[T:.| can be exponentially large. We also denote by z(T') the indicator variable



as follows:

) 1, if T € Ty is selected for the net Si;
T ==
0, otherwise.

In addition, we define by I(T) and u(T") the length of tree 7" and the number
of bends in the tree T, respectively. Therefore, the ILP of the global routing
problem is as follows:

min @ ey Cren, {T)ax(T)+
3 Ei{nl 2TETh U(T)mk(T)

st Yrer, ok(T) =1, Vk=1,..., K; (1)
Ei{wl ETE'IEC&&ET .’L‘k(T) < i Ve; € E;
mk(T)@{O,l}, yI'&k=1,...,K.

Here the first set of constraints mean that for any set 7, we choose exactly
one tree for Sy, and the second set of constraints are capacity constraints.

As shown in [25], the following lemma holds:

Lemma 2.1 For any given ¢ € (0,1), if we can solve the following linear
prOgrAm
min A
s.t. b Crenseer u(T)/ci S A, Ve € 1
aYh: Sren WD ze(T)/ 9+

(2}
BYE  Sren v{Teu(T)/g < A,
Srem ox(T) = 1, VeE=1.. K
2(T) € [0,1], VT hk=1,.. K,

ther, we can find a (1 + £)-approzimate solution to the LP-relazation of (1 ).

The formulation {2) is & convex min-max resource-sharing problem 16,10] as
follows:

min{ M fm(z) <A me{l,...,M},z € B}, (3)

where f : B — RY is a vector of M non-negative continuous convex functions



defined on a non-empty convex compact set B € RY. In this way, we may
approximately solve (1) by using existing algorithms for the convex min-max
resource-sharing problem. We shall refer to this LP relaxation as the fractional
global routing problem.

Since |T;| may be exponentially large, many exact algorithms for LPs such as
standard interior point methods cannot be applied to obtain a polynormial time
algorithm. It is possible to solve such a problem by the volumetric-center [1]
or the ellipsoid methods with separation oracle [7]. However, those approaches
will lead to a large running time, which is very unsuitable for global routing,
as instances of these problems are typically very large.

We will apply the approximation algorithm L in [10] for convex min-max
resource-sharing problems. By applying this algorithm, we avoid the exponen-
tial size of 7. In £, we generate K minimum Steiner trees for the K nets in
each iteration. Thus, there is only a polynomial number of Steiner trees gen-
erated in total. In fact, it is shown in [25] that the approximation algorithm
generates at most O(Km(logm-+ e 2loge™)) Steiner trees, and the following
resul$ for the fractional global routing holds:

Theorem 2.1 There ezists an r(1 -+ £)-approzimation algorithm for the frac-
tional global routing problem (2) provided that an r-approzimate minimum
Steiner tree solver is available.

¥ A /! e A
A A
v l ;
.
L v
. e
— x
Fig. 4. Original lattice graph G. Fig. 5. Virtual layer graph H.

It is shown in [25] that the block problem is as follows:

K K _ .
minp f(z) = > Wi =2 min [Z (Pi + “Pmﬂg%) 4 P u(T)
k=1

e k=1 TGT}\‘ e; T Ct g g

Here the first term can be regarded as the weights associated with edges in
, while the second term corresponds to the bend-dependent vertex cost. In
order to deal with the bend-dependent vertex cost, the virtual layer method is
proposed in [25] as follows.



We begin by partitioning the edge set E from G into two disjoint subsets
E, and E,, where E = E. U £,. E, contains only the horizontal edges from
E, while E, contains only vertical edges. A two-layer graph H is constructed
as follows. For each vertex v € (@, there are two vertices v and v in H.
These vertices have the same z and y-coordinates as in G but differ in their
z-coordinates. To construct the edge set of H we consider the edge sets By
and E,. E, connects vertices of H in the lower (horizontal) layer, while E,
connects vertices of H in the upper {vertical) layer. In order to connect vertices
v and v’ we introduce an additional edge set E,. Each edge in E, connects a
pair of vertices v and o in H. {see Figure 5). We can see that if a path in G
has a bend on vertex v;, this corresponds to using an edge in E, that connects
vertices v; and v} in H. Similarly, a path in H that uses an edge in E, must
have a bend on its corresponding path in G.

We now set the weights to the edges in H. For any edge e; € By U Ey, we
assign a weight w; = p;/ci+apm+1li/g according to their indices in the original
graph G. For every edge in E,, we assign a weight pm10 /g. In this weighted,
two-layer graph H, a minimum Steiner tree for a net S corresponds to a tree
for S; in G with the minimum Wj. So when we apply Algorithm L, the block
problem corresponds to the classical Steiner tree problem in the graph H to
minimize the overall edge weight of the Steiner tree connecting the vertices in
Si. We can apply an approximate solver for the Steiner tree problem as the
block solver of Algorithm L.

Once we have a fractional solution given by the approximation algorithm £,
we must round it to find a feasible integer solution. In addition, we rmust
have a performance guarantee of the approximation ratio. We use randomized
rounding as described in {21,20]. Then the following theorem holds:

Theorem 2.2 There is an approzimation algorithm for (2) such that the ob-
jective value is bounded by:

r(1+&)OPT + (exp(l) - 1){L+¢&)vr - OPTInm, ifr- OPT > Inmy

exp(L}(1+¢)inm
r(1+¢)OPT + 1+1In{lnm/{r - OPT))’

otherwise,

where OPT denotes the optimal value of the instance, v is the approzimation
ratio of the block solver, and m is the number of edges in the grid graph.



o @~ & O\ A W N

I T
B L by e D

3 Implementation

In this section, we present an implementation of the approximation algorithm
in [25] for the ILP formulation of the global routing problem in VLSI design.
We first present a basic outline of this algorithm, then go into some details
about the methods for Steiner tree approximation, as well as rounding ap-
proximate solutions to the ILP formulation.

8.1 Outline

We now present a basic outline of the approximation algorithm used to solve
the LP (2) in Section 2. A graph re-weighting technique is used to reduce edge
congestion. We outline this in Algorithm 1.

Algorithm 1: Approximation algorithm for global routing in VLSI design.
Input: A graph G = (V, F) and a set S of nets where 1G] = K and S, CV
for ke {1...K}.
Qutput: A set of K trees where each free in the set spans its corresponding
net in 5.
Tnitialization of variables and virtual layer graph generation
for k — 1lto K do
Call approximate Steiner tree solver to generate a tree for Sk
end
Compute edge congestion
while stopping criteria not satisfied do
Reweight edges in graph
for k «— 1to K do
Call approximate Steiner tree solver to generate a tree for Sk
end
Compute a step length 7 and move to new solution
Update edge congestion
end
Perform rounding such that we choose one tree to route each net S;

Our input is given as a lattice graph G = (V, E). Usually, this is simplified
to two integers corresponding to the length and the width of graph G. Ad-
ditionally, we may be given a list of missing vertices (holes) and/or an edge
length function. If no edge lengths are specified, then they are assumed to be
of unit length. We are also given a non-empty set of nets. Each net Sy, is a set
of vertices (coordinates) in G, where [Sy] > 2 for k € {1...K}.

Line 1 involves initializing local variables as well as transforming the grid
graph G into a virtual layer graph which will be denoted as H. In lines 2 — 4



we generate a tree for each net in 5. To achieve this, we simply call our
approximate Steiner tree solver which will generate a tree when given the
graph H and a net Si. In line 5 we compute the edge congestion for each
edge in G. The edge congestion for the edge ¢; is equal to the number of trees
crossing it.

We now enter the main loop of our algorithm. Line 7 reweights the edges in
our virtual layer graph. The edge weights are chosen carefully such that highly
congested edges will have a larger weight in H than those edges that are less
congested. In this way, when we compufte the next set of trees in lines 8 — 10,
the edges that are frequently used in previous iterations will be avoided. In
line 11 we compute a step length 7 € (0, 1] for the current iteration. This step
length can be thought of as a measure of “goodness” for the current iteration.
The details of computing the step length are discussed in Section 4.

After each iteration of the main loop (lines 6 through 12), we compute the
congestion for each edge ¢;. However, since we keep the trees generated in pre-
vious iterations, we must measure how often each edge is used in all iterations.
Without loss of generality, the edge congestion for an edge e; can be scaled
by its capacity such that it is a non-negative real number. We will denote this
scaled congestion as f,. Formally, f; = ni/c; where n; is the number of edge
crossing edge e; and ¢; is the capacity. A value of f; that is strictly greater
than 1 implies that this edge is over capacity. This leads to the concept of
fractional edge congestion. We compute the new fractional edge congestion for
edge e; by the following formula:

fi= (1 —7)fi+ 7.

Here, fi corresponds to the scaled edge congestion of edge e; for the trees
generated in the current iteration foralli =1,...,m. Additionally, we have an
extra constraint that corresponds to the objective value. During initialization,
the value of 7 is set to be 1. Thus, for the first iteration, the fractional edge
congestion is equal to the congestion of the current block solution. Now, define
A to be the maximum fractional edge congestion for ali edges. That is:

A= max f;.
e e 'fz

After each iteration, we wish to decrease the value of A.

The stopping rules can be varied according to the problem being solved. The
problem is fractionally feasible when f; < lforalli=1,...,m.

Finally, in line 13 we finalize a trees, one for routing each net. The details of

10



this procedure are discussed in Section 3.3.
3.2 Steiner Tree Approzimation

The Steiner minimal tree problem is APX-hard. For certain instances, it is
possible to get a true Steiner minimal tree fast (but not in polynomial time).
Geosteiner [27,28] is a software package that computes minimum Steiner trees,
however it operates only on planar lattice graphs. Also, these graphs are as-
sumed to have unit length. Although the edge lengths in our grid graph may
have unit length, the edge weights in the virtual layer graph may not have
unit length, Thus, this package is unsuitable in our algorithm. Additionally,
Geosteiner does not run in polynomial time in the worst case. From now on,
the notion of Steiner minimal {rees will be abbreviated as SMT and the ab-
breviation MST refers to the minimum spanning tree probiem.

There are many known approximation algorithms for computing SMT's, where
some have performance guarantees or approximation ratios while others do
not. We will discuss only those with an approximation ratio, as this is needed
to provide a performance guarantee for our overall algorithm. In general, a
k-approximation algorithm guarantees that the computed Steiner tree is of no
more than k times the length of an optimal SMT. Mehlhorn [18] presented
a simple 2-approximation algorithm. Robins and Zelikovsky [22] developed a
1.55-approximation method, implementations of which exist, but yield large
running times which is unsuitable for our applications. The best known lower
bhound of the approximation ratio is £ [5]. It should be noted that there is no

94
polynomial time approximation algorithm that guarantees this ratio.

We choose to use the 2-approximation algorithm in [18] due to its simplicity
and low running time as well as its theoretical performance. Computation
results indicate that for our application, the bound is much closer to optimal.
The algorithm is as follows:

Algorithm 2: Generates 2-approximate Steiner trees in graphs

Input: A weighted graph G = (V, E)) and a set of terminals S C V.
Output: A steiner tree T for the terminal set K in the graph G.

1 Compute the complete distance network N

2 Compute an MST My of N

s Transform My into a reduced graph N[My] by replacing each edge of My
by the corresponding shortest path

4 Compute an MST M in N[My]

Transform T into a Steiner tree T by deleting all leaves that are not
{erminals

An example of this algorithm is illustrated in Figure 6. The computational

11



4 5 4
4 4

iniiat 1 2
3 4 5

Fig. 6. Hlustrates the various steps of Steiner tree approximation algorithm.

bottleneck of this algorithm is the computation of the complete distance net-
work, which requires the solution to the single-source shortest path for each
terminal in the set S. We use Dijkstra’s algorithm with a binary heap as pri-
ority queue in order to achieve a complexity of O(|E]log|V1). There are other
advanced data structures such a Fibonacci heaps or pairing heaps which give
a better theoretical complexity result. However, these heaps require signifi-
cant overhead and only have better performance in the case of vertices with
high degree (dense graphs), while our underlying graphs are sparse. We use a
O(|V|?) version of Prim’s algorithm to compute minimum spanning trees. It
should be noted that the graphs in which we run Prim’s algorithm have sig-
nificantly less vertices than the original lattice graph, so we would not expect
to see a big improvement in running time if we used an MST algorithm with
a better time complexity.

Additional improvements have been made to this algorithm that not only im-
prove the running time but also the quality of the sclution. These are discussed
in Section 4.

3.8 Rounding

We implement randomized rounding in order fo obtain an integer golution
from our fractional solution. Assume that we perform a total of p iterations
while solving the LP (2) in Section 2. We know that for each net Sy we will
have a total of p+ 1 Steiner trees corresponding to this net. Each tree for net
S, has a corresponding value of z € (0, 1}. Additionally, for each net, the sum
of corresponding z values is 1. We regard this value as the probability that

12



this tree will be chosen to route the given net.

We can think of this randomized rounding as a lottery system. For each net,
we have a set of trees, each with a given probability. Trees with an z vaiue
close to 1 will almost always be picked while trees with an z value close to zero
will rarely be picked. Once we do this for each net, we have our final integer
solution.

In practice, we repeat randomized rounding several times in order to obtain
the best possible solution. The amount of time spent in rounding is extremely
small compared to the time spent generation trees and solving the LP. Also,
in the case that we cannot generate a feasible integer solution, we only keep
solutions which have fewer constraint violations than the solutions that came
previously. In the case of ties in the number of edge capacity violations, we
keep the solution that has the lowest objective value.

4 Heuristics and Improvements

We now show some practical improvements we have made to this algorithm.
We will present the details of choosing the step length 7 in this section. As
well, we will discuss some improvements made to the running time of the
Steiner tree solver. A multithreaded version of the algorithm is discussed, as
well as several heuristics used to improve the quality of the solution.

4.1 Potential Function Minimization

We bage our LP solver on a given algorithm for solving convex min-max
resource-sharing problems. A potential function for convex min-max resource-
sharing problems (3) is introduced in [10] as follows:

¢i{z) =Inb — "J\tz % (8 — fm(z)), (4)
me=l

where t is a parameter depending on the error tolerance € and the parameter
¢ is the solution of the following equation:

t M g
M T %)

=1

It is shown in [10] that a good approximation of the minimum of A can be
attained at an z minimizing the potential function ¢¢(x). The approximation

13



algorithm for convex min-max resource-sharing problems in [10] is based on
this property and is applied in [25] for developing the approximation algorithm
for the VLSI global routing problem.

In this algorithm, there is a given formula to compute the step length .
However, in practice we notice that this produces extremely small values for
r. This causes the algorithm to converge very slowly and thus requires many
iterations though the complexity bound in [25] still holds. Therefore, we need
to fecide a relatively larger step length for speedup. On the other hand, we
cannot choose 7 to be too large. Otherwise our algorithm will begin o cycle
and not converge.

Our heuristic to determine the step length 7 is to find a new iterate ' between
the old iterate z and the block solution & by line search such that the new frac-
tional congestion f' minimizes the potential function ¢:(z) over all z’ between
r and &. We have used a bisection method in order to minimize this function.
Specifically, we approximate the derivative of the potential function by using
divided-differences. We then find the zero of this function using the bisection
method. Tt should be noted that we have several fail-safe mechanisms for this
line search. We have safe-guarded a maximum number of iterations in case of
mimerical instability. Also, in the case that a zero does not exist, we simply
use the default step length. However, generally when no zero of the derivative
to the potential function can be found, the stopping criteria for solving the
LP have been met and the approximation bound has been reached. That is to
say, no step length can further reduce the congestion, so we can go no further.

4.2 Recording Shortest Paths

With regards to the Steiner tree solver, there are some simple improvements
that can be made to significantly reduce the running time. When we compute
Steiner trees, it is necessary to first compute a complete distance network of
the terminal set. This involves ([32“3) calls to Dijkstra’s algorithm for each net
Sy for k = 1...K. However, since in each iteration of our algorithm, we are
working with the same graph, the shortest paths from any given vertex in H
do not change. By storing the paths, we can eliminate the unnecessary calls to
Dijkstra’s algorithm. Once we call Dijkstra’s algorithm for a given terminal,
we can reduce the complexity of finding shortest paths to O(|V]} as we need
only to do a linear search to find the destination vertex, and trace its path back
to the source vertex. This technique vields a great improvement in running
time, especially for large instances with many nets. The only drawback is that
this significantly increases the memory demand on the system. After each
iteration, we must re-weight the graph H. Thus, the stored paths are only
valid for the current iteration and must be computed again in the following

14



iteration.

4.8 Parallel Tree Generation

Similar to the improvement we made in the Steiner tree solver, we are able to
exploit the fact that the graph weights remain constant throughout a given
iteration. Because of this, we may generate trees in any order without changing
the result of the solution. This naturally leads to the idea of parallelization.
If N, is the number of processors on our machine, then we may assign a fotal
of N, threads to generate trees. We can assume that, for each instance, each
net is labeled from 1 to K where K is the total number of nets. We assign
each thread a lower bound and an upper bound which represent the range of
nets for which it must produce trees. Specifically, each thread will generate K
/ N, trees, where / represents integer division. We also assign the last thread
the additional K mod N, trees. It is worth noting that since K is generally
much larger than N,, these additional trees do not have a large effect on
upsetting the workload balance for each thread. In Section 5 we will provide
computational results on the time improvement using this technique.

4.4 Hybridizetion of Concurrent and Sequential Routing

The motivation for this heuristic is that sequential routers are generally able
to find a good solution in terms of feasibility, but not in terms of wire-length.
However, if we begin our algorithm with a “good” set of trees, then we may be
able to improve the total wire-length of the solution, while still maintaining
as much feasibility as possible.

In our implementation, we allow the solutions from a sequential router called
Labyrinth [13} to warm start our algorithm. Labyrinth uses the maze runner
heuristic introduced by Lee in [14]. While being very good at finding feasible
solutions, Labyrinth has serveral limitations. First, the grid graph must be
uniform. That is, there may not be holes in the graph. Also, capacity must be
uniform across the graph, restricted to a single horizontal and vertical value.
Additionally, this program does not take into account vias or bends in the
trees. We may use these warm solutions to reduce the running time of our own
algorithm, but in order to fully exploit this technique, further investigation is
needed.

15



4.5 Fizing Trees

Another class of heuristics that have been implemented deal with a fixing a
subset of nets to a single tree generated in the first iteration. The idea is to
determine a certain subset of the K total nets, and generate only a single tree
for this net. A similar heuristic has been implemented in [13] which allows
the user to route all 2-terminal nets first. A side effect of our heuristic is that
after the first iteration, we reduce the number of nets we need to find trees
for in subsequent iterations. This reduces the problem size, and thus reduces
the overall time taken to solve the problem.

We use bounding-box ares, and the sum of bounding-box dimensions as the
properties for determining which nets become fixed. First, the nets are sorted
in non-decreasing order based on the given property. We then select a certain
percentage of the total nets for which we wish to fix. A tree is then generated
for each of the nets we have selected. The remaining steps of the algorithm are
run as usual. The idea for sorting the nets in non-decreasing order is as follows.
If we assume that our heuristic is to use bounding-box area, then selecting the
nets with the smallest bounding-box area will reduce the probability that the
fixed nets will overlap. This increases the probability that the congestion will
be spread out more evenly over the area of the chip.

The justification for using the sum of bounding-box dimensions is as follows.
Many of the nets in a given instance have a low number of terminals (two or
three). Since nets with two colinear terminals have a bounding-box with area
zero, we wish to include some nets with more than two terminals in the set of
nets to be fixed. However, if we only use bounding box area as a heuristic to
fix nets, we are guaranteed to fix all colinear two terminal nets first. By using
the dimension sum heuristic, we add the possibility to fix nets with a higher
number of terminals. This is desirable as some two terminal nets may be very
long, while some three terminal nets may be very close together.

Another issue that arises in the discussion of this class of heuristics, is how
to appropriately choose the percentage of nets to fixed for a given instance.
In general, there is no way to determine ahead of time what percentage will
work the best for a given problem. Additionally, we have tried sorting in non-
increasing order, but this method showed no improvement. In Section 5 we
will aim to determine some trends for a given set of benchmarks and show
that the use of any of these heuristics leads to some improverment.

16



5 Computational Results

In $his section we provide the computational results for our algorithm, as well
as for all the heuristics described in Section 4. We will be using the well-known
MOCNC benchmark collection for our computational tests {17]. All experiments
are performed on an 8x AMD Opteron 885 workstation with 64GB of RAM
running OpenSUSE 10.2 Linux.

We begin with a comparison of the two main versions of our code. The first
uses the path saving technique. The table in Figure 7 compares the running
times of the algorithm without the heuristic versus using the heuristic. Only
the running time for solving the LP is given. The time taken to round the
fractional solution is independent of the method used to solve the LP. It should
be noted that only the largest sets of test data are shown in this table.

Dimensions Tree Generation Time (s)
Circui 1
iredit X y Nets Path Saving No Saving me
prim2 26 26 2043 1 5 500%
bio 46 46 3460 18 65 261%
indl 15 15 1412 1 1 0%
ind2 72 72k 10542 135 659 388%
ind3 54 548 18037 56 560 2030%
avg.smail 80 80| 16649 238 1160 387%
avq.large 86 86| 18666 322§ 1420 341%|

Fig. 7. Comparison of tree generation times with and without path saving.

As we can see, the running time is greatly reduced using this method. From
the benchmarks specified in the table, we can see there is an average of a
six times reduction in running time. This reduction depends greatly on the
instance of the problem. The exact reduction depends on the number of nets
that use a given vertex over all nets in the instance. For example, an instance
with 20 nets that has distinct terminals in each net shows no improvement.
The more times a terminal is repeated throughout the K total nets, the more
time improvement we see. Fortunately, the instances of these problems are
very large, and terminals are repeated frequently throughout an instance.
However, one must consider the space versus time tradeoff when using this
method. As the graph increases in size, the amount of memory required to
store the ghortest paths will increase rapidly. This heuristic is thus suited for
smaller instances and proves to be impractical when considering very large
scale problems. However, it can still provide some use. There are techniques
emerging that apply refinement techniques to the global routing problem 129].
These techniques start with a small graph and gradually refine the dimensions
until the true size is attained. Because the first few steps would typically be
small, this heuristic is very beneficial to reduce computation time.

We now present the results for parallel tree generation in our algorithm. A

17



shared memory model is utilized with POSIX threads underlying the muiti-
threading. We run our algorithm on a select subset of the MCNC benchmarks
using 1, 2, 4, 8, and 16 threads in the tree generation phase. The table in
Figure 8 illustrates this result. Again, we only test are the larger benchmarks
in the data set.

Number of Processors vs. Running Time

)

2

S

o

E

= 0.1

2 e ind2

‘s —o—ind3

c -

é -—— bjio
~s— gvg.small
—x— avel.large
------- Ref

0.01
1 2 4 8 16

Number of Processors

Fig. 8. Effect of multithreading tree generation

The dotted line labeled “Ref” represents perfect scaling. That is, each time we
double the number of threads, the running time is halved. Clearly, in practice
there is overhead involved in multithreading. Also, only the tree generation
phase of our algorithm is parallelized. The other steps of the algorithm such
as updating the edge weights in the graph, and computing step lengths are
not computed in parallel. However, we can still see that our algorithm scales
extremely well. This is due to the fact that the majority of the time in each
iteration is spent in generating trees. Thus, speeding up tree generation has a
large effect on speeding up the whole algorithm.

We now evaluate the set of heuristics that involve fixing a certain percentage
of the nets after the first iteration. The graphs in Figure 9 show the results for
fixing nets based on their bounding box area. The z-axis shows the percentage
of the total nets that are fixed after the first iteration. The y-axis shows the
scaled values of the tree property we wish to evaluate. The three tree properties
we focus on are wire-length, edge overflow {as a percentage of the total number
of edges) and maximum edge congestion, also known as maximum routing

18




density (MRD). We scale each y-value to the reference value which occurs when
we fix 0% of the nets. We can make several observations from these graphs.
First, we can see that for almost all instances, the wire-length is inversely
related to the percentage of nets we fix. This is intuitive as in the first iteration,
the nets will be short. As we progress throughout the algorithm, the nets
grow in length to detour around congested areas. If we fix nets after the first
iteration, these nets will not grow in length. However, we must be careful as
fixing too many nets will cause congested edges that can never be feasible. This
is iltustrated in Figure 9(e). We can see that as we fix too many nefs, we have
edges that are very highly congested. It should also be noted that in Figure
9(c), we see that fixing nets does reduce the total number of infeasible edges.
On average, it appears that the 50% to 70% range is optimal for reducing the
total number of overflowed edges.

Another heuristic used for fixing nets was the sum of bounding box dimen-
stons. Figures 9(b),9(d), and 9(f) illustrate the results of these tests. For our
benchmark set, this heuristic appears to work well at reducing the number of
infeasible edges, however the results for reducing the wire-length were mixed.
We can see that fixing too many nets indeed reduces the wire-length, but we
pay the price in terms of feasibility. We see that fixing 80% or more of the
nets causes some edges to be highly congested. This is seen in Figure a(f).

Our final results in Figures 10 and 11 show tables comparing our best results
to that of another concurrent router. The other router uses and JLP based
algorithm proposed in [29]. The column “WL Lower Bound” represents the
best possible wire-length if we ignore edge capacities. That is, if the optimal
SMT is chosen to route each net. GeoSteiner v3.1 is used to find optimal
SMT’s {9]. In [29], they make the assumption that any net with 10 or more
terminals may be ignored by the global router. In order to compare results,
we also make this assumption.

For wire-length minimization, we find that our algorithm finds a more feasible
solution than in {29] in all but one of the test cases. As well, it can be seen
that wire-length is not greatly sacrificed in order to achieve a reduction in
the maximum routing demand. On average, we reduce the maximur roufing
demand by 25.8% while only increasing the wire-length by 1.4%.

6 Conclusion and Future Work

In this paper, we have provided an implementation of a polynomial-time ap-
proximation algorithm for the global routing problem in VLSI design. This
algorithm has a theoretical approximation bound, however, in practice, our
approximate solutions are far closer to optimal than the bound suggests. From

19



Table 10 we found there is very little distance between the lower bounds for
the optimal solutions and our approximate solutions. On average, we find that
we are within 3% of the lower bound on wire-length, and in some cases, less
than 1%.

A number of techniques and heuristics were developed that can be used to
decrease the objective function value, as well as reduce computation time.

We found that by preserving the shortest paths computed throughout an iter-
ation of our algorithm, we can reduce the running time of our serially imple-
mented algorithm by up to a factor of 9 and nearly a factor of 5 on average.
Additionally, we provided a parallel implementation of the algorithm which
allows for a significant reduction in running time, as well as lower memory
usage compared to our serial version which uses path saving. The tree genera-
tion phase was multi-threaded in order to minimize the time spent in this step
of the algorithm. Since this is the most costly part of the algorithm in terms
of running time, we see excellent scaling results as we increase the number
of processors, especially in the largest instances that contain many nets. Our
computational experiments also showed that confining a certain percentage
of the total nets to a single tree not only led to better feasibility results, but
helped to reduce the objective function value. In some cases, we are able to
reduce the wire-length by 6% while at the same time, reducing the number of
overflown edges by nearly 22%. In general, we see that for our test data, fixing
50% to 70% of the nets based on bounding-box area or bounding-box sum
does not lead to an increase in the maximum routing demand and in many
cases, we see a reduction in overflow as well ag wire-length. Additionally, we
showed that our algorithm is very competitive with other ILP based models
that have been developed and, in many cases, provides better feasibility results
with similar objective values.

Our future work involves changing the way the edge congestion is estimated.
We believe that by updating the edge congestion several times throughout a
given iteration, we can improve the quality of the solution as well as reduce
the number of iterations required to obtain it.

Acknowledgments Research supported by an NSERC Discovery grant, a
MITACS grant and the Canada Research Chair program.

References

[1] K. M. Anstreicher, Towards a practical volumetric cutting plane method for
convex programiming, SIAM Journal on Optimization, 9 (1999), 190-206.

2] A.Baltz and A. Srivastav, Fast approximation of minimum multicast congestion

20



- implementation versus theory, RAIRO Operations Research, 38 {2004), 319-
344.

i3] L. Behjat, New modeling and optimization techniques for the global routing
problem, Ph.D. Thesis, University of Waterloo, 2002.

[4] L. Behjat, A. Vannelii and W. Rosehart, Tuteger linear programming models
for global routing, INFORMS Journal on Computing, 18(2) (2005), 137-150.

{5] M. Chlebfk and J. Chlebikovd, Approximation hardness of the Steiner tree
problem, Proceedings of the 8th Scandinavian Workshop on Algorithm Theory
(SWAT 2002), LNCS 2368, 170-179.

6] M. D. Grigoriadis and L. G. Khachiyan, Coordination complexity of parallel
price-directive decomposition, Mathematics of Uperations Research, 2 {1996),
321-340.

[7] M. Grotschel, L. Lovész, and A. Schrijver, The ellipsoid method and its
consequences in combinatorial optimization, Combinatorica, 1 (1981), 169-197.

(8] F. Hadlock, Finding a maximum cu$ of a planar graph in polynomial time,
SIAM Journal on Computing, 4(3) (1975), 221-225.

[9] GeoSteiner Homepage. Retrieved (3/28/07 from
hitp:/ /uow. diku. dk/geosteiner/.

[10) K. Jansen and H. Zhang, Approximation algorithms for general packing
problems and their application to the multicast congestion problem,
Mathematical Programming, 114(1) (2008}, 183-206.

[11} R. Kastner, Methods and algorithms for coupling reduction, M.S. Thesis,
Department of Electrical and Computer Engineering, Northwestern University,
2000.

[12] E. S. Kuh and M. Marek-Sadowska, Global routing, in Layout design and
verification {T. Ohtsuki Eds.), Elsevier Science Publishers B.V., Amsterdam,
1985, vol. 1, 133-168.

[13] Labyrinth: A global router and routing development tool. Retrieved 03/18/07
from hitp: / fwww. ece.ucsh.edu/ "kastner/labyrinth/.

[14] C. Y. Lee, An algorithm for path connection and its application, IRE
Transactions on Electronic Computers, 10 (1961), 346-365.

(15] T. Lengauer, Combinatorial algorithms for integrated circuit layout, J. Wiley,
New York, 1990.

[16] T. Lengauer and M. Lungering, Provably good global routing of integrated
circuits, SIAM Journal on Optimization, 11(1) (2000), 1-30.

[27] MCNC. Retrieved 03/26/07 from
hitp:/ fwww. cbl.nesu. edu/benchmarks /layoutsynth92/.

21



[181 K. Mehlhorn, A faster approximation algorithm for the Steiner problem in
graphs, Information FProcessing Letters 27 {1988), 125-128.

[19] W. R. Pulleyblank, Two Steiner tree packing problems, Proceedings of the 27th
Annual ACM Symposium on Theory of Computing (STOC 1995), 383-387.

120] P. Raghavan, Probabilistic construction of
deterministic algorithms: approximating packing integer programs, Journal of
Computer and System Sciences, 37 (1988), 130-143.

[21] P. Raghavan and C. D. Thompson, Randomized rounding: a technique for
provably good algorithms and algorithmic proofs, Combinatorica, 7 {4) (1987),
365-374.

[22] G. Robins and A. Zelikovsky, Improved Steiner tree approximation in graphs,
Proceedings of the 11th Annual ACM-5IA M Symposium on Discrete Algorithms
(SODA 2000), 770-779.

[23] N. Sherwani, Algorithms for VLSI physical design automation, Kluwer
Academic Publishers, Dordrecht, 1999.

[24] E. Shragowitz and S. Keel, A global router on a multi-commeodity flow model,
Interaction, 5 (1987), 3-16.

[25] T. Terlaky, A. Vannelli, and H. Zhang, On routing in VLSI design and
communication networks, Discrete Applied Mathematics, 156 (11) (2008), 2178-
2194.

[26] A. Vannelli, An adaptation of the interior point method for solving the global
routing problem, IBEE Transactions on Computer-Aided Design, 10 (2) {1991),
193-203.

[27} D. M. Warme, Spanning Trees in Hypergraphs with Applications to Steiner
Trees, Ph.D. Thesis, Computer Science Department, The University of Virginia,
1998.

(28] D. M. Warme, P. Winter and M. Zachariasen, Exact algorithms for plane Steiner
tree problems: a computational study, in Advances in Steiner Trees (D.Z. Du,
J.M. Smith and J.H. Rubinstein Eds.), Kluwer Academic Publishers, 2000, 81-
116.

[29] Z. Yang, S. Areibi and A. Vannelli, An ILP based hierarchical global routing
approach for VLSI ASIC design, Optimizaiion Letters, 1(3) (2007), 281-297.

22



104 1.04
102 W 102 A
§ = 5
: .
-
‘g o k’,\ - 'g 098
@ 0.95
% é 0.85
£ 0,04 — g
szt o strtich
—e- il 0.94 $~o—indi
o2 L jeepriml
- QWIS Ay s
0.9 " ¥ t g &.92 T - T
9 W 20 30 40 5S¢ 80 7D BO 90 0O i 20 30 40 % 60 7O 80 90
Pereent Fixed Percont Fixed
(a} Area Wire-length (b) Sum Wire-length
1.2 1.2

e
%

S — e
%/\Qg

Retatlva Overflow
o
o

4
3
P,

Relative Overffow
<
o

0.4 0.4
——struct T sEruct
9.2 o idl 0.2 H-o-indl
~—priml e prm Y
e BV, - BVELS
o . [ - .
0 10 20 30 40 50 86 7O 80 90 6 10 20 30 40 50 60 VO 80 %0
Percent Fixed Percent Fixed
(c) Area Overflow (d) Sum Overflow
16 18
14 Fad i6 »
/ 2
12 L4 //
a e g Z
o bl [
E R E 3
208 2 A
g Hos
W°l5 []
2 -
04t gtruct 0.4 ff-r-strucy
-l -o-ndL
0.2 prim 0.2 44 prim1
Bodud +11° 83 —r—avg.§
9 a— a .
0 10 0 30 40 56 66 7O G0 0 10 20 30 40 50 60 YO 80 90
Percent Fixed Percent Fixed
(e) Area MRD (f) Sum MRD

Fig. 9. Heuristics used to fixed a given percentage of nets

23




Circuit Dimensions Capaci WL Lower Wirelength Minimization Yang0s (WEMM}
reu X v lhoriz_ Jvert Boyund Wireien;th Jm MRD ITime__IWirelenath_IVias IMRD liime
fract 8| 25480 26173] 128 6 19 27515 99 9 3
struct 21 318886 321812 9 12 320663, 495 8
priml 19 621878 640880 9 5 644423 609 18]
prim2 26 3160108 3342461 15 38 3187597 2493 89
bio 46 1018806 1080592, 8 206 10324441 2083 117
ind1i 15 Q5440 985588 18 10, 986911] 1098 31
ind2 72 12067540 12460247 16 2444} 12091689 9420 2170
ind3 5 471307395 48769516 36 2091} 47205901 16457 2131
avy.s 80 Q065565 9192349 17 3395 Q0062804 12146 4163
avi.| 56 103820100 1DGE765H 18% 5989 104113648 12094 4515
Fig. 10. Wire-length minimization results
Circuit Dlmensmns WL Lower Via Minimlzation Yangdb {VMM}
y E—E__—_ﬁa Bound__[Wirelength ivizs _IMRD JTime IWirelepgth [vias |IMRD ITime
fract 8 4 25480 26241 134 8 3 28143 3
struct 21 5 318886 323528 739 9 9 321915 g
primi 19 6] 621878 642286 7471 10 8 651485 i8]
prim2 26 0 3160108} 333Z261F 3238] 16 43 3197111 80
bio 46 5 1018806] 1086112F 3149 8 325 1039595 118
ind1 15 104 951440 1035751f 1550 17 7 288845 32
Helewd 72 11 12067540 12114767 2167
ind3 54 29| 47130739 47395661 2123
ava.s 80, 16 9065565, 9122104 4163
fava.| 86 9l 10382018 10446320 4509

Fig. 11. Via minimization results

24




